搜索
    上传资料 赚现金
    英语朗读宝

    葫芦岛市老官卜中学2025届数学九年级第一学期开学统考模拟试题【含答案】

    葫芦岛市老官卜中学2025届数学九年级第一学期开学统考模拟试题【含答案】第1页
    葫芦岛市老官卜中学2025届数学九年级第一学期开学统考模拟试题【含答案】第2页
    葫芦岛市老官卜中学2025届数学九年级第一学期开学统考模拟试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    葫芦岛市老官卜中学2025届数学九年级第一学期开学统考模拟试题【含答案】

    展开

    这是一份葫芦岛市老官卜中学2025届数学九年级第一学期开学统考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)弹簧挂上物体后伸长,已知一弹簧的长度(cm)与所挂物体的质量(kg)之间的关系如下表:下列说法错误的是( )
    A.在没挂物体时,弹簧的长度为10cm
    B.弹簧的长度随物体的质量的变化而变化,物体的质量是因变量,弹簧的长度是自变量
    C.如果物体的质量为mkg,那么弹簧的长度ycm可以表示为y=2.5m+10
    D.在弹簧能承受的范围内,当物体的质量为4kg时,弹簧的长度为20cm
    2、(4分)下列计算正确的是( )
    A.B.
    C.D.
    3、(4分)以三角形三边中点和三角形三个顶点能画出平行四边形有( )个.
    A.1B.2C.3D.4
    4、(4分)以下列长度的线段为边,能构成直角三角形的是( )
    A.2,3,4B.4,5,6C.8,13,5D.1,,1
    5、(4分)下列函数关系式:①y=-2x,②y=−,③y=-2x2,④y=2,⑤y=2x-1.其中是一次函数的是( )
    A.①⑤B.①④⑤C.②⑤D.②④⑤
    6、(4分)如图, △ABC 的周长为 17,点 D, E 在边 BC 上,∠ABC 的平分线垂直于 AE ,垂足为点 N , ∠ACB 的平分线垂直于 AD ,垂足为点 M ,若 BC  6 ,则 MN 的长度为( )
    A.B.2C.D.3
    7、(4分)如图,平行四边形的对角线交于点,且,的周长为25,则平行四边形的两条对角线的和是( )
    A.18B.28C.38D.46
    8、(4分)若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( )
    A.2B.3C.5D.7
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)一种什锦糖由价格为12元/千克,18元/千克的两种糖果混合而成,两种糖果的比例是2:1,则什锦糖的每千克的价格为_____________
    10、(4分)在平面直角坐标xOy中,点O是坐标原点,点B的坐标是(m,m-4),则OB的最小值是__________.
    11、(4分)如图,在△ABC中,BF平分∠ABC,AG⊥BF,垂足为点D,交BC于点G,E为AC的中点,连接DE,若DE=2.5 cm,AB=4 cm,则BC的长为_______cm.
    12、(4分)如图,矩形纸片ABCD中,AB=2cm,点E在BC上,且AE=CE.若将纸片沿AE折叠,点B恰好与AC上的点B1重合,则BC=_____.
    13、(4分)如图平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,∠B=50°时,∠EAF的度数是______°.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,四边形ABCD中,AD∥BC,AE⊥AD交BD于点E,CF⊥BC交BD于点F,且AE=CF,
    求证:四边形ABCD是平行四边形.
    15、(8分)(1)计算:;
    (2)已知,求代数式的值.
    16、(8分)某校八年级在一次广播操比赛中,三个班的各项得分如下表:
    (1) 填空:根据表中提供的信息,在服装统一方面,三个班得分的平均数是_________;在动作准确方面最有优势的是_________班
    (2) 如果服装统一、动作整齐、动作准确三个方面按20%、30%、50%的比例计算各班的得分,请通过计算说明哪个班的得分最高.
    17、(10分)如图,分别以的边向外作正方形ABFG和ACDE,连接EG,若O为EG的中点,
    求证:(1);
    (2).
    18、(10分)如图1,为美化校园环境,某校计划在一块长为20m,宽为15m的长方形空地上修建一条宽为a(m)的甬道,余下的部分铺设草坪建成绿地.
    (1)甬道的面积为 m2,绿地的面积为 m2(用含a的代数式表示);
    (2)已知某公园公司修建甬道,绿地的造价W1(元),W2(元)与修建面积S之间的函数关系如图2所示.①园林公司修建一平方米的甬道,绿地的造价分别为 元, 元.②直接写出修建甬道的造价W1(元),修建绿地的造价W2(元)与a(m)的关系式;③如果学校决定由该公司承建此项目,并要求修建的甬道宽度不少于2m且不超过5m,那么甬道宽为多少时,修建的甬道和绿地的总造价最低,最低总造价为多少元?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)一次函数y=kx+b的图象如图所示,当y>0时,x的取值范围是_____.
    20、(4分)一组数据3,4,6,8,x的中位数是x,且x是满足不等式组的整数,则这组数据的平均数是 .
    21、(4分)反比例函数与一次函数图象的交于点,则______.
    22、(4分)在三角形纸片ABC中,∠A=90°,∠C=30°,AC=10cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),剪去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为_____cm.
    23、(4分)计算:=____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,反比例函数y=(n为常数,n≠0)的图象与一次函数y=kx+8(k为常数,k≠0)的图象在第三象限内相交于点D(﹣,m),一次函数y=kx+8与x轴、y轴分别相交于A、B两点.已知cs∠ABO=.
    (1)求反比例函数的解析式;
    (2)点P是x轴上的动点,当△APC的面积是△BDO的面积的2倍时,求点P的坐标.
    25、(10分)计算:(2018+2018)(-)
    26、(12分)已知:如图,四边形ABCD为矩形,,,点E是CD的中点,点P在AB上以每秒2个单位的速度由A向B运动,设运动时间为t秒.
    (1)当点P在线段AB上运动了t秒时,__________________(用代数式表示);
    (2)t为何值时,四边形PDEB是平行四边形:
    (3)在直线AB上是否存在点Q,使以D、E、Q、P四点为顶点的四边形是菱形?若存在,求出t的值:若不存在,说明理由.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    因为表中的数据主要涉及到弹簧的长度和所挂物体的重量,所以反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量;由已知表格得到弹簧的长度是y=10+2.5m,质量为mkg,y弹簧长度;弹簧的长度有一定范围,不能超过.
    【详解】
    解:A.在没挂物体时,弹簧的长度为10cm,根据图表,当质量m=0时,y=10,故此选项正确,不符合题意;
    B、反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量,故此选项错误,符合题意;
    C、当物体的质量为mkg时,弹簧的长度是y=12+2.5m,故此选项正确,不符合题意;
    D、由C中y=10+2.5m,m=4,解得y=20,在弹簧的弹性范围内,故此选项正确,不符合题意;
    故选B.
    点评:此题考查了函数关系式,主要考查了函数的定义和结合几何图形列函数关系式.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.
    2、A
    【解析】
    利用二次根式的性质对A进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的加减法对C、D进行判断.
    【详解】
    解:A、原式=4a2,所以A选项的计算正确;
    B、原式==5a,所以B选项的计算错误;
    C、原式=+=2,所以C选项的计算错误;
    D、与不能合并,所以D选项的计算错误.
    故选:A.
    本题考查二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
    3、C
    【解析】
    试题分析:如图所示,∵点E、F、G分别是△ABC的边AB、边BC、边CA的中点,
    ∴AE=BE=GF=AB,AG=CG=EF=AC,BF=CF=EG=BC,GF∥AB,EG∥BC,EF∥AC,
    ∴四边形AEFG、BEGF、CFEG都是平行四边形.故选C.
    考点: 平行四边形的判定;三角形中位线定理.
    4、D
    【解析】
    欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.
    【详解】
    解:A、因为22+32≠42,所以不能组成直角三角形;
    B、因为52+42≠62,所以不能组成直角三角形;
    C、因为52+82≠132,所以不能组成直角三角形;
    D、因为12+12=()2,所以能组成直角三角形.
    故选:D.
    本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
    5、A
    【解析】
    根据一次函数的定义条件进行逐一分析即可.
    【详解】
    解:①y=-2x是一次函数;
    ②y=−自变量次数不为1,故不是一次函数;
    ③y=-2x2自变量次数不为1,故不是一次函数;
    ④y=2是常函数;
    ⑤y=2x-1是一次函数.
    所以一次函数是①⑤.
    故选:A.
    本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.
    6、C
    【解析】
    证明,得到,即是等腰三角形,同理是等腰三角形,根据题意求出,根据三角形中位线定理计算即可.
    【详解】
    平分,,
    ,,
    在和中,



    是等腰三角形,
    同理是等腰三角形,
    点是中点,点是中点(三线合一),
    是的中位线,


    .
    故选.
    本题考查的是三角形中位线定理、等腰三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
    7、C
    【解析】
    由平行四边形的性质和已知条件计算即可,解题注意求平行四边形ABCD的两条对角线的和时要把两条对角线作为一个整体求出.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴AB=CD=6,
    ∵△OCD的周长为25,
    ∴OD+OC=25−6=19,
    ∵BD=2OD,AC=2OC,
    ∴▱ABCD的两条对角线的和BD+AC=2(OD+OC)=1.
    故选:C.
    本题主要考查了平行四边形的基本性质,并利用性质解题.平行四边形的基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.
    8、C
    【解析】
    试题解析:∵这组数据的众数为7,
    ∴x=7,
    则这组数据按照从小到大的顺序排列为:2,3,1,7,7,
    中位数为:1.
    故选C.
    考点:众数;中位数.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、14元/千克
    【解析】
    依据这种什锦糖总价除以总的千克数,即可得到什锦糖每千克的价格.
    【详解】
    解:由题可得,这种什锦糖的价格为:,
    故答案为:14元/千克.
    本题主要考查了算术平均数,对于n个数x1,x2,…,xn,则就叫做这n个数的算术平均数.
    10、
    【解析】
    利用勾股定理可用m表示出OB的长,根据平方的非负数性质即可得答案.
    【详解】
    ∵点B的坐标是(m,m-4),
    ∴OB==,
    ∵(m-2)2≥0,
    ∴2(m-2)2+8≥8,
    ∴的最小值为=,即OB的最小值为,
    故答案为:
    本题考查勾股定理的应用及平方的非负数性质,熟练掌握平方的非负数性质是解题关键.
    11、9
    【解析】
    根据题意先证△ABD≌△GBD,得出AB=BG,D为AG中点,再由E为AC中点,根据中位线的性质即可求解.
    【详解】
    ∵BF平分∠ABC,∴∠ABD=∠GBD,
    ∵AG⊥BF,∴∠BDG=∠BDA,
    又BD=BD,∴△ABD≌△GBD
    ∴BG=AB=4cm,AD=GD,
    故D为AG中点,又E为AC中点
    ∴GC=2DE=5cm,
    ∴BC=BG+GC=9cm.
    此题主要考查线段的长度求解,解题的关键是熟知全等三角形的判定与中位线的性质.
    12、2
    【解析】
    根据题意推出AB=AB1=2,由AE=CE推出AB1=B1C,即AC=4,然后依据勾股定理可求得BC的长.
    【详解】
    解:∵AB=2cm,AB=AB1
    ∴AB1=2cm,
    ∵四边形ABCD是矩形,AE=CE,
    ∴∠ABE=∠AB1E=90°
    ∵AE=CE,
    ∴AB1=B1C,
    ∴AC=4cm.
    在Rt△ABC中,BC= .
    故答案为:2cm.
    本题主要考查翻折的性质、矩形的性质、等腰三角形的性质,解题的关键在于推出AB=AB1.
    13、1
    【解析】
    先根据平行四边形的性质,求得∠C的度数,再根据四边形内角和,求得∠EAF的度数.
    【详解】
    解:∵平行四边形ABCD中,∠B=1°,
    ∴∠C=130°,
    又∵AE⊥BC于E,AF⊥CD于F,
    ∴四边形AECF中,∠EAF=360°-180°-130°=1°,
    故答案为:1.
    本题主要考查了平行四边形的性质,解题时注意:平行四边形的邻角互补,四边形的内角和等于360°.
    三、解答题(本大题共5个小题,共48分)
    14、见解析.
    【解析】
    由垂直得到∠EAD=∠FCB=90°,根据AAS可证明Rt△AED≌Rt△CFB,得到AD=BC,根据平行四边形的判定判断即可.
    【详解】
    证明:∵AD//BC
    ∴∠ADE=∠CBF
    ∵AE⊥AD,CF⊥BC.
    ∴∠DAE=∠BCF=90°
    在△ADE和△CBF中
    ∵∠DAE=∠BCF,∠ADE=∠CBF,AE=CF.
    ∴△ADE≌△CBF(AAS)
    ∴AD=BC
    ∵AD//BC
    ∴四边形ABCD是平行四边形.
    本题考查了平行四边形的判定,平行线的性质,全等三角形的性质和判定等知识点的应用,关键是推出AD=BC.
    15、(1);(2)0.
    【解析】
    (1)先进行二次根式的乘除法运算,然后再进行减法运算即可;
    (2)将原式利用完全平方公式进行变形,然后将x的值代入进行计算即可.
    【详解】
    (1)原式

    (2)原式
    =

    将代入原式得,.
    本题考查二次根式的化简求值,灵活运用二次根式的性质进行解题是关键.
    16、(1)89;八(1);(2)八(1)班得分最高.
    【解析】
    (1)用算术平均数的计算方法求得三个班的服装统一的平均数,找到动作准确的分数最高即可;
    (2)利用加权平均数分别计算三个班的得分后即可得解.
    【详解】
    解:(1)服装统一方面的平均分为:=89分;
    动作准确方面最有优势的是八(1)班;
    故答案为:89;八(1);
    (2)∵八(1)班的平均分为:=84.7分;
    八(2)班的平均分为:=82.8分;
    八(3)班的平均分为:=83.9分;
    ∴得分最高的是八(1)班.
    本题考查了平均数和加权平均数的计算.要注意,当所给数据有单位时,所求得的平均数与原数据的单位相同,不要漏单位.
    17、(1)证明见详解;(2)证明见详解.
    【解析】
    (1)如图,延长AO到M,使OM=AO,连接GM,延长OA交BC于点H.根据全等三角形的性质得到AE=MG,∠MGO=∠AEO,根据三角形的内角和得到∠MGA+∠GAE=180°,根据正方形的性质得到AG=AB,AE=AC,∠BAG=∠CAE=90°,根据全等三角形的性质得到AM=BC,等量代换即可得到结论;
    (2)根据全等三角形的性质得到∠M=∠EAO,∠M=∠ACB,等量代换得到∠EAO=∠ACB,求得∠AHC=90°,根据垂直的定义即可得到结论.
    【详解】
    解:(1)如图,延长AO到M,使OM=AO,连接GM,延长OA交BC于点H.
    ∵O为EG的中点,
    ∴OG=OE,
    在△AOE与△MOG中,,
    ∴△AOE≌△MOG(SAS),
    ∴AE=MG,∠MGO=∠AEO,
    ∴∠MGA+∠GAE=180°,
    ∵四边形ABFG和四边形ACDE是正方形,
    ∴AG=AB,AE=AC,∠BAG=∠CAE=90°,
    ∴AC=GM,∠GAE+∠BAC=180°,
    ∴∠BAC=∠AGM,
    在△AGM与△ABC中,,
    ∴△AGM≌△ABC(SAS),
    ∴AM=BC,
    ∵AM=2AO,
    ∴;
    (2)由(1)知,△AOE≌△MOG,△AGM≌△ABC,
    ∴∠M=∠EAO,∠M=∠ACB,
    ∴∠EAO=∠ACB,
    ∵∠CAE=90°,
    ∴∠OAE=∠CAH=90°,
    ∴∠ACB+∠CAH=90°,
    ∴∠AHC=90°,
    ∴AH⊥BC.
    即.
    本题考查了正方形的性质,全等三角形的判定和性质,正确的作出辅助线是解题的关键.
    18、(1)15a、(300﹣15a);(2)①①80、70;;②W1=80×15a=1200a,W2=70(300﹣15a)=﹣1050a+21000;③甬道宽为2米时,修建的甬道和绿地的总造价最低,最低总造价为21300元;
    【解析】
    (1)根据图形即可求解;
    (2)①园林公司修建一平方米的甬道,绿地的造价分别为=80元,=70元②根据题意即可列出关系式;③W=W1+W2=1200a+(﹣1050a+21000)=150a+21000,再根据2≤a≤5,即可进行求解.
    【详解】
    解:(1)甬道的面积为15am2,绿地的面积为(300﹣15a)m2;
    故答案为:15a、(300﹣15a);
    (2)①园林公司修建一平方米的甬道,绿地的造价分别为=80元,=70元.
    ②W1=80×15a=1200a,
    W2=70(300﹣15a)=﹣1050a+21000;
    ③设此项修建项目的总费用为W元,
    则W=W1+W2=1200a+(﹣1050a+21000)=150a+21000,
    ∵k>0,
    ∴W随a的增大而增大,
    ∵2≤a≤5,
    ∴当a=2时,W有最小值,W最小值=150×2+21000=21300,
    答:甬道宽为2米时,修建的甬道和绿地的总造价最低,最低总造价为21300元;
    故答案为:①80、70;
    此题主要考查一次函数的应用,解题的关键是根据题意得到关系式进行求解.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    试题解析:根据图象和数据可知,当y>0即图象在x轴的上方,x>1.
    故答案为x>1.
    20、1.
    【解析】
    解不等式组得,3≤x<1,
    ∵x是整数,∴x=3或2.
    当x=3时,3,2,6,8,x的中位数是2(不合题意舍去);
    当x=2时,3,2,6,8,x的中位数是2,符合题意.
    ∴这组数据的平均数可能是(3+2+6+8+2)÷1=1.
    21、-1
    【解析】
    试题分析:将点A(-1,a)代入一次函数可得:-1+2=a,则a=1,将点A(-1,1)代入反比例函数解析式可得:k=1×(-1)=-1.
    考点:待定系数法求反比例函数解析式
    22、40或.
    【解析】
    利用30°角直角三角形的性质,首先根据勾股定理求出DE的长,再分两种情形分别求解即可解决问题;
    【详解】
    如图1中,
    ,,,
    ,,设,
    在中,,


    如图2中,当时,沿着直线EF将双层三角形剪开,展开后的平面图形中有一个是平行四边形,此时周长.
    如图中,当时,沿着直线DF将双层三角形剪开,展开后的平面图形中有一个是平行四边形,此时周长
    综上所述,满足条件的平行四边形的周长为或,
    故答案为为或.
    本题考查翻折变换、平行四边形的判定和性质、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.
    23、1
    【解析】
    根据算术平方根的定义进行化简,再根据算术平方根的定义求解即可.
    【详解】
    解:∵12=21,
    ∴=1,
    故答案为:1.
    本题考查了算术平方根的定义,先把化简是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)y=x+1,y=(2)(﹣11,0)或(6,0)
    【解析】
    (1)求得A(﹣6,0),即可得出一次函数解析式为y=x+1,进而得到D(,﹣2),即可得到反比例函数的解析式为y=;
    (2)解方程组求得C(,10),依据△APC的面积是△BDO的面积的2倍,即可得到AP=12,进而得到P(﹣11,0)或(6,0).
    【详解】
    解:(1)∵一次函数y=kx+1与y轴交于点B,
    ∴B(0,1).
    ∵在Rt△AOB中,cs∠ABO=,
    ∴tan∠BAO=,
    ∴AO=6,
    ∴A(﹣6,0).
    ∵点A在一次函数y=kx+1图象上,
    ∴k=,
    ∴一次函数解析式为y=x+1.
    ∵点D(,m)在一次函数y=kx+1图象上,
    ∴m=﹣2,
    即D(,﹣2),
    ∵点D(,﹣2)在反比例函数y=图象上,
    ∴n=2.
    ∴反比例函数的解析式为y=;
    (2)∵点C是反比例函数y=图象与一次函数y=x+1图象的交点,
    ∴,解得,
    ∴C(,10).
    ∵△APC的面积是△BDO的面积的2倍,
    ∴AP×10=×1×,
    ∴AP=12,
    又∵A(﹣6,0),点P是x轴上的动点,
    ∴P(﹣11,0)或(6,0).
    本题考查反比例函数与一次函数的交点、用待定系数法求函数解析式、三角函数、三角形面积的计算等知识;求出点A和D的坐标是解决问题的关键.
    25、2018.
    【解析】
    分析:先提公因式2018,再用平方差公式计算即可.
    详解:原式=2018 (+)(-)=2018 [()2 - ()2]=2018
    点睛:此题考查了实数的混合运算,提取公因式后利用平方差公式进行简便计算是解决此题的关键.
    26、(1);(2)当时,四边形PDEB是平行四边形;(3)t的值为或或.
    【解析】
    (1)求出PA,根据线段和差定义即可解决问题.
    (2)根据,构建方程即可解决问题.
    (3)①当时,可得四边形DEPQ,四边形是菱形,②当时,可得四边形是菱形,分别求解即可解决问题.
    【详解】
    解:(1),,

    故答案为.
    (2)当时,四边形PDEB是平行四边形,


    答:当时,四边形PDEB是平行四边形.
    (3)存在.
    ①当时,可得四边形DEPQ,四边形是菱形,
    作于H.
    在中,,,

    或,
    或时,可得四边形DEPQ,四边形是菱形.
    ②当时,可得四边形是菱形,易知:,

    综上所述,满足条件的t的值为或或.
    本题属于四边形即综合题,考查了矩形的性质,菱形的判定和性质,平行四边形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.
    题号





    总分
    得分
    批阅人
    物体的质量(kg)
    0
    1
    2
    3
    4
    5
    弹簧的长度(cm)
    10
    12.5
    15
    17.5
    20
    22.5
    服装统一
    动作整齐
    动作准确
    八(1)班
    80
    84
    87
    八(2)班
    97
    78
    80
    八(3)班
    90
    78
    85

    相关试卷

    2025届湖北恩施崔坝中学数学九年级第一学期开学统考模拟试题【含答案】:

    这是一份2025届湖北恩施崔坝中学数学九年级第一学期开学统考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年辽宁省葫芦岛市高桥中学九上数学开学统考模拟试题【含答案】:

    这是一份2024年辽宁省葫芦岛市高桥中学九上数学开学统考模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年葫芦岛市重点中学数学九年级第一学期开学统考试题【含答案】:

    这是一份2024-2025学年葫芦岛市重点中学数学九年级第一学期开学统考试题【含答案】,共22页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map