湖南省长沙市怡雅学校2024年九上数学开学教学质量检测模拟试题【含答案】
展开
这是一份湖南省长沙市怡雅学校2024年九上数学开学教学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)点M(-2,3)关于x轴对称点的坐标为
A. (-2,-3) B. (2,-3) C. (-3,-2) D. (2,3)
2、(4分)将抛物线y=2(x-7)2+3平移,使平移后的函数图象顶点落在y轴上,则下列平移中正确的是( )
A.向上平移3个单位 B.向下平移3个单位
C.向左平移7个单位 D.向右平移7个单位
3、(4分)下列命题是真命题的是( )
A.平行四边形对角线相等B.直角三角形两锐角互补
C.不等式﹣2x﹣1<0的解是x<﹣D.多边形的外角和为360°
4、(4分)对于函数y=﹣2x+2,下列结论:①当x>1时,y<0;②它的图象经过第一、二、四象限;③它的图象必经过点(﹣1,2);④y的值随x的增大而增大,其中正确结论的个数是( )
A.1 B.2 C.3 D.4
5、(4分)一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为( )
A.B.C.D.
6、(4分)小宇同学投擦10次实心球的成绩如表所示:
由上表可知小宇同学投掷10次实心球成绩的众数与中位数分别是( )
A.12m,11.9mB.12m,12.1mC.12.1m,11.9mD.12.1m,12m
7、(4分)矩形ABCD中AB=10,BC=8,E为AD边上一点,沿CE将△CDE对折,点D正好落在AB边上的F点.则AE的长是( )
A.3
B.4
C.5
D.6
8、(4分)如图,△ABC中,D、E分别是AB、AC上点,DE∥BC,AD=2,DB=1,AE=3,则EC长( )
A.B.1C.D.6
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在Rt△ABC与Rt△DEF中,∠B=∠E=90°,AC=DF,AB=DE,∠A=50°,则∠DFE= ________
10、(4分)化简:= .
11、(4分)已知反比例函数的图象经过点(1,-2),则k=_________.
12、(4分)已知一元二次方程x2-6x+a =0有一个根为2,则另一根为_______.
13、(4分)A、B、C三瓶不同浓度的酒精,A瓶内有酒精2kg,浓度x%,B瓶有酒精3kg,浓度y%,C瓶有酒精5kg,浓度z%,从A瓶中倒出10%,B瓶中倒出20%,C瓶中倒出24%,混合后测得浓度33.5%,将混合后的溶液倒回瓶中,使它们恢复原来的质量,再从A瓶倒出30%,B瓶倒出30%,C瓶倒出30%,混合后测得浓度为31.5%,测量发现,,,且x、y、z均为整数,则把起初A、B两瓶酒精全部混合后的浓度为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,四边形ABCD为正方形.在边AD上取一点E,连接BE,使∠AEB=60°.
(1)利用尺规作图(保留作图痕迹):分别以点B、C为圆心,BC长为半径作弧交正方形内部于点T,连接BT并延长交边AD于点E,则∠AEB=60°;
(2)在前面的条件下,取BE中点M,过点M的直线分别交边AB、CD于点P、Q.
①当PQ⊥BE时,求证:BP=2AP;
②当PQ=BE时,延长BE,CD交于N点,猜想NQ与MQ的数量关系,并说明理由.
15、(8分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A(﹣2,1),B(1,n)两点.
(1)求反比例函数和一次函数的解析式;
(2)根据图象写出使一次函数的值>反比例函数的值的x的取值范围.
16、(8分)如图,在平行四边形中,E是AB延长线上的一点,DE交BC于点F.已知,,求△CDF的面积.
17、(10分)某童装网店批发商批发一种童装,平均每天可售出件,每件盈利元.经调查,如果每件童装降价元,那么平均每天就可多售出件.
(1)设每件童装降价元,那么每天可售出多少件童装?每件童装的利润是多少元?(用含的代数式表示)
(2)为了迎接“六一”儿童节,商家决定降价促销、尽快减少库存,又想保证平均每天盈利元,求每件童装应降价多少元?
18、(10分)码头工人每天往一艘轮船上装载货物,平均每天装载速度y(吨/元)与装完货物所需时间x(天)之间是反比例函数关系,其图象如图所示.
(1)求这个反比例函数的表达式;
(2)由于紧急情况,要求船上的货物不超过5天卸货完毕,那么平均每天至少要卸货多少吨?
(3)若码头原有工人10名,且每名工人每天的装卸量相同,装载完毕恰好用了8天时间,在(2)的条件下,至少需要增加多少名工人才能完成任务?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若关于x的分式方程产生增根,则m=_____.
20、(4分)一组数据3,5,a,4,3的平均数是4,这组数据的方差为______.
21、(4分)一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③关于x的方程kx﹣x=a﹣b的解是x=3;④当x>3时,y1<y2中.则正确的序号有____________.
22、(4分)已知,化简二次根式的正确结果是_______________.
23、(4分)如图,平行四边形ABCD的对角线AC,BD交于O,EF过点O与AD,BC分别交于E,F,若AB=4,BC=5,OE=1.5,则四边形EFCD的周长_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在正方形网格中,每个小正方形的边长都是1,点A、B、C、D都在格点上.
(1)线段AB的长是______;
(2)在图中画出一条线段EF,使EF的长为,并判断AB、CD、EF三条线段的长能否成为一个直角三角形三边的长?说明理由.
25、(10分)(1)因式分解:4m2-9n2 ;(2)先化简,再求值:,其中x=2
26、(12分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2).
(1)求直线AB的解析式.
(2)求△OAC的面积.
(3)在y轴的负半轴上是否存在点M,使△ABM是以AB为直角边的直角角形?如果存在,求出点M的坐标;如果不存在,说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】两点关于x轴对称,那么让横坐标不变,纵坐标互为相反数即可.
解:∵3的相反数是-3,
∴点M(-2,3)关于x轴对称点的坐标为 (-2,-3),
故答案为A
点评:考查两点关于x轴对称的坐标的特点:横坐标不变,纵坐标互为相反数
2、C
【解析】
按“左加右减括号内,上加下减括号外”的规律平移即可得出所求函数的解析式.
【详解】
依题意可知,原抛物线顶点坐标为(7,3),平移后抛物线顶点坐标为(0,t)(t为常数),则原抛物线向左平移7个单位即可.
故选C.
本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a(x-h)2+k (a,b,c为常数,a≠0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移; k值正上移,负下移”.
3、D
【解析】
根据平行四边形的性质、直角三角形的性质、一元一次不等式的解法、多边形的外角和定理判断即可.
【详解】
平行四边形对角线不一定相等,A是假命题;
直角三角形两锐角互余,B是假命题;
不等式-2x-1<0的解是x>-,C是假命题;
多边形的外角和为360°,D是真命题;
故选D.
本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
4、B
【解析】
根据一次函数的系数,结合一次函数的性质,逐个分析即可得.
【详解】
①∵k=﹣2<0,
∴一次函数中y随x的增大而减小.
∵令y=﹣2x+2中x=1,则y=0,
∴当x>1时,y<0成立,即①正确;
②∵k=﹣2<0,b=2>0,
∴一次函数的图象经过第一、二、四象限,即②正确;
③令y=﹣2x+2中x=﹣1,则y=4,
∴一次函数的图象不过点(﹣1,2),即③不正确;
④∵k=﹣2<0,
∴一次函数中y随x的增大而减小,④不正确.
故选:B
本题考核知识点:一次函数性质. 解题关键点:熟记一次函数基本性质.
5、C
【解析】
根据函数的性质判断系数k>1,然后依次把每个点的坐标代入函数解析式,求出k的值,由此得到结论.
【详解】
∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,∴k>1.
A.把点(﹣5,3)代入y=kx﹣1得到:k1,不符合题意;
B.把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<1,不符合题意;
C.把点(2,2)代入y=kx﹣1得到:k1,符合题意;
D.把点(5,﹣1)代入y=kx﹣1得到:k=1,不符合题意.
故选C.
本题考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>1是解题的关键.
6、D
【解析】
根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.
【详解】
解:由上表可知小宇同学投掷10次实心球成绩的众数是12.1m,中位数是=12(m),
故选:D.
本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
7、A
【解析】
由矩形的性质和折叠的性质可得CF=DC=10,DE=EF,由勾股定理可求BF的长,即可得AF=4,在Rt△AEF中,由勾股定理即可求得AE的长.
【详解】
∵四边形ABCD是矩形,
∴AB=CD=10,BC=AD=8,∠A=∠D=∠B=90°,
∵折叠,
∴CD=CF=10,EF=DE,
在Rt△BCF中,BF==6,
∴AF=AB-BF=10-6=4,
在Rt△AEF中,AE2+AF2=EF2,
∴AE2+16=(8-AE)2,
∴AE=3,
故选A.
本题考查了翻折变换,矩形的性质,勾股定理,熟练掌握折叠的性质是本题的关键.
8、C
【解析】
试题解析:∵D、E分别是AB、AC上点,DE//BC,
∴
∵AD=2,DB=1,AE=3,
∴
故选C.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、40°
【解析】
根据HL可证Rt△ABC≌Rt△DEF,由全等三角形的性质可得∠EDF=∠A=50°,即可求解.
【详解】
∵△ABC和△DEF是直角三角形且AC=DF,AB=DE,
∴△ABC≌△DEF.
∵∠A=50°,
∴∠EDF=∠A=50°,
∵△DEF是直角三角形,
∴∠EDF+∠DFE=90°.
∵∠EDF=50°,
∴∠DFE=90°-50°=40°.
故答案为40°.
本题主要考查全等三角形的性质与判定,以及直角三角形两个锐角互余,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.
10、2
【解析】
根据算术平方根的定义,求数a的算术平方根,也就是求一个正数x,使得x2=a,则x就是a的算术平方根, 特别地,规定0的算术平方根是0.
【详解】
∵22=4,∴=2.
本题考查求算术平方根,熟记定义是关键.
11、-1
【解析】
由k=xy即可求得k值.
【详解】
解: 将(1,-1)代入中,k=xy=1×(-1)=-1
故答案为:-1.
本题考查求反比例函数的系数.
12、1
【解析】
设方程另一根为t,根据根与系数的关系得到2+t=6,然后解一次方程即可.
【详解】
设方程另一根为t,
根据题意得2+t=6,
解得t=1.
故答案为1.
此题考查一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系,解题关键在于掌握方程的两根为x1,x2,则x1+x2=-.
13、
【解析】
根据第一次A、B、C各取出部分混合后的浓度得到一条关于xyz的等式,再算出混合液倒回后A、B、C中后各自的酒精量,然后根据第二次混合再得到一条关于xyz的等式,联立组成方程组,使用x、y表示z,根据x、y、z的取值范围确定其准确整数值即可求解.
【详解】
解:A瓶倒出10%:2000×10%=200(克),剩余:2000-200=1800(克),
B瓶倒出20%:3000×20%=600(克),剩余:3000-600=2400(克),
C瓶倒出24%:5000×24%=1200(克),剩余:5000-1200=3800(克),
根据题意得:(200×x%+600×y%+1200×z%)÷(200+600+1200)=33.5%,
混合液倒回后A瓶内的酒精量:1800×x%+200×33.5%,
混合液倒回后B瓶内的酒精量:2400×y%+600×33.5%,
混合液倒回后C瓶内的酒精量:3800×z%+1200×33.5%,
再根据题意可得:
[(1800×x%+200×33.5%)×30%+(2400×y%+600×33.5%)×30%+(3800×z%+1200×33.5%)×30%]÷(2000×30%+3000×30%+5000×30%)=31.5%,
整理组成方程组得: ,
解得: ,
∵,,
∴,又∵且为整数,
则,
代入可得:,或者或者,
∵x、y、z均为整数,则只有符合题意,
则把起初A、B两瓶酒精混合后的浓度为:,
故答案为:.
本题考查从题意提取信息列方程组的能力,也考查三元一次方程组得解法,准确得出x、y和z之间的关系式再代入范围求解,舍去不符合题意的解为解题的关键.
三、解答题(本大题共5个小题,共48分)
14、 (1)见解析;(2)①见解析;②NQ=2MQ或NQ=MQ.理由见解析
【解析】
(1)分别以点B、C为圆心,BC长为半径作弧交正方形内部于点T,连接BT并延长交边AD于点E;
(2)①连接PE,先证明PQ垂直平分BE.得到PB=PE,再证明∠APE=60°,得到∠AEP=30°,利用在直角三角形中,30°所对的直角边等于斜边的一半,即可解答;
②NQ=2MQ或NQ=MQ,分两种情况讨论,作出辅助线,证明△ABE≌△FQP,即可解答.
【详解】
(1)解:如图1,
分别以点B、C为圆心,BC长为半径作弧交正方形内部于点T,连接BT并延长交边AD于点E;
(2)①证明:连接PE,如图2,
∵点M是BE的中点,PQ⊥BE,
∴PQ垂直平分BE.
∴PB=PE,
∴∠PEB=∠PBE=90°﹣∠AEB=90°﹣60°=30°,
∴∠APE=∠PBE+∠PEB=60°,
∴∠AEP=90°∠APE=90°﹣60°=30°,
∴BP=EP=2AP.
②NQ=2MQ或NQ=MQ.理由如下:
分两种情况:
如图3所示,过点Q作QF⊥AB于点F交BC于点G,则FQ=CB.
∵正方形ABCD中,AB=BC,
∴FQ=AB.
在Rt△ABE和Rt△FQP中,,
∴Rt△ABE≌Rt△FQP(HL).
∴∠FQP=∠ABE=30°.
又∵∠MGQ=∠AEB=60°,
∴∠GMQ=90°,
∵CD∥AB.
∴∠N=∠ABE=30°.
∴NQ=2MQ,
如图4所示,
过点Q作QF⊥AB于点F交BC于点G,则QF=CB.
同理可证:△ABE≌△FQP.
此时∠FPQ=∠AEB=60°.
又∵∠FPQ=∠ABE+∠PMB,∠N=∠ABE=30°.
∴∠EMQ=∠PMB=30°.
∴∠N=∠EMQ,
∴NQ=MQ.
本题是四边形综合题目,考查了正方形的性质、全等三角形的性质与判定、尺规作图、含30°角的直角三角形的性质、线段垂直平分线的性质、等腰三角形的性质等知识;本题综合性强,解决本题的关键是作出辅助线,证明三角形全等.
15、(1)反比例函数为;一次函数解析式为y=﹣x﹣1;(2)x<﹣2或0<x<1.
【解析】
(1)由A的坐标易求反比例函数解析式,从而求B点坐标,进而求一次函数的解析式;
(2)观察图象,找出一次函数的图象在反比例函数的图象上方时,x的取值即可.
【详解】
解:(1)把A(﹣2,1)代入y=,
得m=﹣2,
即反比例函数为y=﹣,
将B(1,n)代入y=﹣,解得n=﹣2,
即B(1,﹣2),
把A(﹣2,1),B(1,﹣2)代入y=kx+b,得
解得k=﹣1,b=﹣1,
所以y=﹣x﹣1;
(2)由图象可知:当一次函数的值>反比例函数的值时,x<﹣2或0<x<1.
此题考查的是反比例函数和一次函数的综合题,掌握利用待定系数法求一次函数、反比例函数的解析式和根据图象求自变量的取值范围是解决此题的关键.
16、解:∵四边形ABCD是平行四边形,
∴AE∥DC,
∴△BEF∽△CDF
∵AB=DC,BE:AB=2:3,
∴BE:DC=2:3
∴
∴
【解析】
试题分析:根据平行四边形的性质,可证△BEF∽△CDF,由BE:AB=2:3,可证BE:DC=2:3,根据相似三角形的性质,可证
考点:相似三角形的判定与性质;平行四边形的性质
点评:本题主要考查了相似三角形的判定和性质,平行四边形的性质等知识点
17、(1),;(2)应降价元.
【解析】
(1)设每件童装降价x元,则每件童装的利润是(40-x)元,每天可售出(1+2x)件;
(2)根据总利润=单件利润×销售数量,即可得出关于x的一元二次方程,解之取其较大值即可得出结论.
【详解】
解:(1)设每件童装降价x元,则每件童装的利润是(40-x)元,每天可售出(1+2x)件.
(2)依题意,得:(40-x)(1+2x)=110,
解得:x1=10,x2=1.
∵要尽快减少库存,
∴x=1.
答:每件童装应降价1元.
本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
18、(1);(2) 80吨货物;(3)6名.
【解析】
(1)根据题意即可知装载速度y(吨/天)与装完货物所需时间x(天)之间是反比例函数关系,则可求得答案;
(2)由x=5,代入函数解析式即可求得y的值,即求得平均每天至少要卸的货物;
(3)由10名工人,每天一共可卸货50吨,即可得出平均每人卸货的吨数,即可求得答案.
【详解】
解:(1)设y与x之间的函数表达式为y=,
根据题意得:50=,
解得k=400,
∴y与x之间的函数表达式为y=;
(2)∵x=5,
∴y=400÷5=80,
解得:y=80;
答:平均每天至少要卸80吨货物;
(3)∵每人一天可卸货:50÷10=5(吨),
∴80÷5=16(人),16﹣10=6(人).
答:码头至少需要再增加6名工人才能按时完成任务.
本题考查了反比例函数的应用,解题的关键是熟练的掌握反比例函数的性质.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
方程两边都乘以化为整式方程,表示出方程的解,依据增根为,即可求出的值.
【详解】
解:方程去分母得:,
解得:,
由方程有增根,得到,
则的值为1.
故答案为:1.
此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.
20、0.3.
【解析】
试题分析:∵3,5,a,4,3的平均数是4,∴(3+5+a+4+3)÷5=4,解得:a=5,
则这组数据的方差S3=[(3﹣4)3+(5﹣4)3+(5﹣4)3+(4﹣4)3+(3﹣4)3]=0.3,故答案为0.3.
考点:3.方差;3.算术平均数.
21、①③④
【解析】
根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x>3时,相应的x的值,y1图象均低于y2的图象.
【详解】
根据图示及数据可知:
①k<0正确;
②a<0,原来的说法错误;
③方程kx+b=x+a的解是x=3,正确;
④当x>3时,y1<y2正确.
故答案是:①③④.
考查一次函数的图象,考查学生的分析能力和读图能力,一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.
22、
【解析】
由题意:-a3b≥0,即ab≤0,
∵a<b,
∴a≤0<b;
所以原式=|a|=-a.
23、1
【解析】
根据平行四边形的性质知,AB=CD=4,AD=BC=5,AO=OC,∠OAD=∠OCF,∠AOE和∠COF是对顶角相等,所以△OAE≌△OCF,所以OF=OE=1.5,CF=AE,所以四边形EFCD的周长=ED+CD+CF+OF+OE=ED+AE+CD+OE+OF=AD+CD+OE+OF,由此就可以求出周长.
【详解】
解:∵四边形ABCD平行四边形,
∴AB=CD=4,AD=BC=5,AO=OC,∠OAD=∠OCF,∠AOE=∠COF,
∴△OAE≌△OCF,
∴OF=OE=1.5,CF=AE,
∴四边形EFCD的周长=ED+CD+CF+OF+OE
=ED+AE+CD+OE+OF
=AD+CD+OE+OF
=4+5+1.5+1.5
=1.
故答案为1.
本题利用了平行四边形的性质和已知条件先证出△OAE≌△OCF,再全等三角形的性质,转化边的关系后再求解.
二、解答题(本大题共3个小题,共30分)
24、(1);(2)见解析,AB、CD、EF三条线段的长能成为一个直角三角形三边的长,理由见解析
【解析】
(1)直接利用勾股定理得出AB的长;
(2)直接利用勾股定理以及勾股定理逆定理分析得出答案.
【详解】
(1)线段AB的长是:=;
故答案为:;
(2)如图所示:EF即为所求,
AB、CD、EF三条线段的长能成为一个直角三角形三边的长
理由:∵AB2=()2=5,DC2=8,EF2=13,
∴AB2+DC2=EF2,
∴AB、CD、EF三条线段的长能成为一个直角三角形三边的长.
此题主要考查了勾股定理以及勾股定理逆定理,正确结合网格分析是解题关键.
25、(1) (2)2
【解析】
(1)根据平方差公式因式分解即可.
(2)首先将其化简,在代入计算即可.
【详解】
(1)
(2)
代入x=2,原式=
本题主要考查因式分解,这是基本知识,应当熟练掌握.
26、(1)y=﹣x+6;(2)12;(3)点M的坐标为(0,-2)或(0,-6).
【解析】
分析:(1)利用待定系数法即可求得函数的解析式;
(2)求得C的坐标,即OC的长,利用三角形的面积公式即可求解;
(3)分两种情形①过点A作AB的垂线AM交y轴与M.②过点B作BM′⊥AB交y轴与M′,求出点M与M′坐标即可.
详解:(1)设直线AB的解析式是y=kx+b,
根据题意得:,
解得:,
则直线的解析式是:y=-x+6;
(2)在y=-x+6中,令x=0,解得:y=6,
S△OAC=×6×4=12;
(3)如图,
①过点A作AB的垂线AM交y轴与M.
∵直线AB的解析式为y=-x+6,
∴直线AM的解析式为y=x-2,
∴M(0,-2).
②过点B作BM′⊥AB交y轴与M′,则直线BM′的解析式为y=x-6,
∴M′(0,-6),
综上所述,满足条件的点M的坐标为(0,-2)或(0,-6).
点睛:本题主要考查了用待定系数法求函数的解析式以及三角形面积求法等知识,学会用分类讨论的思想思考问题是解题关键.
题号
一
二
三
四
五
总分
得分
批阅人
成绩(m)
11.8
11.9
12
12.1
12.2
频数
2
2
2
3
1
相关试卷
这是一份2025届湖南省长沙市中学雅培粹学校数学九上开学学业水平测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届湖南省长沙市长雅中学九上数学开学达标检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年湖南省长沙市天心区部分学校九上数学开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。