


湖北省襄樊市二十六中学2025届九上数学开学质量跟踪监视模拟试题【含答案】
展开
这是一份湖北省襄樊市二十六中学2025届九上数学开学质量跟踪监视模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若x>y,则下列式子中错误的是( )
A.﹣3x>﹣3yB.3x>3yC.x﹣3>y﹣3D.x+3>y+3
2、(4分)如图,是某超市一楼与二楼之间的阶梯式电梯示意图,其中、分别表示一楼、二楼地面的水平线,,的长为, 则乘电梯从点到点上升的高度是( )
A.B.C.D.
3、(4分)下列图形中,不是中心对称图形的是( )
A.B.C.D.
4、(4分)15名同学参加八年级数学竞赛初赛,他们的得分互不相同,按从高分到低分的原则,录取前8名同学参加复赛,现在小聪同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的( )
A.平均数B.中位数C.众数D.方差
5、(4分)已知四边形是平行四边形,下列结论中不正确的是( )
A.当时,它是菱形B.当时,它是菱形
C.当时,它是矩形D.当时,它是正方形
6、(4分)如图,有一直角三角形纸片ABC,∠C=90°,∠B=30°,将该直角三角形纸片沿DE折叠,使点B与点A重合,DE=1,则BC的长度为( )
A.2B.+2C.3D.2
7、(4分)一元二次方程的两根是( )
A.0,1B.0,2C.1,2D.1,
8、(4分)下列性质中,平行四边形不一定具备的是( )
A.邻角互补B.对角互补
C.对边相等D.对角线互相平分
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,点A是函数y=(x>0)图象上的点,过点A作AB⊥x轴于点B,若点C(2,0),AB=2,S△ABC=3,则k=______.
10、(4分)颖颖同学用20元钱去买方便面35包,甲种方便面每包0.7元,乙种方便面每包0.5元,则她最多可买甲种方便面_____包.
11、(4分)若一次函数的图像与直线平行,且经过点,则这个一次函数的表达式为______.
12、(4分)如图所示,为估计池塘两岸边,两点间的距离,在池塘的一侧选取点,分别取、的中点,,测的,则,两点间的距离是______.
13、(4分)如图,是内一点,且在的垂直平分线上,连接,.若,,,则点到的距离为_________.
三、解答题(本大题共5个小题,共48分)
14、(12分) (1)因式分解:; (2)计算:.
15、(8分)如图,平行四边形ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,求△BOC的周长为多大?
16、(8分)如图,一次函数的图象与反比例函数的图象交于,两点.
(1)试确定上述反比例函数和一次函数的表达式;
(2)当为何值时反比例函数值大于一次函数的值;
(3)当为何值时一次函数值大于比例函数的值;
(4)求的面积.
17、(10分)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交BE于点F,点D,E的坐标分别为(3,0),(0,1).
(1)求抛物线的解析式;
(2)猜想△EDB的形状并加以证明.
18、(10分)如图,路灯(点)距地面8米,身高1.6米的小明从距路灯的底部(点 )20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了;变长或变短了多少米.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,如果一次函数与反比例函数的图象交于,两点,那么不等式的解为________.
20、(4分)命题“对角线相等的四边形是矩形”的逆命题是_____________.
21、(4分)如图,一个宽为2 cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的直径是_____________cm.
22、(4分)若分式的值为0,则x的值是_____.
23、(4分)已知是一元二次方程的两实根,则代数式_______.
二、解答题(本大题共3个小题,共30分)
24、(8分)先化简,再求值:(a+)÷,其中a=1.
25、(10分)已知一次函数的图象过点,且与一次函数的图象相交于点.
(1)求点的坐标和函数的解析式;
(2)在平面直角坐标系中画出,的函数图象;
(3)结合你所画的函数图象,直接写出不等式的解集.
26、(12分)某商店以每件50元的价格购进某种品牌衬衫100件,为使这批衬衫尽快出售,该商店先将进价提高到原来的2倍,共销售了10件,再降低相同的百分率作二次降价处理;第一次降价标出了“出厂价”,共销售了40件,第二次降价标出“亏本价”,结果一抢而光,以“亏本价”销售时,每件衬衫仍有14元的利润.
(1)求每次降价的百分率;
(2)在这次销售活动中商店获得多少利润?请通过计算加以说明.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据不等式的基本性质逐一判断即可.
【详解】
解:∵x>y,
∴A、﹣3x3y,正确,
C、x﹣3>y﹣3,正确,
D、x+3>y+3,正确,
故答案为:A.
本题考查了不等式的基本性质,解题的关键是熟知当不等式两边同时乘以一个负数,不等号的方向要改变.
2、C
【解析】
过C作CM⊥AB于M,求出∠CBM=30°,根据BC=10m,利用三角函数的知识解直角三角形即可.
【详解】
解:过C作CM⊥AB于M,
∵∠ABC=150°,
∴∠CBM=180°-150°=30°,
在Rt△CBM中,
∵BC=10m,∠CBM=30°,
∴=sin∠CBM=sin30°=,
∴CM=BC=5m,
即从点B到点C上升的高度h是5m.
故选C.
本题考查了解直角三角形的应用,解答本题的关键是根据坡角建立直角三角形,利用三角函数解直角三角形.
3、A
【解析】
根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.
【详解】
A、不是中心对称图形,故此选项正确;
B、是中心对称图形,故此选项错误;
C、是中心对称图形,故此选项错误;
D、是中心对称图形,故此选项错误;
故选:A.
此题主要考查了中心对称图形,关键是要寻找对称中心,旋转180度后两部分重合.
4、B
【解析】
由中位数的概念,即最中间一个或两个数据的平均数;可知15人成绩的中位数是第8名的成绩.根据题意可得:参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
【详解】
解:由于15个人中,第8名的成绩是中位数,故小明同学知道了自己的分数后,想知道自己能否进入决赛,还需知道这十五位同学的分数的中位数.
故选B.
本题考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
5、D
【解析】
根据特殊平行四边形的判定方法判断即可.
【详解】
解:有一组邻边相等的平行四边形是菱形,A选项正确;对角线互相垂直的平行四边形是菱形,B选项正确;有一个角是直角的平行四边形是矩形,C选项正确;对角线互相垂直且相等的平行四边形是正方形,D选项错误.
故答案为:D
本题考查了特殊平行四边形的判定方法,熟练掌握特殊平行四边形与平行四边形之间的关系是判定的关键.
6、C
【解析】
分析: 先由∠B=30°,将该直角三角形纸片沿DE折叠,使点B与点A重合,DE=1,得到AD=BD=2, 再根据∠C=90°,∠B=30°得∠CAD=30°,然后在Rt△ACD中,利用30°的角所对的直角边是斜边的一半求得CD=1,从而求得BC的长度.
详解: ∵△ABC折叠,点B与点A重合,折痕为DE,
∴AD=BD,∠B=∠CAD= 30°, ∠DEB=90°,
∴AD=BD=2, ∠CAD=30°,
∴CD=AD=1,
∴BC=BD+CD=2+1=3
故选:C.
点睛: 本题考查了翻折变换,主要利用了翻折前后对应边相等,此类题目,难点在于利用直角三角形中30°的角所对应的直角边是斜边的一半来解决问题.
7、A
【解析】
利用因式分解法解答即可得到方程的根.
【详解】
解:,
,
解得,.
故选:A.
本题主要考查了一元二次方程的解法,要根据不同的题目采取适当的方法解题.
8、B
【解析】
根据平行四边形边、角及对角线的性质进行解答即可.
【详解】
平行四边形的对角相等、邻角互补、对边相等、对角线互相平分.故选B.
本题主要考查的是平行四边形的性质,属于基础题型.理解平行四边形的性质是解决这个问题的关键所在.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据三角形的面积求出BC,求出A点的坐标,把A点的坐标代入函数解析式求出即可.
【详解】
解:∵S△ABC=3,AB=2,
∴=3,
∴BC=3,
∵C(2,0),
∴OB=2+3=5,
∴A点的坐标是(5,2),
代入y=得:k=2×5=1,
故答案为:1.
本题考查了用待定系数法求反比例函数的解析式和反比例函数图象上点的坐标特征,能求出A点的坐标是解此题的关键.
10、1
【解析】
设可购买甲种方便面x包,则可购买乙种方便面(35﹣x)包,根据总价=单价×数量结合总价不超过20元,即可得出关于x的一元一次不等式,解之取其中的最大整数是解题的关键.
【详解】
设可购买甲种方便面x包,则可购买乙种方便面(35﹣x)包,
根据题意得:0.7x+0.5(35﹣x)≤20,
解得:x≤1.5,
∵x为整数,
∴x=1.
故答案为1.
本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.
11、
【解析】
设这个一次函数的表达式y=-1x+b,把代入即可.
【详解】
设这个一次函数的表达式y=-1x+b,把代入,得
-4+b=-1,
∴b=3,
∴.
故答案为:.
本题考查了两条直线的平行问题:若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.例如:若直线y1=k1x+b1与直线y1=k1x+b1平行,那么k1=k1.也考查了待定系数法.
12、36
【解析】
根据E、F是CA、CB的中点,即EF是△CAB的中位线,根据三角形的中位线定理:三角形的中位线平行于第三边且等于第三边的一半,即可求解.
【详解】
解:据E、F是CA、CB的中点,即EF是△CAB的中位线,
∴EF=AB,
∴AB=2EF=2×18=36.
故答案为36.
本题考查了三角形的中位线定理应用,灵活应用三角形中位线定理是解题的关键.
13、
【解析】
连接OB,过点O作OD⊥AB于D,先证明△ABC为直角三角形,再由S△ABO=AO·OB=AB·OD求解即可.
【详解】
解:如图,连接OB,过点O作OD⊥AB于D,
∵在的垂直平分线上,
∴OB=OC,
∵,,,
∴OA2+OB2=32+42=25=AB2,
∴△ABC为直角三角形,
∵S△ABO=AO·OB=AB·OD,
∴OD= =.
故答案为.
此题主要考查了垂直平分线的性质,勾股定理的逆定理及三角形的面积。正确的添加辅助线是解决问题的关键.
三、解答题(本大题共5个小题,共48分)
14、 (1);(2)m
【解析】
(1)先对原式提取公因式x,再用完全平方差公式分解即可得到答案;
(2)先对括号的式子进行通分,再把括号外的式子的分母用平方差公式分解,再进行约分化简即可得到答案.
【详解】
解:(1) ==.
(2)原式=
=
=
=.
本题主要考查了因式分解和分式的混合运算.掌握用公式法分解因式以及提取公因式法分解因式是解题的关键.
15、1
【解析】
根据平行四边形的性质,三角形周长的定义即可解决问题;
【详解】
解:∵四边形ABCD是平行四边形,
∴AD=BC=6,OA=OC,OB=OD,
∵AC+BD=16,
∴OB+OC=8,
∴△BOC的周长=BC+OB+OC=6+8=1.
本题考查平行四边形的性质.三角形的周长等知识,解题的关键是熟练掌握平行四边形的对角线互相平分,属于中考常考题型.
16、(1); ;(2)当或时,反比例函数值大于一次函数的值;(3)当或时,一次函数值大于比例函数的值;(4).
【解析】
(1)把A的坐标代入反比例函数的解析式即可求出反比例函数的解析式,把B的坐标代入求出B的坐标,把A、B的坐标代入一次函数y1=kx+b即可求出函数的解析式;
(2)根据函数的图象和A、B的坐标即可得出答案;
(3)根据函数的图象和A、B的坐标即可得出答案;
(4)求出C的坐标,求出△AOC和△BOC的面积,即可求出答案.
【详解】
解:(1)∵把A(-2,1)代入
得:m=-2,
∴反比例函数的解析式是y=-,
∵B(1,n)代入反比例函数y=-
得:n=-2,
∴B的坐标是(1,-2),把A、B的坐标代入一次函数y1=kx+b得:
,
解得:k=-1,b=-1,
∴一次函数的解析式是y=-x-1;
(2)从图象可知:当反比例函数值大于一次函数的值时x的取值范围-2<x<0或x>1.
(3)从图象可知:当一次函数的值大于反比例函数的值时x的取值范围x<-2或0<x<1.
(4)设直线与x轴的交点为C,
∵把y=0代入一次函数的解析式是y=-x-1得:0=-x-1,
x=-1,
∴C(-1,0),
△AOB的面积S=SAOC+S△BOC=×|-1|×1+×|-1|×|-2|=.
本题考查了反比例函数、一次函数图象上点的坐标特征,用待定系数法求一次函数的解析式,三角形的面积等知识点的综合运用,主要考查学生的计算能力和观察图形的能力,用了数形结合思想,题目比较好.
17、(1)y=—x2+3x;(2)△EDB为等腰直角三角形,见解析.
【解析】
(1)由条件可求得抛物线的顶点坐标及A点坐标,利用待定系数法可求得抛物线解析式;
(2)由B、D、E的坐标可分别求得DE、BD和BE的长,再利用勾股定理的逆定理可进行判断;
【详解】
(1)在矩形OABC中,OA=4,OC=3,
∴A(4,0),C(0,3),
∵抛物线经过O、A两点,顶点在BC边上,
∴抛物线顶点坐标为(2,3),
∴可设抛物线解析式为y=a(x﹣2)2+3,
把A点坐标代入可得0=a(4﹣2)2+3,解得a=-,
∴抛物线解析式为y=—(x﹣2)2+3,即y=—x2+3x;
(2)△EDB为等腰直角三角形.
证明:
由(1)可知B(4,3),且D(3,0),E(0,1),
∴DE2=32+12=10,BD2=(4﹣3)2+32=10,BE2=42+(3﹣1)2=20,
∴DE2+BD2=BE2,且DE=BD,
∴△EDB为等腰直角三角形.
此题考查二次函数综合题,解题关键在于利用勾股定理逆定理进行求证.
18、变短了1.5米.
【解析】
如图,由于AC∥BD∥OP,故有△MAC∽△MOP,△NBD∽△NOP即可由相似三角形的性质求解.
【详解】
解:∵∠MAC=∠MOP=90°,∠AMC=∠OMP,
∴△MAC∽△MOP.
∴,即,
解得,MA=5米;
同理,由△NBD∽△NOP,可求得NB=1.5米,
∴小明的身影变短了5﹣1.5=1.5米.
本题考查相似三角形的应用,掌握相似三角形的判定和性质正确推理计算是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
先求出m,n的值,再观察图象,一次函数的图象在反比例函数的图象上方,写出x的取值范围即可.
【详解】
∵点A(m,6)、B(n,3)在函数图象上,
∴m=1,n=2,
∴A点坐标是(1,6),B点坐标是(2,3),
观察图象可知,x的取值范围是1<x<2.
故答案为:1<x<2.
本题考查一次函数与反比例函数的交点、待定系数法、一元一次不等式等知识,解题的关键是熟练掌握待定系数法,学会利用图象解决问题,学会构建方程解决问题,属于中考常考题型.
20、矩形的对角线相等
【解析】
根据逆命题的定义:对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题,原命题的条件是对角线相等,结论是矩形,互换即可得解.
【详解】
原命题的条件是:对角线相等的四边形,结论是:矩形;
则逆命题为矩形的对角线相等.
此题主要考查对逆命题的理解,熟练掌握,即可解题.
21、10
【解析】
本题先根据垂径定理构造出直角三角形,然后在直角三角形中已知弦长和弓形高,根据勾股定理求出半径,从而得解.
【详解】
如图,设圆心为O,弦为AB,切点为C.如图所示.则AB=8cm,CD=2cm.
连接OC,交AB于D点.连接OA.
∵尺的对边平行,光盘与外边缘相切,
∴OC⊥AB.
∴AD=4cm.
设半径为Rcm,则R2=42+(R−2)2,
解得R=5,
∴该光盘的直径是10cm.
故答案为:10.
此题考查了切线的性质及垂径定理,建立数学模型是关键.
22、-2
【解析】
根据分子等于零且分母不等于零列式求解即可.
【详解】
解:由分式的值为2,得
x+2=2且x﹣2≠2.
解得x=﹣2,
故答案为:﹣2.
本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子的值为2,②分母的值不为2,这两个条件缺一不可.
23、
【解析】
根据韦达定理得,再代入原式求解即可.
【详解】
∵是一元二次方程的两实根
∴
∴
故答案为:.
本题考查了一元二次方程根与系数的问题,掌握韦达定理是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、2.
【解析】
分析:把a+通分化简,再把除法转化为乘法,并把分子、分母分解因式约分,化成最简分式(或整式)后把a=1代入计算.
详解:(a+)÷
=[+]•
=•
=•
=,
当a=1时,原式==2.
点睛:本题考查了分式的化简求值,熟练掌握分式混合运算的运算法则是解答本题的关键,本题也考查了运用平方差公式和完全平方公式分解因式.
25、(1),;(2)见解析;(3).
【解析】
(1)将P(2,m)代入y2=x+1,求出m=3,再把(2,3),(0,-2)代入求出k,b的值即可;
(2)找出两点画出直线即可;
(3)根据画出的函数图象求解即可.
【详解】
(1)把点代入得,
,
∴,
把,代入得,
,
;
(2)经过点,作直线,即为的图象,
经过点,作直线,即为的图象,
如图所示:
(3)由图象知,不等式的解集为:.
本题考查了一次函数与一元一次不等式的关系,也考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征以及一次函数的图象与性质等知识.
26、(1)20%;(2)2400元;
【解析】
(1)设每次降价的百分率为x,根据题意可得等量关系:进价×2×(1﹣降价的百分率)2﹣进价=利润14元,根据等量关系列出方程,再解方程即可;
(2)首先计算出销售总款,然后再减去成本可得利润.
【详解】
解:(1)设每次降价的百分率为x,由题意得:
50×2(1﹣x)2﹣50=14,
解得:x1=0.2=20%.x2=1.8(不合题意舍去),
答:每次降价的百分率为20%;
(2)10×50×2+40×50×2(1﹣20%)+(100﹣10﹣40)×50×2(1﹣20%)2﹣50×100=2400(元)
答:在这次销售活动中商店获得2400元利润.
本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份湖北省襄樊市名校2025届九上数学开学质量跟踪监视模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份北京教育院附属中学2024年数学九上开学质量跟踪监视模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届湖北省黄石市河口中学九上数学开学质量跟踪监视模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
