湖南省长沙市雨花区雅礼教育集团2025届数学九上开学统考试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)图①是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中的边长为6的直角边分别向外延长一倍,得到图②所示的“数学风车”,则这个风车的外围周长是( )
A.51B.49C.76D.无法确定
2、(4分)下列说法正确的是( )
A.某个对象出现的次数称为频率B.要了解某品牌运动鞋使用寿命可用普查
C.没有水分种子发芽是随机事件D.折线统计图用于表示数据变化的特征和趋势
3、(4分)若代数式有意义,则x的取值范围是( )
A.x≥1B.x≥0C.x>1D.x>0
4、(4分)菱形ABCD的周长是20,对角线AC=8,则菱形ABCD的面积是( )
A.12B.24C.40D.48
5、(4分)如图,点O为四边形ABCD内任意一点,E,F,G,H分别为OA,OB,OC,OD的中点,则四边形EFGH的周长为( )
A.9B.12C.18D.不能确定
6、(4分)为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表.关于这10户家庭的月用电量说法正确的是( )
A.中位数是40B.众数是4C.平均数是20.5D.极差是3
7、(4分)在中,斜边,则的值为( )
A.6B.9C.18D.36
8、(4分)醴陵市“师生诗词大赛”成绩结果统计如表,成绩在91--100分的为优秀,则优秀的频率是( )
A.0.2B.0.25C.0.3D.0.35
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在中,,,,为的中点,则______.
10、(4分)如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依此为2,4,6,8,...,顶点依此用A1,A2,A3,表示,则顶点A55的坐标是___.
11、(4分)已知,,则__________.
12、(4分)如图,四边形为正方形,点分别为的中点,其中,则四边形的面积为________________________.
13、(4分)已知菱形一内角为,且平分这个内角的一条对角线长为8,则该菱形的边长__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,一次函数y=x+4的图像与反比例函数(k为常数且k≠0)的图像交于A(-1,a),B(b,1)两点,与x轴交于点C.
(1)求此反比例函数的表达式;
(2)若点P在x轴上,且,求点P的坐标.
15、(8分) 写出同时具备下列两个条件的一次函数关系式_____.(写出一个即可)
(1)y随x的增大而减小;(2)图象经过点(1,﹣2).
16、(8分)先化简后求值:()÷,其中x=.
17、(10分)解不等式组:,并把解集表示在数轴上;
18、(10分)如图,在四边形ABCD中,AB=AD=4,∠A=60°,BC=4,CD=1.
(1)求∠ADC的度数;
(2)求四边形ABCD的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在平面直角坐标系xOy中,四边形0ABC是平行四边形,且A(4,0),B(6,2),则直线AC的解析式为___________.
20、(4分)若分式有意义,则实数x的取值范围是_______.
21、(4分)若方程的解是正数,则m的取值范围_____.
22、(4分)直线y=kx+b经过点A(-2,0)和y轴的正半轴上一点B.如果△ABO(O为坐标原点)的面积为2,则b的值是________.
23、(4分)若关于的一元二次方程的常数项为,则的值是__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)王老师计划用36元购买若干袋洗衣液,恰遇超市降价促销,每袋洗衣液降价3元,因而王老师只用24元便可以购买到相同袋数的洗衣液.问这种洗衣液每袋原价是多少元?
25、(10分)如图,矩形的长,宽,现将矩形的一角沿折痕翻折,使得点落在边上,求点的位置(即的长)。
26、(12分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(﹣1,﹣3),C(3,n),交y轴于点B,交x轴于点D.
(1)求反比例函数y=和一次函数y=kx+b的表达式;
(2)连接OA,OC.求△AOC的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
试题解析:依题意得,设“数学风车”中的四个直角三角形的斜边长为x,则
x2=122+52=169,
解得x=1.
故“数学风车”的周长是:(1+6)×4=2.
故选C.
2、D
【解析】
根据频次、频数的定义区别,抽样调查、普查的用法区别,不可能事件、随机事件的区分,折线统计图的性质可判断.
【详解】
解:某个对象出现的次数称为频数,A错误;
要了解某品牌运动鞋使用寿命可用抽样调查,B错误;
没有水分种子发芽是不可能事件,C错误;
折线统计图用于表示数据变化的特征和趋势,D正确;
故选:D.
本题考查频次、频数的定义区别,抽样调查、普查的用法区别,不可能事件、随机事件的区分,折线统计图的性质等知识点,准确掌握相似说法的定义区别是本题的关键.
3、A
【解析】
二次根式有意义的条件是被开方数为非负数.
【详解】
解:∵二次根式有意义,
∴x-1≥0,
∴x≥1,
故选A.
本题考查了二次根式有意义的条件.
4、B
【解析】
解:∵菱形ABCD的周长是20,∴AB=20÷4=5,AC⊥BD,OA=AC=4,∴OB= =3,∴BD=2OB=6,∴菱形ABCD的面积是: AC•BD=×8×6=1.故选B.
点睛:此题考查了菱形的性质以及勾股定理.解题的关键是熟练运用勾股定理以及菱形的各种性质.
5、C
【解析】
由三角形中位线定理可得EF=AB,FG=BC,HG=DC,EH=AD,再根据题目给出的已知数据即可求出四边形EFGH的周长.
【详解】
解:∵E,F分别为OA,OB的中点,
∴EF是△AOB的中位线,
∴EF=AB=3,
同理可得:FG=BC=5,HG=DC=6,EH=AD=4,
∴四边形EFGH的周长为=3+5+6+4=18,
故选C.
本题考查了中点四边形的性质和三角形中位线定理的运用,解题的关键是根据三角形中位线定理得到四边形EFGH各边是原四边形ABCD的各边的一半.
6、A
【解析】
试题分析:根据中位数、众数、加权平均数和极差的定义和计算公式分别对每一项进行分析,即可得出答案.A、把这些数从小到大排列,最中间两个数的平均数是(40+40)÷2=40,则中位数是40,故本选项正确;B、40出现的次数最多,出现了4次,则众数是40,故本选项错误;C、这组数据的平均数(25+30×2+40×4+50×2+60)÷10=40.5,故本选项错误;D、这组数据的极差是:60﹣25=35,故本选项错误;故选A.
考点:1.极差;2.加权平均数;3.中位数;4.众数.
7、C
【解析】
根据勾股定理即可求解.
【详解】
在Rt△ABC中,AB为斜边,∴==9
∴=2=18
故选C.
此题主要考查勾股定理的应用,解题的关键是熟知勾股定理的性质.
8、A
【解析】
根据优秀人数为人,而数据总数为个,由频率公式可得答案.
【详解】
解:由题意得:优秀的频率是
故选A.
本题考查的是频数与频率,掌握“频率等于频数除以数据总数”是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据勾股定理以及直角三角形斜边上的中线性质即可求出答案.
【详解】
∵∠ABC=90°,BC=4cm,AB=3cm,
∴由勾股定理可知:AC=5cm,
∵点D为AC的中点,
∴BD=AC=cm,
故答案为:
本题考查勾股定理,解题的关键是熟练运用勾股定理以及直角三角形斜边上的中线的性质,本题属于基础题型.
10、(14,14)
【解析】
观察图象,每四个点一圈进行循环,每一圈第一个点在第三象限,根据点的脚标与坐标寻找规律
【详解】
∵55=413+3,A 与A 在同一象限,即都在第一象限,
根据题中图形中的规律可得
3=40+3,A 的坐标为(0+1,0+1),即A (1,1),
7=41+3,A 的坐标为(1+1,1+1), A (2,2),
11=42+3,A 的坐标为(2+1,2+1), A (3,3);
…
55=413+3,A (14,14),A 的坐标为(13+1, 13+1)
故答案为(14,14)
此题考查点的坐标,解题关键在于发现坐标的规律
11、1
【解析】
把x与y代入计算即可求出xy的值
【详解】
解:当,时,
∴ ;
故答案为:1.
此题考查了二次根式的混合运算,熟练掌握运算法则是解本题的关键.
12、4.
【解析】
先判定四边形EFGH为矩形,再根据中位线的定理分别求出EF、EH的长度,即可求出四边形EFGH的面积.
【详解】
解:∵四边形ABCD是正方形,点E、F、G、H分别是AB、BC、CD、DA的中点,
∴△AEH、△BEF、△CFG、△DGH都为等腰直角三角形,
∴∠HEF、∠EFG、∠FGH、∠GHE都为直角,
∴四边形EFGH是矩形,
边接AC,则AC=BD=4,
又∵EH是△ABD的中位线,
∴EH=BD=2,
同理EF=AC=2,
∴四边形EFGH的面积为2×2=4.
故答案为4.
本题考查了正方形的性质,矩形的判定,三角形中位线定理.
13、8
【解析】
根据已知可得该对角线与菱形的一组邻边构成一个等边三角形,从而可求得菱形的边长.
【详解】
菱形的一个内角为120°,则邻角为60°
则这条对角线和一组邻边组成等边三角形,
可得边长为8cm.
故答案为8.
此题考查菱形的性质,对角线与菱形的一组邻边构成一个等边三角形是解题关键
三、解答题(本大题共5个小题,共48分)
14、(1);(2)点P(-6,0)或(-2,0).
【解析】
(1)把A点坐标代入直线解析式求出a的值,再把A(-1,3)代入反比例函数关系式中,求出k的值即可;
(2)分别求出B、C的坐标,设点P的坐标为(x,0),根据列出方程求解即可.
【详解】
(1)把点A(-1,a)代入y=x+4,得a=3,∴A(-1,3),∴k=-3,
∴反比例函数的表达式为y=-;
(2)把B(b,1)代入反比例函数y=-,
解得:b=-3,∴B(-3,1),
当y=x+4=0时,得x=-4,
∴点C(-4,0),
设点P的坐标为(x,0),
∵S△AOB=S△AOC-S△BOC=×4×3-×4×1=6-2=4,S△ACP=S△AOB,
∴×3×│x-(-4)│=×4=3,
解得x1=-6,x2=-2,
∴点P(-6,0)或(-2,0).
本题是一次函数和反比例函数综合题,考查利用方程思想求函数解析式,通过联立方程求交点坐标以及在数形结合基础上的面积表达.
15、y=-x-1
【解析】
试题分析:当y随着x的增大而减小时,则k<0,则本题我们可以设一次函数的解析式为:y=-x+b,然后将点(1,-2)代入求出b的值.
考点:函数图象的性质
16、2
【解析】
首先对前两个式子进行同分,并对每个分式进行分解因式,乘以后面分式的倒数,并进行约分即可.
【详解】
解:当x=时,
∴原式=
=,
=2.
本题主要考查分式的四则运算,注意通分及约分正确即可,最终的式子保证最简形式.
17、
【解析】
分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.
【详解】
∵解不等式得:,
解不等式得:,
∴不等式组的解集是,
在数轴上表示不等式组的解集为:
本题考查了解一元一次不等式组以及在数轴上表示不等式组的解集的应用,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
18、 (1) 150°;(2)
【解析】
(1)连接BD,首先证明△ABD是等边三角形,可得∠ADB=60°,DB=4,再利用勾股定理逆定理证明△BDC是直角三角形,进而可得答案;
(2)过B作BE⊥AD,利用三角形函数计算出BE长,再利用△ABD的面积加上△BDC的面积可得四边形ABCD的面积.
【详解】
(1)连接BD,
∵AB=AD,∠A=60°,
∴△ABD是等边三角形,
∴∠ADB=60°,
DB=4,
∵42+12=(4)2,
∴DB2+CD2=BC2,
∴∠BDC=90°,
∴∠ADC=60°+90°=150°;
(2)过B作BE⊥AD,
∵∠A=60°,AB=4,
∴BE=AB•sin60°=4×=2,
∴四边形ABCD的面积为:AD•EB+DB•CD=×4×2+×4×1=4+2.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、y=-x+1
【解析】
根据平行四边形的性质得到OA∥BC,OA=BC,由已知条件得到C(2,2),设直线AC的解析式为y=kx+b,列方程组即可得到结论.
【详解】
解:∵四边形OABC是平行四边形,
∴OA∥BC,OA=BC,
∵A(1,0),B(6,2),
∴C(2,2),
设直线AC的解析式为y=kx+b,
∴,
解得:,
∴直线AC的解析式为y=-x+1,
故答案为:y=-x+1.
本题考查了平行四边形的性质、坐标与图形性质以及利用待定系数法求一次函数的解析式,解题的关键是求出其中心对称点的坐标.
20、
【解析】
由于分式的分母不能为2,x-1在分母上,因此x-1≠2,解得x.
解:∵分式有意义,
∴x-1≠2,即x≠1.
故答案为x≠1.
本题主要考查分式有意义的条件:分式有意义,分母不能为2.
21、m>-2且m≠0
【解析】
分析:本题解出分式方程的解,根据题意解为正数并且解不能等于2,列出关于m的取值范围.
解析:解方程 解为正数,∴ 且m≠0.
故答案为m>-2且m≠0
22、1
【解析】.而|OA|=1,故|OB|=1,又点B在y轴正半轴上,所以b=1.
23、
【解析】
先找到一元二次方程的常数项,得到关于m的方程,解出方程之后检验最后得到答案即可
【详解】
关于的一元二次方程的常数项为,故有,解得m=4或m=-1,又因为原方程是关于x的一元二次方程,故m+1≠0,m≠1
综上,m=4,故填4
本题考查一元二次方程的概念,解出m之后要重点注意二次项系数不能为0,舍去一个m的值
二、解答题(本大题共3个小题,共30分)
24、这种洗衣液每袋原价是9元.
【解析】
设这种洗衣液每袋原价是x元,则现价为(x-3)元,根据数量=总价÷单价结合降价后24元钱购买的洗衣液袋数等于降价前36元购买的洗衣液袋数,即可得出关于x的分式方程,解之经检验后即可得出结论.
【详解】
解:设这种洗衣液每袋原价是元,则现价为元,
依题意,得:,
解得:,
经检验,是原分式方程的解,且符合题意.
答:这种洗衣液每袋原价是9元.
本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
25、点E在离点D的距离为处.
【解析】
由折叠的性质可得BC=BC'=5,CE=C'E,由勾股定理可求AC'=4,可得C'D=1,由勾股定理可求DE的长,即可求E点的位置.
【详解】
∵将矩形的一角沿折痕BE翻折,使得C点落在AD边上,
∴BC=BC'=5,CE=C'E
在Rt△ABC'中,AC'==4,
∴C'D=AD-AC'=1,
在Rt△C'DE中,C'E2=DE2+C'D2,
∴(3-DE)2=DE2+1
∴DE=
∴点E在离点D的距离为处.
本题考查翻折变换、矩形的性质,勾股定理等知识,解题的关键是熟练掌握基本知识
26、(1)y=,y=x﹣2;(2)1.
【解析】
(1)先把A点坐标代入y=中求出m得到反比例函数的解析式是y=,再确定C的坐标,然后利用待定系数法求一次函数解析式;
(2)先确定D(2,0),然后根据三角形面积公式,利用S△AOC=S△OCD+S△AOD进行计算.
【详解】
解:(1)把A(﹣1,﹣3)代入y=得m=﹣1×(﹣3)=3,
则反比例函数的解析式是y=,
当x=3代入y==1,则C的坐标是(3,1);
把A(﹣1,﹣3),C(3,1)代入y=kx+b得,解得,
所以一次函数的解析式是:y=x﹣2;
(2)x=0,x﹣2=0,解得x=2,则D(2,0),
所以S△AOC=S△OCD+S△AOD=×2×(1+3)=1.
本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.
题号
一
二
三
四
五
总分
得分
月用电量(度)
25
30
40
50
60
户数
1
2
4
2
1
分数段
61--70
71--80
81--90
91--100
人数(人)
2
8
6
4
湖南省长沙市雅礼集团2025届数学九年级第一学期开学统考试题【含答案】: 这是一份湖南省长沙市雅礼集团2025届数学九年级第一学期开学统考试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届湖南省长沙市雅礼教育集团九上数学开学考试模拟试题【含答案】: 这是一份2025届湖南省长沙市雅礼教育集团九上数学开学考试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年湖南长沙市雅礼洋湖实验中学九上数学开学统考模拟试题【含答案】: 这是一份2024年湖南长沙市雅礼洋湖实验中学九上数学开学统考模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。