湖北省枣阳五中学2025届九上数学开学学业质量监测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是( )
A.B.C.D.
2、(4分)如图,在中,,,点在上,,,则的长为( )
A.B.C.D.
3、(4分)多项式与的公因式是( )
A.B.C.D.
4、(4分)函数y=mx+n与y=nx的大致图象是( )
A.B.
C.D.
5、(4分)某校团委为了解本校八年级500名学生平均每晚的睡眠时间,随机选择了该年级100名学生进行调查.关于下列说法:①本次调查方式属于抽样调查;②每个学生是个体;③100名学生是总体的一个样本;④总体是该校八年级500名学生平均每晚的睡眠时间;其中正确的是( )
A.①②B.①④C.②③D.②④
6、(4分)在直角三角形中,两条直角边长分别为2和3,则其斜边长为( )
A.B.C.或D.或
7、(4分)下列运算不正确的是( )
A.×=B.÷=C.+=D.(﹣)2=2
8、(4分)如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形( )
A.,B.,
C.,D.,
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)命题“若,则.”的逆命题是_____命题.(填“真”或“假”)
10、(4分)根据如图所示的计算程序计算变量y的对应值,若输入变量x的值为﹣,则输出的结果为_____
11、(4分)小李掷一枚均匀的硬币次,出现的结果如下:正、反、正、反、反、反、正、正、反、反、反、正,则出现“反面朝上”的频率为______.
12、(4分)如图,在平行四边形ABCD中,BE、CE分别平分∠ABC、∠BCD,E在AD上,BE=12cm,CE=5cm,则平行四边形ABCD的周长___________.
13、(4分)如图,在矩形中,,对角线,相交于点,垂直平分于点,则的长为__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)解关于x的方程:
15、(8分)某公司调查某中学学生对其环保产品的了解情况,随机抽取该校部分学生进行问卷,结果分“非常了解”、“比较了解”、“一般了解”、“不了解”四种类型,分别记为,根据调查结果绘制了如下尚不完整的统计图.
(1)本次问卷共随机调查了名学生,扇形统计图中
(2)请根据数据信息,补全条形统计图;
(3)若该校有1000名学生,估计选择“非常了解”、“比较了解”共约有多少人?
16、(8分)直线与轴轴分别交于点A和点B,M是OB上一点,若将△ABM沿AM折叠,点B恰好落在轴上的点B′处,试求出直线AM的解析式.
17、(10分)在读书月活动中,某校号召全体师生积极捐书,为了解所捐书籍的种类,图书管理员对部分书籍进行了抽样调查,根据调查数据绘制了如下不完整的统计图表.请你根据统计图表所提供的信息回答下面问题:
某校师生捐书种类情况统计表
(1)统计表中的m= ,n= ;
(2)补全条形统计图;
(3)本次活动师生共捐书2000本,请估计有多少本科普类图书?
18、(10分)如图1,在正方形ABCD中,E,F分别是AD,CD上两点,BE交AF于点G,且DE=CF.
(1)写出BE与AF之间的关系,并证明你的结论;
(2)如图2,若AB=2,点E为AD的中点,连接GD,试证明GD是∠EGF的角平分线,并求出GD的长;
(3)如图3,在(2)的条件下,作FQ∥DG交AB于点Q,请直接写出FQ的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)化简的结果为________.
20、(4分)已知5个数的平均数为,则这六个数的平均数为___
21、(4分)如图,平行四边形ABCD中,点O是对角线AC的中点,点E在边AB上,连接DE,取DE的中点F,连接EO并延长交CD于点G.若BE=3CG,OF=2,则线段AE的长是_____.
22、(4分)如图,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,则△ABD的面积是______.
23、(4分)在一次函数y=(k﹣3)x+2中,y随x的增大而减小,则k的取值_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)(1)分解因式:;
(2)化简:.
25、(10分)如图,在平面直角坐标系中,的三个顶点都在格点上,点的坐标为.
(1)画出将向右平移5个单位长度,再向上平移1个单位长度得到,并写出的坐标.
(2)画出关于原点成中心对称的,并写出的坐标.
26、(12分)为推动阳光体育活动的广泛开展,引导学生积极参加体育锻炼,学校准备购买一批运动鞋供学生借用.现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据图中提供的信息,解答下列问题:
(1)本次接受随机抽样调查的学生人数为 人,图①中的m的值为 ,图①中“38号”所在的扇形的圆心角度数为 ;
(2)本次调查获取的样本数据的众数是 ,中位数是 ;
(3)根据样本数据,若学校计划购买200双运动鞋,建议购买36号运动鞋多少双?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
试题分析:根据二次函数及一次函数的图象及性质可得,当a<0时,二次函数开口向上,顶点在y轴负半轴,一次函数经过一、二、四象限;当a>0时,二次函数开口向上,顶点在y轴正半轴,一次函数经过一、二、三象限.符合条件的只有选项C,故答案选C.
考点:二次函数和一次函数的图象及性质.
2、B
【解析】
根据,可得∠B=∠DAB,即,在Rt△ADC中根据勾股定理可得DC=1,则BC=BD+DC=.
【详解】
解:∵∠ADC为三角形ABD外角
∴∠ADC=∠B+∠DAB
∵
∴∠B=∠DAB
∴
在Rt△ADC中,由勾股定理得:
∴BC=BD+DC=
故选B
本题考查勾股定理的应用以及等角对等边,关键抓住这个特殊条件.
3、B
【解析】
直接将原式分别分解因式,进而得出公因式即可.
【详解】
解:∵a2-21=(a+1)(a-1),a2-1a=a(a-1),
∴多项式a2-21与a2-1a的公因式是a-1.
故选:B.
此题主要考查了公因式,正确将原式分解因式是解题的关键.
4、D
【解析】
当m>0,n>0时,y=mx+n经过一、二、三象限,y=nx经过一、三象限;
当m>0,n<0时,y=mx+n经过一、三、四象限,y=nx经过二、四象限;
当m<0,n>0时,y=mx+n经过一、二、四象限,y=nx经过一、三象限;
当m<0,n<0时,y=mx+n经过二、三、四象限,y=nx经过二、四象限.
综上,A,B,C错误,D正确
故选D.
考点:一次函数的图象
5、B
【解析】
根据问题特点,选用合适的调查方法.适合普查的方式一般有以下几种:①范围较小;②容易掌控;③不具有破坏性;④可操作性较强.同时根据随机事件的定义,以及样本容量的定义来解决即可.
【详解】
解:①本次调查方式属于抽样调查,正确;
②每个学生的睡眠时间是个体,此结论错误;
③100名学生的睡眠时间是总体的一个样本,此结论错误;
④总体是该校八年级500名学生平均每晚的睡眠时间,正确.
故选:B.
本题考查总体,样本,样本的容量的概念,熟练掌握相关定义是解题关键.
6、B
【解析】
根据勾股定理计算即可.
【详解】
由勾股定理得,其斜边长=,
故选B.
本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.
7、C
【解析】
分析:
根据二次根式的相关运算法则进行计算判断即可.
详解:
A选项中,因为,所以A中计算正确;
B选项中,因为,所以B中计算正确;
C选项中,因为中,两个项不能合并,所以C中计算错误;
D选项中,因为,所以D中计算正确.
故选C.
点睛:熟记“二次根式相关运算的运算法则”是正确解答本题的关键.
8、B
【解析】
根据平行四边形的判定方法,对每个选项进行筛选可得答案.
【详解】
A、∵OA=OC,OB=OD,
∴四边形ABCD是平行四边形,故A选项不符合题意;
B、AB=CD,AO=CO不能证明四边形ABCD是平行四边形,故本选项符合题意;
C、∵AD//BC,AD=BC,
∴四边形ABCD是平行四边形,故C选项不符合题意;
D、∵AB∥CD,
∴∠ABC+∠BCD=180°,∠BAD+∠ADC=180°,
又∵∠BAD=∠BCD,
∴∠ABC=∠ADC,
∵∠BAD=∠BCD,∠ABC=∠ADC,
∴四边形ABCD是平行四边形,故D选项不符合题意,
故选B.
本题主要考查平行四边形的判定问题,熟练掌握平行四边形的性质,能够熟练判定一个四边形是否为平行四边形.
平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、假
【解析】
写出该命题的逆命题后判断正误即可.
【详解】
解:命题“若,则.”的逆命题是若a>b,则,
例如:当a=3,b=-2时错误,为假命题,
故答案为:假.
本题考查了命题与定理的知识,解题的关键是交换命题的题设写出该命题的逆命题.
10、-1.5
【解析】
∵-2<<1,
∴x=时,y=x-1=,
故答案为.
11、
【解析】
根据题意可知“反面朝上”一共出现7次,再利用概率公式进行计算即可
【详解】
“反面朝上”一共出现7次,
则出现“反面朝上”的频率为
此题考查频率,解题关键在于掌握频率的计算方法
12、39
【解析】
根据角平分线和平行得到等腰三角形ABE和等腰三角形CDE和直角三角形BCE,根据勾股定理求得BC=13cm,根据等腰三角形性质得到AB,CD,从而求得周长.
【详解】
在中,
∵,AB=CD
∴
∵BE、CE分别平分∠ABC、∠BCD
∴
∴ ,
∴
∵
∴
∵BE平分
∴
∴ ,
同理可得 ,
∴
∴的周长为:
故答案为: .
本题考查了等腰三角形和直角三角形的性质,解题的关键在于利用等腰三角形和直角三角形的性质求得平行四边形中一组对边的长度.
13、
【解析】
结合题意,由矩形的性质和线段垂直平分线的性质可得AB=AO=OB=OD=4,根据勾股定理可求AD的长.
【详解】
∵四边形ABCD是矩形,
∴AO=BO=CO=DO,
∵AE垂直平分OB于点E,
∴AO=AB=4,
∴AO=OB=AB=4,
∴BD=8,
在Rt△ABD中,AD==.
故答案为:.
本题考查矩形的性质和线段垂直平分线的性质,解题的关键是掌握矩形的性质和线段垂直平分线的性质.
三、解答题(本大题共5个小题,共48分)
14、x=-5
【解析】
试题分析:方程左右两边同时乘以(x+1)(x-1),解出x以后要验证是否为方程的增根.
试题解析:
3(x+1)+2x(x-1)=2(x+1)(x-1)
3x+3+2x2-2x=2x2-2
x=-5.
经检验x=-5为原方程的解.
点睛:掌握分式方程的求解.
15、(1)50; 32;(2)见解析;(3)560人.
【解析】
分析:(1)由条形统计图和扇形统计图可知,用“非常了解”的人数为8人除以所占比例为16%,即可求得总人数;“一般了解”的人数为16人除以总人数即可求所占比例;
(2)用总人数减去B、C、D部分的人数求出A部分的人数,然后补全条形统计图即可;
(3)先根据扇形统计图得到部分学生“非常了解”和“比较了解”的人数占样本总人数的比例,再由样本估计总体即可求解.
详解:(1)8÷16%=50人;
16÷50=32%.
(2)50-20-16-6=8人.如图,
(3)1000×(16%+40%)=560人.
点睛:本题考差了扇形统计图和条形统计图的综合,解答此类题目,要善于发现二者之间的关联点,即两个统计图都知道了那个量的数据,从而用条形统计图中的具体数量除以扇形统计图中占的百分比,求出样本容量,进而求解其它未知的量.
16、y=-0.5x+1
【解析】
先确定点A、点B的坐标,再由AB=AB',可得AB'的长度,求出OB'的长度,即可得出点B'的坐标;设OM=m,则B'M=BM=8-m,在Rt△OMB'中利用勾股定理求出m的值,得出M的坐标后,利用待定系数法可求出AM所对应的函数解析式.
【详解】
解:y=-x+8,
令x=0,则y=8,
令y=0,则x=6,
∴A(6,0),B(0,8),
∴OA=6,OB=8 AB=10,
∵A B'=AB=10,
∴O B'=10-6=4,
∴B'的坐标为:(-4,0).
设OM=m,则B'M=BM=8-m,
在Rt△OMB'中,m2+42=(8-m)2,
解得:m=1,
∴M的坐标为:(0,1),
设直线AM的解析式为y=kx+b,
则,
解得:,
故直线AM的解析式为:y=-0.5x+1.
本题考查了一次函数的综合,涉及了待定系数法求函数解析式、勾股定理及翻折变换的性质,解答本题的关键是数形结合思想的应用,难度一般.
17、(1)8 30%;(2)图形见解析;(3)600.
【解析】
试题分析:(1)n=1﹣35%﹣20%﹣15%=30%,∵此次抽样的书本总数为12÷30%=40(本),∴m=40﹣12﹣14﹣6=8;(2)根据(1)中m值可补全统计图;(3)用样本中科普类书籍的百分比乘以总数可得答案.
试题解析:(1)m=8,n=30%;(2)统计图见下图:
(3)2000×30%=600(本),答:估计有600本科普类图书.
考点:1频率与频数;2条形统计图;3样本估计总体.
18、(1)BE=AF,BE⊥AF;(2)GD是∠EGF的角平分线,证明见解析,GD=;(3)FQ=.
【解析】
(1)根据已知条件可先证明△BAE≌△ADF,得到BE=AF,再由角的关系得到∠AGE=90°从而证明BE⊥AF;
(2)过点D作DN⊥AF于N,DM⊥BE交BE的延长线于M,根据勾股定理和三角形的面积相等求出DN,然后证明△AEG≌△DEM,得到DN=DM,再根据角平分线的性质可证明GD平分∠EGF,进而在等腰直角三角形中求得GD;
(3)过点G作GH∥AQ交FQ于H,可得到四边形DFHG是平行四边形,进而可得△FGH∽△FAQ,然后根据三角形相似的性质可求得FQ.
【详解】
解:(1)BE=AF,BE⊥AF,理由:
四边形ABCD是正方形,
∴BA=AD=CD,∠BAE=∠D=90°,
∵DE=CF,
∴AE=DF,
∴△BAE≌△ADF(SAS),
∴BE=AF,∠ABE=∠DAF,
∵∠ABE+∠AEB=90°,
∴∠DAF+∠AEB=90°,
∴∠AGE=90°,
∴BE⊥AF
(2)如图2,过点D作DN⊥AF于N,DM⊥BE交BE的延长线于M,
在Rt△ADF中,根据勾股定理得,AF=,
∵S△ADF=AD×FD=AF×DN,
∴DN=,
∵△BAE≌△ADF,
∴S△BAE=S△ADF,
∵BE=AF,
∴AG=DN,
∵AE=DE,∠MED=∠AEG,∠DME=∠AGM,
∴△AEG≌△DEM(AAS),
∴AG=DM,
∴DN=DM,
∵DM⊥BE,DN⊥AF,
∴GD平分∠MGN,即GD平分∠EGF,
∴∠DGN=∠MGN=45°,
∴△DGN是等腰直角三角形,
∴GD=DN=;
(3)如图3,由(2)知,GD=,AF=,AG=DN=,
∴FG=AF﹣AG=,
过点G作GH∥AQ交FQ于H,
∴GH∥DF,
∵FQ∥DG,
∴四边形DFHG是平行四边形,
∴FH=DG=,
∵GH∥AQ,
∴△FGH∽△FAQ,
∴,
∴ ,
∴FQ=.
全等三角形的判定和性质、勾股定理、角平分线的性质、平行四边形的判定和性质都是本题的考点,此题综合性比较强,熟练掌握基础知识并作出合适的辅助线是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
首先把分子、分母分解因式,然后约分即可.
【详解】
解:==
本题主要考查了分式的化简,正确进行因式分解是解题的关键.
20、
【解析】
根据前5个数的平均数为m,可得这5个数的总和,加上第6个数0,利用平均数的计算公式计算可得答案.
【详解】
解:∵
∴
∴
∴这六个数的平均数
此题主要考查了算术平均数的含义和求法,要熟练掌握,解答此题的关键是判断出:.
21、.
【解析】
已知点O是对角线AC的中点,DE的中点为F,可得OF为△EDG的中位线,根据三角形的中位线定理可得DG=2OF=4;由平行四边形的性质可得AB∥CD,AB=CD,即可得∠EAO=∠GCO,再判定△AOE≌△COG,根据全等三角形的性质可得AE=CG,即可得BE=DG=4,再由BE=3CG即可求得AE=CG=.
【详解】
∵点O是对角线AC的中点,DE的中点为F,
∴OF为△EDG的中位线,
∴DG=2OF=4;
∵四边形ABCD为平行四边形,
∴AB∥CD,AB=CD,
∴∠EAO=∠GCO,
在△AOE和△COG中,
,
∴△AOE≌△COG,
∴AE=CG,
∵AB=CD,
∴BE=DG=4,
∵BE=3CG,
∴AE=CG=.
故答案为:.
本题考查了平行四边形的性质、三角形的中位线定理,利用三角形的中位线定理求得DG=4;是解决问题的关键.
22、1
【解析】
延长AD到点E,使DE=AD=6,连接CE,可证明△ABD≌△CED,所以CE=AB,再利用勾股定理的逆定理证明△CDE是直角三角形,即△ABD为直角三角形,进而可求出△ABD的面积.
【详解】
解:延长AD到点E,使DE=AD=6,连接CE,
∵AD是BC边上的中线,
∴BD=CD,
在△ABD和△CED中,
,
∴△ABD≌△CED(SAS),
∴CE=AB=5,∠BAD=∠E,
∵AE=2AD=12,CE=5,AC=13,
∴CE2+AE2=AC2,
∴∠E=90°,
∴∠BAD=90°,
即△ABD为直角三角形,
∴△ABD的面积=AD•AB=1.
故答案为1.
本题考查了全等三角形的判定和性质、勾股定理的逆定理的运用,解题的关键是添加辅助线,构造全等三角形.
23、k<3
【解析】
试题解析:∵一次函数中y随x的增大而减小,
∴
解得,
故答案是:k
【详解】
请在此输入详解!
二、解答题(本大题共3个小题,共30分)
24、(1) ;(2) .
【解析】
(1)先提取公因式,再根据完全平方公式分解即可;
(2)原式通分并利用分式的加法法则计算即可得到结果
【详解】
解:(1)
=
= ;
(2)
=
=
=
= .
本题考查分解因式和分式的加法运算,能灵活运用知识点进行计算和化简是解题的关键.
25、 (1)见解析,的坐标;(2)见解析,的坐标.
【解析】
(1)根据平移的性质即可得到答案;
(2)根据中心对称的性质即可得到答案.
【详解】
(1)平移如图,即为所求.
的坐标
(2)如图,即为所求.
的坐标
本题考查平移的性质和轴对称的性质,解题的关键是掌握平移的性质和轴对称的性质.
26、(1)40,15,1°;(2)35,1;(3)50双.
【解析】
(1)根据条形统计图求出总人数即可;由扇形统计图以及单位1,求出m的值即可;用“38号”的百分比乘以10°,即可得圆心角的度数;
(2)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可;
(3)根据题意列出算式,计算即可得到结果.
【详解】
(Ⅰ)本次接受随机抽样调查的学生人数为6+12+10+8+4=40,图①中m的值为100-30-25-20-10=15;
10°×10%=1°;
故答案为:40,15,1°.
(2)∵在这组样本数据中,35出现了12次,出现次数最多,
∴这组样本数据的众数为35;
∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为1,
∴中位数为(1+1)÷2=1;
故答案为:35,1.
(3)∵在40名学生中,鞋号为1的学生人数比例为25%,
∴由样本数据,估计学校各年级中学生鞋号为1的人数比例约为25%,
则计划购买200双运动鞋,1号的双数为:200×25%=50(双).
此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
种类
频数
百分比
A.科普类
12
n
B.文学类
14
35%
C.艺术类
m
20%
D.其它类
6
15%
湖北省襄阳市枣阳2025届九上数学开学学业质量监测模拟试题【含答案】: 这是一份湖北省襄阳市枣阳2025届九上数学开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
湖北省武汉市七一华源中学2024年数学九上开学学业质量监测试题【含答案】: 这是一份湖北省武汉市七一华源中学2024年数学九上开学学业质量监测试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
湖北省黄冈市黄梅实验中学2024年数学九上开学学业质量监测试题【含答案】: 这是一份湖北省黄冈市黄梅实验中学2024年数学九上开学学业质量监测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。