开学活动
搜索
    上传资料 赚现金

    湖北省鄂州市鄂城区2025届数学九年级第一学期开学学业水平测试模拟试题【含答案】

    湖北省鄂州市鄂城区2025届数学九年级第一学期开学学业水平测试模拟试题【含答案】第1页
    湖北省鄂州市鄂城区2025届数学九年级第一学期开学学业水平测试模拟试题【含答案】第2页
    湖北省鄂州市鄂城区2025届数学九年级第一学期开学学业水平测试模拟试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖北省鄂州市鄂城区2025届数学九年级第一学期开学学业水平测试模拟试题【含答案】

    展开

    这是一份湖北省鄂州市鄂城区2025届数学九年级第一学期开学学业水平测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)在四边形中,对角线,相交于点,,,添加下列条件,不能判定四边形是菱形的是( ).
    A.B.C.D.
    2、(4分)用配方法解方程时,配方结果正确的是( )
    A.B.
    C.D.
    3、(4分)某企业1~5月份利润的变化情况图所示,以下说法与图中反映的信息相符的是( )
    A.1~3月份利润的平均数是120万元
    B.1~5月份利润的众数是130万元
    C.1~5月份利润的中位数为120万元
    D.1~2月份利润的增长快于2~3月份利润的增长
    4、(4分)下列计算中,正确的是( )
    A.+=B.×=3
    C.÷=3D.=﹣3
    5、(4分)将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( )
    A.3,5,6B.2,3,5C.5,6,7D.6,8,10
    6、(4分)某市为了改善城市容貌,绿化环境,计划过两年时间,绿地面积增加44%,这两年平均每年绿地面积的增长率是 ( )
    A.19%B.20%C.21%D.22%
    7、(4分)如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于不等式x+1≥mx+n的解集是( )
    A.x≥mB.x≥2C.x≥1D.x≥﹣1
    8、(4分)如图所示,四边形的对角线和相交于点,下列判断正确的是( )
    A.若,则是平行四边形
    B.若,则是平行四边形
    C.若,,则是平行四边形
    D.若,,则是平行四边形
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)若五个整数由小到大排列后,中位数为4,唯一的众数为2,则这组数据之和的最小值是_____.
    10、(4分)若关于的方程的一个根是,则方程的另一个根是________.
    11、(4分)如图,直线经过点,则不等式的解集为________________.
    12、(4分)若点和点都在一次函数的图象上,则________(选择“”、“”、“”填空).
    13、(4分)如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB方向平移得到△DEF,若四边形ABED的面积等于8,则平移的距离为_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,四边形ABCD的四个顶点分别在反比例函数与(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为1.
    (1)当m=1,n=20时.
    ①若点P的纵坐标为2,求直线AB的函数表达式.
    ②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.
    (2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.
    15、(8分)倡导健康生活推进全民健身,某社区去年购进A,B两种健身器材若干件,经了解,B种健身器材的单价是A种健身器材的1.5倍,用7200元购买A种健身器材比用5400元购买B种健身器材多10件.
    (1)A,B两种健身器材的单价分别是多少元?
    (2)若今年两种健身器材的单价和去年保持不变,该社区计划再购进A,B两种健身器材共50件,且费用不超过21000元,请问:A种健身器材至少要购买多少件?
    16、(8分)在平面直角坐标系xOy中,已知一次函数的图象与x轴交于点,与轴交于点.
    (1)求,两点的坐标;
    (2)在给定的坐标系中画出该函数的图象;
    (3)点M(1,y1),N(3,y2)在该函数的图象上,比较y1与y2的大小.
    17、(10分)(1)计算:;
    (2)已知x=2−,求(7+4)x2+(2+)x+的值
    18、(10分)已知:如图,在中,,,为外角的平分线,.
    (1)求证:四边形为矩形;
    (2)当与满足什么数量关系时,四边形是正方形?并给予证明
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)为了改善生态环境,防止水土流失,红旗村计划在荒坡上种树960棵,由于青年志愿者支援,实际每天种树的棵数是原计划的2倍,结果提前4天完成任务,则原计划每天种树的棵数是________.
    20、(4分)如图,C为线段AB上的一点,△ACM、△CBN都是等边三角形,若AC=3,BC=2,则△MCD与△BND的面积比为 .
    21、(4分)如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件__________使四边形AECF是平行四边形(只填一个即可).
    22、(4分)如图,在矩形纸片ABCD中,AB=12,BC=5,点E在AB上,将△DAE沿DE折叠,使点A落在对角线BD上的点A′处,则AE的长为 .
    23、(4分)如图是由 5 个边长为 1 的正方形组成了“十”字型对称图形,则图中∠BAC 的度数是_________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)为了方便居民低碳出行,我市公共自行车租赁系统(一期)试运行.图①是公共自行车的实物图,图②是公共自行车的车架示意图,点、、、在伺一条直线上,测量得到座杆,,,且.求点到的距离.
    (结果精确到.参考数据:,,)
    25、(10分)如图,已知正方形ABCD的边长是2,点E是AB边上一动点(点E与点A、B不重合),过点E作FG⊥DE交BC边于点F、交DA的延长线于点G,且FH∥AB.
    (1)当DE=时,求AE的长;
    (2)求证:DE=GF;
    (3)连结DF,设AE=x,△DFG的面积为y,求y与x之间的函数关系式.
    26、(12分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).
    (1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;
    (2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;
    (3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    由,,证出四边形是平行四边形,
    A. ,根据邻边相等的平行四边形,可证四边形是菱形;
    B. ,对角线相等的平行四边形是矩形,不能证四边形是菱形;
    C. ,根据对角线互相垂直的平行四边形是菱形,可证四边形是菱形;
    D. ,证,根据等角对等边可证,即可证得四边形是菱形.
    【详解】
    ,,
    四边形是平行四边形,
    A. ,是菱形;
    B. ,是矩形,不是菱形;
    C. ,是菱形;
    D. ,
    是菱形;
    故本题的答案是:B
    本题考查了特殊四边形菱形的证明,平行四边形的证明,矩形的证明,注意对这些证明的理解,容易混淆,小心区别对比.
    2、A
    【解析】
    利用配方法把方程变形即可.
    【详解】
    用配方法解方程x2﹣6x﹣8=0时,配方结果为(x﹣3)2=17,
    故选A.
    本题考查了解一元二次方程﹣配方法,熟练掌握配方法解一元二次方程的基本步骤是解本题的关键.
    3、B
    【解析】
    本题中的图为折线统计图,它反映出了数据的的多少和变化情况.由图可知,1~5月份的利润分别是100,110,130,115,130,通过这些数据依次解答选项中问题.
    【详解】
    A. 1~3月份的利润分别是100,110,130,则平均数应为(100+110+130)÷3=,排除
    B. 1~5月份的利润分别是100,110,130,115,130,众数为130,符合.
    C. 1~5月份的利润从小到大排列分别是100,110,115,130,130,中位数为115,排除.
    D. 1~2月份利润的增长了110-100=10,2~3月份利润的增长了130-110=20,1~2月份利润的增长慢于2~3月份利润的增长,排除.
    故答案为B
    本题考查了通过折线统计图分析数据的平均数,中位数,众数和每月之间的变化量的计算.
    平均数=各数据之和÷个数.中位数:把一组数据从小到大排列,若这组数据的个数为奇数个,取最中间的数作为中位数;若这组数据的个数为偶数个,则取中间两个数的平均数为中位数.
    众数:出现次数最多的数据为众数.
    4、C
    【解析】
    根据二次根式的性质和乘除法运算法则,对每个选项进行判断,即可得到答案.
    【详解】
    解:A、与不是同类二次根式,不能合并,故A错误;
    B、,故B错误;
    C、,故C正确;
    D、,故D错误;
    故选择:C.
    本题考查了二次根式的性质,二次根式的乘除运算,以及同类二次根式的定义,解题的关键是熟练掌握二次根式的性质,以及熟记乘除法运算的运算法则.
    5、D
    【解析】
    判断是否为直角三角形,只要验证两小边的平方和是否等于最长边的平方即可.
    【详解】
    A.32+52=34≠62,故不能组成直角三角形,错误;
    B.22+32≠52,故不能组成直角三角形,错误;
    C.52+62≠72,故不能组成直角三角形,错误;
    D.62+82=100=102,故能组成直角三角形,正确.
    故选D.
    本题考查了勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
    6、B
    【解析】
    试题分析:设这两年平均每年绿地面积的增长率是x,则过一年时间的绿地面积为1+x,过两年时间的绿地面积为(1+x)2,根据绿地面积增加44%即可列方程求解.
    设这两年平均每年绿地面积的增长率是x,由题意得
    (1+x)2=1+44%
    解得x1=0.2,x2=-2.2(舍)
    故选B.
    考点:一元二次方程的应用
    点评:提升对实际问题的理解能力是数学学习的指导思想,因而此类问题是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.
    7、C
    【解析】
    首先将已知点的坐标代入直线y=x+1求得a的值,然后观察函数图象得到在点P的右边,直线y=x+1都在直线y=mx+n的下方,据此求解.
    【详解】
    依题意,得:,
    解得:a=1,
    由图象知:于不等式x+1≥mx+n的解集是x≥1
    此题考查一次函数与一元一次不等式,解题关键在于求得a的值
    8、D
    【解析】
    若AO=OC,BO=OD,则四边形的对角线互相平分,根据平行四边形的判定定理可知,该四边形是平行四边形.
    【详解】
    ∵AO=OC,BO=OD,
    ∴四边形的对角线互相平分
    所以D能判定ABCD是平行四边形.
    故选D.
    此题考查平行四边形的判定,解题关键在于掌握判定定理.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、19
    【解析】
    根据“五个整数由小到大排列后,中位数为4,唯一的众数为2”,可知此组数据的第三个数是4,第一个和第二个数是2,据此可知当第四个数是5,第五个数是6时和最小.
    【详解】
    ∵中位数为4
    ∴中间的数为4,
    又∵众数是2
    ∴前两个数是2,
    ∵众数2是唯一的,
    ∴第四个和第五个数不能相同,为5和6,
    ∴当这5个整数分别是2,2,4,5,6时,和最小,最小是2+2+4+5+6=19,故答案为19.
    本题考查中位数和众数,能根据中位数和众数的意义进行逆向推理是解决本题的关键.在读题时需注意“唯一”的众数为2,所以除了两个2之外其它的数只能为1个.
    10、-2
    【解析】
    根据一元二次方程根与系数的关系求解即可.
    【详解】
    设方程的另一个根为x1,
    ∵方程的一个根是,
    ∴x1+0=﹣2,即x1=﹣2.
    故答案为:﹣2.
    本题主要考查一元二次方程的根与系数的关系(韦达定理),
    韦达定理:若一元二次方程ax2+bx+c=0(a≠0)有两个实数根x1,x2,那么x1+x2=﹣,x1x2=.
    11、.
    【解析】
    根据一次函数与一元一次不等式的关系进行解答即可.
    【详解】
    解:∵直线y=kx+b(k≠0)经过一、三象限且与y轴交于正半轴,
    ∴k>0,b>0,
    ∴y随x的增大而增大,y随x的减小而减小,
    ∵直线y=kx+b(k≠0)经过点P(-1,2),
    ∴当y

    相关试卷

    2025届湖北省鄂州市五校数学九年级第一学期开学学业水平测试模拟试题【含答案】:

    这是一份2025届湖北省鄂州市五校数学九年级第一学期开学学业水平测试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年湖北省武汉市数学九年级第一学期开学学业水平测试试题【含答案】:

    这是一份2024年湖北省武汉市数学九年级第一学期开学学业水平测试试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年湖北省武汉市部分重点学校数学九年级第一学期开学学业水平测试模拟试题【含答案】:

    这是一份2024年湖北省武汉市部分重点学校数学九年级第一学期开学学业水平测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map