


湖南省长沙铁路第一中学2024年数学九上开学考试模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列函数中,随的增大而减少的函数是( )
A.B.C.D.
2、(4分)如图,在中,,将沿方向平移个单位后得到,连接,则的长为( )
A.B.C.D.
3、(4分)如图,边长为1的方格纸中有一四边形ABCD(A,B,C,D四点均为格点),则该四边形的面积为( )
A.4B.6C.12D.24
4、(4分)一次函数的图象经过( )
A.一、二、三象限B.一、二、四象限
C.二、三、四象限D.一、三、四象限
5、(4分)将抛物线y=x2﹣4x﹣4向左平移3个单位,再向上平移5个单位,得到抛物线的函数表达式为( )
A.y=(x+1)2﹣13B.y=(x﹣5)2﹣3
C.y=(x﹣5)2﹣13D.y=(x+1)2﹣3
6、(4分)若,,则( )
A.B.C.D.5
7、(4分)下面四个应用图标中,既是轴对称图形又是中心对称图形的是( )
A.B.C.D.
8、(4分)如图,△ABC三边的长分别为3、4、5,点D、E、F分别是△ABC各边中点,则△DEF的周长和面积分别为 ( )
A.6,3B.6,4C.6,D.4,6
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在菱形ABCD中,∠=∠EAF=,∠BAE=,则∠CEF=________.
10、(4分)关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,则m的最大整数解是__.
11、(4分)如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,则D点的坐标是 .
12、(4分)已知y+2和x成正比例,当x=2时,y=4,则y与x的函数关系式是______________.
13、(4分)计算:(﹣)2=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)甲、乙两名运动员进行长跑训练,两人距终点的路程(米)与跑步时间(分)之间的函数关系如图所示,根据图象所提供的信息解答问题:
(1)他们在进行 米的长跑训练,在0<<15的时间内,速度较快的人是 (填“甲”或“乙”);
(2)求乙距终点的路程(米)与跑步时间(分)之间的函数关系式;
(3)当=15时,两人相距多少米?
(4)在15<<20的时间段内,求两人速度之差.
15、(8分)如图,菱形中,是的中点,,.
(1)求对角线,的长;
(2)求菱形的面积.
16、(8分)如图,点C在线段AB上,过点C作CD⊥AB,点E,F分别是AD,CD的中点,连结EF并延长EF至点G,使得FG=CB,连结CE,GB,过点B作BH∥CE交线段EG于点H.
(1)求证:四边形FCBG是矩形.
(1)己知AB=10,.
①当四边形ECBH是菱形时,求EG的长.
②连结CH,DH,记△DEH的面积为S1, △CBH的面积为S1.若EG=1FH,求S1+S1的值.
17、(10分)计算:
(1)
(2).
18、(10分)如图,将的边延长至点,使,连接,,,交于点.
(1)求证:;
(2)若,求证:四边形是矩形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如果等腰梯形两底差的一半等于它的高,那么此梯形较小的一个底角等于_________度.
20、(4分)如图,菱形的对角线相交于点,若,则菱形的面积=____.
21、(4分)一次函数y=(2m﹣1)x+1,若y随x的增大而增大,则m的取值范围是_____
22、(4分)在直角坐标系中,直线y=x+1与y轴交于点A,按如图方式作正方形A1B1C1O、A2B2C2C1、A3B3C3C2…,A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,图中阴影部分三角形的面积从左到右依次记为S1、S2、S3、…Sn,则Sn的值为__(用含n的代数式表示,n为正整数).
23、(4分)正比例函数()的图象过点(-1,3),则=__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)某校九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛,各参赛选手的成绩如下:
九(1)班:88,91,92,93,93,93,94,98,98,100;
九(2)班:89,93,93,93,95,96,96,98,98,1.
通过整理,得到数据分析表如下:
(1)直接写出表中m、n、p的值为:m=______,n=______,p=______;
(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好.”但也有人说(2)班的成绩要好.请给出两条支持九(2)班成绩更好的理由;
(3)学校确定了一个标准成绩,等于或大于这个成绩的学生被评定为“优秀”等级,如果九(2)班有一半的学生能够达到“优秀”等级,你认为标准成绩应定为______分,请简要说明理由.
25、(10分)已知:如图,ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得△GFC.
(1)求证:BE=DG;
(2)若∠B= 60 ,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论
26、(12分)某校把一块形状为直角三角形的废地开辟为生物园,如图所示,∠ACB=90°,AC=40m,BC=30m.线段CD是一条水渠,且D点在边AB上,已知水渠的造价为800元,问:当水渠的造价最低时,CD长为多少米?最低造价是多少元?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据一次函数的性质,k<0,y随x的增大而减少,找出各选项中k值小于0的选项即可.
【详解】
A、B、C选项中的函数解析式k值都是正数,y随x的增大而增大,
D选项y=-2x+8中,k=-2<0,y随x的增大而减少.
故选D.
本题考查了一次函数的性质,主要利用了当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.
2、B
【解析】
根据平移的性质可得DE=AB=4,BC-BE=6-2=4,然后根据等边三角形的定义列式计算即可得解.
【详解】
解:∵△ABC沿射线BC方向平移2个单位后得到△DEF,
∴DE=AB=4,BC-BE=6-2=4,
∵∠B=∠DEC=60°,
∴△DEC是等边三角形,
∴DC=4,
故选:B .
本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.
3、C
【解析】
根据菱形的性质,已知AC,BD的长,然后根据菱形的面积公式可求解.
【详解】
解:由图可知,AB=BC=CD=DA,
∴该四边形为菱形,
又∵AC=4,BD=6,
∴菱形的面积为4×6×=1.
故选:C.
主要考查菱形的面积公式:两条对角线的积的一半,同时也考查了菱形的判定.
4、D
【解析】
根据一次函数的解析式得出k及b的符号,再根据一次函数的性质进行解答即可.
【详解】
解:∵一次函数中k=2>0,b=-4<0,
∴此函数的图象经过一、三、四象限.
故选:D.
本题考查的是一次函数的性质,正确理解一次函数y=kx+b(k≠0)的图象与k,b的关系是解题的关键.
5、D
【解析】
因为y=x2-4x-4=(x-2)2-8,
以抛物线y=x2-4x-4的顶点坐标为(2,-8),把点(2,-8)向左平移1个单位,再向上平移5个单位所得对应点的坐标为(-1,-1),
所以平移后的抛物线的函数表达式为y=(x+1)2-1.
故选D.
6、C
【解析】
依据,2y=3z即可得到x=y,z=y,代式化简求值即可.
【详解】
解:∵,,
∴x=y,z=y,
∴= -5.
故选:C.
本题主要考分式的求值,用含y的代数式表示x和z是解决问题的关键.
7、C
【解析】
根据轴对称图形和中心对称图形的概念即可得出.
【详解】
解:A、是轴对称图形,不是中心对称图形,故此选项错误;
B、不是轴对称图形,是中心对称图形,故此选项错误;
C、是轴对称图形,是中心对称图形,故此选项正确;
D、不是轴对称图形,是中心对称图形,故此选项错误;
故选C.
本题考查了中心对称图形与轴对称图形的概念,轴对称图形: 在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形.中心对称图形: 在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.
8、C
【解析】
分析:利用三角形中位线定理可知:△DEF∽△ABC,根据其相似比即可计算出△DEF的周长和面积.
详解:∵点D、E、F分别是△ABC各边中点,
∴△DEF∽△ABC,相似比为:.
∴△DEF的周长=的周长=.
∵△ABC三边的长分别为3、4、5,
∴△ABC是直角三角形.
∴△DEF的面积=的面积=.
故选:C.
点睛:本题主要考查了相似三角形.关键在于根据三角形的中位线定理得出两三角形相似,并得出相似比.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、20°
【解析】
首先证明△ABE≌△ACF,然后推出AE=AF,证明△AEF是等边三角形,得∠AEF=60°,最后求出∠CEF的度数.
【详解】
解:连接AC, 在菱形ABCD中,AB=CB, ∵=60°,
∴∠BAC=60°,△ABC是等边三角形,
∵∠EAF=60°, ∴∠BAC-∠EAC=∠EAF-∠EAC,
即:∠BAE=∠CAF,
在△ABE和△ACF中,
,
∴△ABE≌△ACF(ASA),
∴AE=AF, 又∠EAF=∠D=60°,
则△AEF是等边三角形, ∴∠AEF=60°,
又∠AEC=∠B+∠BAE=80°,
则∠CEF=80°-60°=20°.
故答案为:20°.
此题主要考查菱形的性质和等边三角形的判定以及三角形的内角和定理,有一定的难度,解答本题的关键是正确作出辅助线,然后熟练掌握菱形的性质.
10、m=1.
【解析】
分析:若一元二次方程有实根,则根的判别式△=b2﹣1ac≥2,建立关于m的不等式,求出m的取值范围.还要注意二次项系数不为2.
详解:∵关于x的一元二次方程(m﹣5)x2+2x+2=2有实根,
∴△=1﹣8(m﹣5)≥2,且m﹣5≠2,
解得m≤5.5,且m≠5,
则m的最大整数解是m=1.
故答案为m=1.
点睛:考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>2,方程有两个不相等的实数根;(2)△=2,方程有两个相等的实数根;(3)△<2方程没有实数根.
11、(0,5)
【解析】
试题分析:先由矩形的性质得到AB=OC=8,BC=OA=10,再根据折叠的性质得AE=AO=10,DE=DO,在Rt△ABE中,利用勾股定理可计算出BE=6,则CE=BC﹣BE=4,设OD=x,则DE=x,DC=8﹣x,在Rt△CDE中根据勾股定理有x2=(8﹣x)2+42,解方程求出x,即可确定D点坐标.
解:∵四边形ABCD为矩形,
∴AB=OC=8,BC=OA=10,
∵纸片沿AD翻折,使点O落在BC边上的点E处,
∴AE=AO=10,DE=DO,
在Rt△ABE中,AB=8,AE=10,
∴BE=6,
∴CE=BC﹣BE=4,
设OD=x,则DE=x,DC=8﹣x,
在Rt△CDE中,∵DE2=CD2+CE2,
∴x2=(8﹣x)2+42,
∴x=5,
∴D点坐标为(0,5).
故答案为(0,5).
12、y=3x-1
【解析】
解:设函数解析式为y+1=kx,
∴1k=4+1,
解得:k=3,
∴y+1=3x,
即y=3x-1.
13、.
【解析】
根据乘方的定义计算即可.
【详解】
(﹣)2=.
故答案为:.
本题考查了乘方的意义,一般地,n个相同的因数a相乘,即a·a·a·…·a计作an,这种求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在an中,a叫做底数,n叫做指数.
三、解答题(本大题共5个小题,共48分)
14、(1)5000;甲;(2);(3)750米;(4)150米/分.
【解析】
(1)根据x=0时,y=5000可知,他们在进行5000米的长跑训练,在0<<15的时间内,,所以甲跑的快;
(2)分段求解析式,在0<<15的时间内,由点(0,5000),(15,2000)来求解析式;在15≤≤20的时间内,由点(15,2000),(20,0)来求解析式;
(3)根据题意求得甲的速度为250米/分,然后计算甲距离终点的路程,再计算他们的距离;
(4)在15<<20的时间段内,求得乙的速度,然后计算他们的速度差.
【详解】
(1)根据图象信息可知,他们在进行5000米的长跑训练,
在0
把(0,5000),(15,2000)代入解析式,解得k=-200,b=5000,
所以y=-200x+5000;
②在15≤≤20内,设,
把(15,2000),(20,0)代入解析式,解得,,
所以y=-400x+8000,
所以乙距终点的路程(米)与跑步时间(分)之间的函数关系式为:;
(3)甲的速度为5000÷20=250(米/分),250×15=3750米,距终点5000-3750=1250米,
此时乙距终点2000米,所以他们的距离为2000-1250=750米;
(4)在15<<20的时间段内,乙的速度为2000÷5=400米/分,甲的速度为250米/分,所以他们的速度差为400-250=150米/分.
考点:函数图象;求一次函数解析式.
15、(1),;(2)
【解析】
(1)根据是的中点,得到,再根据菱形的性质得到是等边三角形,得到BD的长,再利用勾股定理进而可以求出AO的长度,根据AC=2AO得到答案;
(2)根据菱形的面积等于两对角线的积的一半,列式求解即可得到答案;
【详解】
解:(1)为的中点,,
菱形中,,
,
是等边三角形,
,
,
;
(2)菱形的面积;
本题主要考查了菱形的性质、菱形的面积计算、等边三角形的判定与性质,掌握菱形的面积=两对角线的积的一半是解题的关键;
16、(1)证明见解析 (1)① ②2或
【解析】
(1)由EF是中位线,得EF平行AB,即FG平行CB,已知FG=CB,由一组对边平行且相等得四边形FCBG是平行四边形,又因为CD垂直AB,则四边形FCBG是矩形.
(1)①因为EF平行AC,根据平行列比例式,设EF为3x, 由中位线性质,直角三角形的中线的性质,四边形ECBH是菱形等条件,通过线段的长度转化,最终把AC和BC用含x的关系式表示,由AB=8,列方程,求出x, 把EG也用含x的代数式表示,代入x值,即可求出EG的长.
②由EF是△ACD的中位线,得DF=CF,根据同底等高三角形面积相等,得△DEH和△CEH的面积相等,因为四边形CEHB是平行四边形,所以△CEH的面积和△BCH的面积相等,得到关系式:S1+S1=1S1,由EF+FH=FH+HG,得EF=HG,结合已知EG=1FH,得FH=1FG,设EF等于a, 把有关线段用含a的代数式表示,分两种情况,即点H在FG上和点H在EF上,根据AB=10列关系式,求出a的值,再把S1用含a的代数式表示,代入a值即可.
【详解】
(1)∵EF即是△ADC的中位线,
∴EF∥AC,即FG∥CB.
∵FG=CB,
∴四边形FCBG是平行四边形.
∵CD⊥AB,即∠FCB=90°,
∴四边形FCBG是矩形.
(1)解:①∵EF是△ADC的中位线,
∴EF=AC,DF=CD,
∴
∴可设EF=3x,则DF=CF=4x,AC=6x.
∵∠EFC=90°,
∴CE=5x.
∵四边形ECBH是菱形,
∴BC=EC=5x,
∴AB=AC+CB=6x+5x=10,
∴x=
∴EG=EF+FG=EF+BC=3x+5x=8x=;
②∵EH∥BC,BH∥CE,
∴四边形ECBH是平行四边形,
∴EH=BC,
又∵DF=CF,
∴S△DEH=S△CEH ,
∵四边形ECBH是平行四边形,
∴S△CEH=S△BCH
∴S1+S1=1S1 .
∵EH=BC=FG,
∴EF=HG.
当点H在线段FG上时,如图,
设EF=HG=a,∵EG=1FH,
∴EG=1FH=4a,AC=1EF=1a,
∴BC=FG=3a.
∴AB=AC+BC=1a+3a=10,
∴a=1.
∵FC=AC=a,
∴S1+S1=1S1=1××3a×a=4a1=2.
当点H在线段EF上时,如图.
设EH=FG=a,则HF=1a.
同理可得AC=6a,BC=a,FC=4a,
∴AB=6a+a=10,
∴a=
∴S1+S1=1S1=1××a×4a=4a1= .
综上所述,S1+S1的值是2或.
本题考查了四边形的综合,涉及的知识点有平行四边形的判定和性质,矩形的判定,菱形的性质,三角形中位线的性质,灵活利用(特殊)平行四边形的性质求线段长及三角形的面积是解题的关键.
17、 (1)28﹣10;(2)3a﹣(+3)b.
【解析】
(1)利用完全平方公式计算;
(2)先把各二次根式化简为最简二次根式,然后合并即可.
【详解】
(1)原式=3﹣10+25=28﹣10;
(2)原式=3a+b﹣2b﹣3b
=3a﹣(+3)b.
此题考查二次根式的混合运算,解题关键在于掌握运算法则
18、 (1)证明见解析;(2)证明见解析.
【解析】
(1)根据平行四边形的判定与性质得到四边形BECD为平行四边形,然后由SSS推出两三角形全等即可;
(2)欲证明四边形BECD是矩形,只需推知BC=ED即可.
【详解】
(1)∵四边形是平行四边形,
∴,
∴.
又∵,
∴.
∴四边形为平行四边形.
∴.
∵在与中,,
∴.
(2)由(1)知,四边形为平行四边形,则.
∵四边形为平行四边形,
∴,即.
又∵,
∴,
∴,
∴,即,
∴四边形是矩形.
本题考查了平行四边形的性质和判定,矩形的判定,平行线的性质,全等三角形的性质和判定,三角形的外角性质等知识点的综合运用,难度较大.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
过点D作DE∥AB,交BC于点E.根据等腰梯形的性质可得到△CDE是等腰三角形,根据三线合一性质即得到CF=DF,从而可求得其较小底角的度数.
【详解】
解:如图,DF是等腰梯形ABCD的高,过点D作DE∥AB,交BC于点E.
∵AD//BC,DE∥AB,
∴四边形ABED是平行四边形,
∴AB=DE,
∴CD=DE,
∵DF⊥BC,
∴EF=CF,
∵BC-AD=2DF,
∴CF=DF,
∴△CDF是等腰直角三角形,
∴∠C=1°.
故答案为:1.
此题考查等腰梯形的性质、梯形中常见的辅助线的作法、平行四边形的判定与性质,等腰直角三角形的判定与性质,正确作出辅助线是解答本题的关键.
20、3.
【解析】
先求出菱形对角线AC和BD的长度,利用菱形面积等于对角线乘积的一半求解即可.
【详解】
因为四边形ABCD是菱形,
所以AC⊥BD.
在Rt△AOB中,利用勾股定理求得BO=1.
∴BD=6,AC=2.
∴菱形ABCD面积为×AC×BD=3.
故答案为:3.
本题主要考查了菱形的性质,解题的关键是熟记菱形面积的求解方法,运用对角线求解面积是解题的最优途径.
21、m>
【解析】
根据图象的增减性来确定(2m-1)的取值范围,从而求解.
【详解】
∵一次函数y=(2m-1)x+1,y随x的增大而增大,
∴2m-1>1,
解得,m>,
故答案是:m>.
本题考查了一次函数的图象与系数的关系.一次函数值y随x的增大而减小⇔k<1;函数值y随x的增大而增大⇔k>1.
22、.
【解析】
试题分析:∵直线,当x=0时,y=1,当y=0时,x=﹣1,∴OA1=1,OD=1,∴∠ODA1=45°,∴∠A2A1B1=45°,∴A2B1=A1B1=1,∴=,
∵A2B1=A1B1=1,∴A2C1=2=,∴=,
同理得:A3C2=4=,…,=,
∴=,
故答案为.
考点:1.一次函数图象上点的坐标特征;2.正方形的性质;3.规律型.
23、-1
【解析】
将(-1,1)代入y=kx,求得k的值即可.
【详解】
∵正比例函数()的图象经过点(-1,1),
∴1=-k,
解得k=-1,
故答案为:-1.
此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.
二、解答题(本大题共3个小题,共30分)
24、 (1) 94,92.2,93;(2)见解析;(3)92.2.
【解析】
(1)求出九(1)班的平均分确定出m的值,求出九(2)班的中位数确定出n的值,求出九(2)班的众数确定出p的值即可;
(2)分别从平均分,方差,以及中位数方面考虑,写出支持九(2)班成绩好的原因;
(3)用中位数作为一个标准即可衡量是否有一半学生达到优秀等级.
【详解】
解:(1)九(1)班的平均分=
=94,
九(2)班的中位数为(96+92)÷2=92.2,
九(2)班的众数为93,
故答案为:94,92.2,93;
(2)①九(2)班平均分高于九(1)班;②九(2)班的成绩集中在中上游;③九(2)班的成绩比九(1)班稳定;故支持B班成绩好;
(3)如果九(2)班有一半的学生评定为“优秀”等级,标准成绩应定为92.2(中位数).因为从样本情况看,成绩在92.2以上的在九(2)班有一半的学生.可以估计,如果标准成绩定为92.2,九(2)班有一半的学生能够评定为“优秀”等级,
故答案为92.2.
本题考查了平均数、中位数、众数以及方差的定义,属于统计中的基本题型,需重点掌握.
25、(1)见解析(2)当时,四边形是菱形,理由见解析
【解析】
(1)易证,则(2)E点为BF中点时符合题意,即可求解.
【详解】
证明:(1)∵四边形是平行四边形,
∴.
∵是边上的高,且是由沿方向平移而成.
∴.
∴.∵,
∴.
∴.
(2)当时,四边形是菱形.
∵,,
∴四边形是平行四边形.
∵中,,
∴,∴.
∵,∴.∴.
∴四边形是菱形.
26、CD长为24米,水渠的造价最低,其最低造价为19200元.
【解析】
根据点到直线的距离垂线段最短求出当CD为斜边上的高时CD最短,从而水渠造价最低.根据勾股定理求出AB的长度,根据等面积法求出CD的长度,再根据CD的长度求出水渠造价.
【详解】
当CD为斜边上的高时,CD最短,从而水渠造价最低,
∵∠ACB=90°,AC=40米,BC=30米,
∴AB=米
∵CD⋅AB=AC⋅BC,即CD⋅50=40×30,
∴CD=24米,
∴24×800=19200元
所以,CD长为24米,水渠的造价最低,其最低造价为19200元.
本题考查利用勾股定理解直角三角形,点到直线的距离.能根据点到直线的距离垂线段最短确定点D的位置是解决此题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
班级
最高分
平均分
中位数
众数
方差
九(1)班
100
m
93
93
12
九(2)班
1
95
n
p
8.4
湖南省长沙铁路第一中学2024-2025学年九年级数学第一学期开学调研试题【含答案】: 这是一份湖南省长沙铁路第一中学2024-2025学年九年级数学第一学期开学调研试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
湖南省长沙市铁路第一中学2025届数学九上开学统考模拟试题【含答案】: 这是一份湖南省长沙市铁路第一中学2025届数学九上开学统考模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
安徽蚌埠铁路中学2024年九上数学开学统考试题【含答案】: 这是一份安徽蚌埠铁路中学2024年九上数学开学统考试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。