|试卷下载
终身会员
搜索
    上传资料 赚现金
    黑龙江省黑河市三县2024-2025学年九上数学开学达标检测试题【含答案】
    立即下载
    加入资料篮
    黑龙江省黑河市三县2024-2025学年九上数学开学达标检测试题【含答案】01
    黑龙江省黑河市三县2024-2025学年九上数学开学达标检测试题【含答案】02
    黑龙江省黑河市三县2024-2025学年九上数学开学达标检测试题【含答案】03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    黑龙江省黑河市三县2024-2025学年九上数学开学达标检测试题【含答案】

    展开
    这是一份黑龙江省黑河市三县2024-2025学年九上数学开学达标检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)小明做了四道题:;;;;做对的有( )
    A.B.C.D.
    2、(4分)如图,在平行四边形ABCD中,点E是CD边上一点,,连接AE、BE、BD,且AE、BD交于点F,若,则( )
    A.15.5B.16.5C.17.5D.18.5
    3、(4分)巫溪某中学组织初一初二学生举行“四城同创”宣传活动,从学校坐车出发,先上坡到达A地后,宣传8分钟;然后下坡到B地宣传8分钟返回,行程情况如图.若返回时,上、下坡速度仍保持不变,在A地仍要宣传8分钟,那么他们从B地返回学校用的时间是( )
    A.45.2分钟B.48分钟C.46分钟D.33分钟
    4、(4分)在Rt△ABC中,∠ACB=90°,AB=6cm,D为AB的中点,则CD等于( )
    A.B.C.D.
    5、(4分)如图,在平行四边形ABCD中,E是边CD上一点,将沿AE折叠至处,与CE交于点F,若,,则的度数为
    A.B.C.D.
    6、(4分)下列图形既是中心对称图形又是轴对称图形的是( )
    A.B.C.D.
    7、(4分)有19位同学参加歌咏比赛,所得的分数互不相同,所得分前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学得分的( )
    A.平均数B.中位数C.众数D.总分
    8、(4分)直线y=2x﹣7不经过( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)若关于的一次函数(为常数)中,随的增大而减小,则的取值范围是____.
    10、(4分)某公司招聘英语翻译,听、说、写成绩按3∶3∶2计入总成绩.某应聘者的听、说、写成绩分别为80分,90分,95分(单项成绩和总成绩满分均为百分制),则他的总成绩为____________分.
    11、(4分)如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为__.
    12、(4分)如图,在菱形ABCD中,点E是AD的中点,对角线AC,BD交于点F,若菱形ABCD的周长是24,则EF=______.
    13、(4分)如图,OA1=A1A2=A2A3=A3A4=…=An-1An=1,∠OA1A2=∠OA2A3=∠OA3a4=…=∠OAn-1An=90°(n>1,且n为整数).那么OA2=_____,OA4=______,…,OAn=_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在□ABCD中,E、F为对角线BD上的两点,且∠DAE=∠BCF.
    (1)求证:AE=CF;
    (2)求证:AE∥CF.
    15、(8分)(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;
    (2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.
    (3)运用(1)(2)解答中所积累的经验和知识,完成下列两题:
    ①如图3,在四边形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB上一点,且∠DCE=45°,BE=4,则DE= .
    ②如图4,在△ABC中,∠BAC=45°,AD⊥BC,且BD=2,AD=6,求△ABC的面积.
    16、(8分)如图,在6×6的网格中,每个小正方形的边长为1,请按要求画出格点四边形(四个顶点都在格点上的四边形叫格点四边形).
    (1)在图1中,画出一个非特殊的平行四边形,使其周长为整数.
    (2)在图2中,画出一个特殊平行四边形,使其面积为6且对角线交点在格点上.
    注:图1,图2在答题纸上.
    17、(10分)如图,□ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于M、N.
    (1)求证:四边形CMAN是平行四边形.
    (2)已知DE=4,FN=3,求BN的长.
    18、(10分)某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:

    根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如扇形图所示,每得一票记作1分.
    (l)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用(精确到 0.01 )?
    (2)根据实际需要,单位将笔试、面试、民主评议三项测试得分按5 : 2 : 3的比例确定个人成绩,那么谁将被录用?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在中,已知,,平分,交边于点E,则 ___________ .
    20、(4分)已知双曲线经过点(-1,2),那么k的值等于_______.
    21、(4分)已知反比例函数y=的图象位于第一、第三象限,则k的取值范围是_____.
    22、(4分)如图,将矩形纸片折叠,使点与点重合,其中,则的长度为__________.
    23、(4分)距离地面2m高的某处把一物体以初速度v0(m/s)竖直向上抛物出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足: (其中g是常数,通常取10m/s2).若v0=10m/s,则该物体在运动过程中最高点距地面_________m.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)材料一:如图1,由课本91页例2画函数y=﹣6x与y=﹣6x+5可知,直线y=﹣6x+5可以由直线y=﹣6x向上平移5个单位长度得到由此我们得到正确的结论一:在直线L1:y=K1x+b1与直线L2:y=K2x+b2中,如果K1=K2 且b1≠b2 ,那么L1∥L2,反过来,也成立.
    材料二:如图2,由课本92页例3画函数y=2x﹣1与y=﹣0.5x+1可知,利用所学知识一定能证出这两条直线是互相垂直的.由此我们得到正确的结论二:在直线L1:y=k1x+b1 与L2:y=k2x+b2 中,如果k1·k2=-1那么L1⊥L2,反过来,也成立
    应用举例
    已知直线y=﹣x+5与直线y=kx+2互相垂直,则﹣k=﹣1.所以k=6
    解决问题
    (1)请写出一条直线解析式______,使它与直线y=x﹣3平行.
    (2)如图3,点A坐标为(﹣1,0),点P是直线y=﹣3x+2上一动点,当点P运动到何位置时,线段PA的长度最小?并求出此时点P的坐标.
    25、(10分)在矩形ABCD中,点E、F分别在AB,BC上,△DEF为等腰直角三角形,∠DEF=90°,AD+CD=10,AE=2,求AD的长.
    26、(12分)在平面直角坐标系中,点A,B分别是x轴正半轴与y轴正半轴上一点,OA=m,OB=n,以AB为边在第一象限内作正方形ABCD.
    (1)若m=4,n=3,直接写出点C与点D的坐标;
    (2)点C在直线y=kx(k>1且k为常数)上运动.
    ①如图1,若k=2,求直线OD的解析式;
    ②如图2,连接AC、BD交于点E,连接OE,若OE=2OA,求k的值.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据无理数的运算法则,逐一计算即可.
    【详解】
    ,正确;
    ,错误;
    ,错误;
    ,正确;
    故答案为D.
    此题主要考查无理数的运算,熟练掌握,即可解题.
    2、C
    【解析】
    根据已知可得到相似三角形,从而可得到其相似比,根据相似三角形的面积比等于相似比的平方求出△ABF,再根据同高的三角形的面积之比等于底的比得出△BEF的面积,则= +即可求解.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴DE∥AB,
    ∴△DFE∽△BFA,
    ∵DE:EC=2:3,
    ∴DE:AB=2:5,DF:FB=2:5,
    ∵=2,根据相似三角形的面积比等于相似比的平方,
    ∴: =,即==12.5,
    ∵同高的三角形的面积之比等于底的比,△DEF和△BEF分别以DF、FB为底时高相同,
    ∴:= DF:FB=2:5,即==5,
    ∴= +=12.5+5=17.5,
    故选C.
    本题考查了相似三角形的性质,相似三角形的面积比等于相似比的平方,同高的三角形的面积之比等于底的比,解题的关键是掌握相似三角形的性质.
    3、A
    【解析】
    试题分析:由图象可知校车在上坡时的速度为200米每分钟,长度为3600米; 下坡时的速度为500米每分钟,长度为6000米; 又因为返回时上下坡速度不变,总路程相等,根据题意列出各段所用时间相加即可得出答案. 由上图可知,上坡的路程为3600米, 速度为200米每分钟; 下坡时的路程为6000米,速度为6000÷(46﹣18﹣8×2)=500米每分钟; 由于返回时上下坡互换,变为上坡路程为6000米,所以所用时间为30分钟;停8分钟; 下坡路程为3600米,所用时间是7.2分钟; 故总时间为30+8+7.2=45.2分钟.
    考点:一次函数的应用.
    4、C
    【解析】
    根据直角三角形斜边上的中线等于斜边的一半可得CD= AB.
    【详解】
    解:∵∠ACB=90°,D为AB的中点,
    ∴CD= AB= ×6=3cm.
    故选:C.
    本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.
    5、B
    【解析】
    由平行四边形的性质得出,由折叠的性质得:,,由三角形的外角性质求出,与三角形内角和定理求出,即可得出的大小.
    【详解】
    四边形ABCD是平行四边形,

    由折叠的性质得:,,



    故选B.
    本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理,熟练掌握平行四边形的性质和折叠的性质,求出∠AEF和∠AED'是解决问题的关键.
    6、A
    【解析】
    根据轴对称图形与中心对称图形的概念依次对各项进行判断即可.
    【详解】
    A. 是轴对称图形,也是中心对称图形,故此选项正确;
    B. 不是轴对称图形,是中心对称图形,故此选项错误;
    C. 不是轴对称图形,也不是中心对称图形,故此选项错误;
    D. 是轴对称图形,不是中心对称图形,故此选项错误;
    故选:A.
    本题考查中心对称图形与轴对称图形的识别.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    7、B
    【解析】
    因为第10名同学的成绩排在中间位置,即是中位数.所以需知道这19位同学成绩的中位数.
    【详解】
    解:19位同学参加歌咏比赛,所得的分数互不相同,取得前10位同学进入决赛,中位数就是第10位,
    因而要判断自己能否进入决赛,他只需知道这19位同学的中位数就可以,
    故选:B.
    本题考查了统计量的选择,掌握各个统计量的特点是解题关键.
    8、B
    【解析】
    根据题目中的函数解析式和一次函数的性质可以解答本题.
    【详解】
    解:∵直线y=2x﹣1,k=2>0,b=﹣1,
    ∴该直线经过第一、三、四象限,不经过第二象限,
    故选:B.
    本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    根据一次函数的增减性可求得k的取值范围.
    【详解】
    ∵一次函数y=(1-k)x+1(k是常数)中y随x的增大而减小,
    ∴1-k<0,解得k>1,
    故答案为:k>1.
    本题主要考查一次函数的增减性,掌握一次函数的增减性是解题的关键,即在y=kx+b中,当k>0时y随x的增大而增大,当k<0时y随x的增大而减小.
    10、87.1
    【解析】分析:运用加权平均数的公式直接计算.用80分,90分,91分,分别乘以3,3,2,再用它们的和除以8即可.
    详解:由题意知,总成绩=(80×3+90×3+91×2)÷(3+3+2)=87.1(分).
    故答案为:87.1.
    点睛:本题考查的是加权平均数的求法.本题易出现的错误是直接求出80,90,91的平均数.
    11、
    【解析】
    延长AB至M,使BM=AE,连接FM,证出△DAE≌EMF,得到△BMF是等边三角形,再利用菱形的边长为4求出时间t的值.
    【详解】
    延长AB至M,使BM=AE,连接FM,
    ∵四边形ABCD是菱形,∠ADC=120°
    ∴AB=AD,∠A=60°,
    ∵BM=AE,
    ∴AD=ME,
    ∵△DEF为等边三角形,
    ∴∠DAE=∠DFE=60°,DE=EF=FD,
    ∴∠MEF+∠DEA═120°,∠ADE+∠DEA=180°﹣∠A=120°,
    ∴∠MEF=∠ADE,
    ∴△DAE≌EMF(SAS),
    ∴AE=MF,∠M=∠A=60°,
    又∵BM=AE,
    ∴△BMF是等边三角形,
    ∴BF=AE,
    ∵AE=t,CF=2t,
    ∴BC=CF+BF=2t+t=3t,
    ∵BC=4,
    ∴3t=4,
    ∴t=
    考点:(1)、菱形的性质;(2)、全等三角形的判定与性质;(3)、等边三角形的性质.
    12、3
    【解析】
    由菱形的周长为24,可求菱形的边长为6,则可以求EF.
    【详解】
    解:∵菱形ABCD的周长是24,∴AB=AB=BC=DC=24÷4=6,∵F为对角线AC、BD交点,∴F为DB的中点,又∵E为AD的中点,∴EF=AB=3,故答案为3.
    本题考查了菱形的性质,熟练掌握并灵活运用是解题的关键.
    13、 2
    【解析】
    根据勾股定理求出OA2,OA3,OA4,即可发现其内部存在一定的规律性,找出其内在规律即可解题.
    【详解】
    解:∵,,
    ∴,
    则,,……
    所以,
    故答案为:,2,.
    本题考查勾股定理、规律型:图形的变化类问题,解题的关键是学会探究规律,利用规律解决问题.
    三、解答题(本大题共5个小题,共48分)
    14、(1)证明见解析(2)证明见解析
    【解析】
    试题分析:(1)根据平行四边形性质得出AB=DC,AD=BC,AB∥CD,AD∥BC,推出∠ABF=∠CDE,∠ADE=∠CBF,根据全等三角形的判定推出△DAE≌△BCF,即可得;
    (2)由△DAE≌△BCF,得出∠DEA=∠BFC,从而得∠AEF=∠DFC,继而得AE∥CF.
    试题解析:(1)∵四边形ABCD是平行四边形,
    ∴AB=DC,AD=BC,AB∥CD,AD∥BC,
    ∴∠ABF=∠CDE,∠ADE=∠CBF,
    在△DAE和△BCF中,,
    ∴△DAE≌△BCF(ASA),∴AE=CF;
    (2)∵△DAE≌△BCF,∴∠DEA=∠BFC,∴∠AEF=∠DFC,∴AE∥CF.
    15、(1)见解析;(2)见解析;(4)①DE=4;②△ABC的面积是1.
    【解析】
    (1)根据正方形的性质,可直接证明△CBE≌△CDF,从而得出CE=CF;
    (2)延长AD至F,使DF=BE,连接CF,根据(1)知∠BCE=∠DCF,即可证明∠ECF=∠BCD=90°,根据∠GCE=45°,得∠GCF=∠GCE=45°,利用全等三角形的判定方法得出△ECG≌△FCG,即GE=GF,即可得出答案GE=DF+GD=BE+GD;
    (4)①过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形,设DF=x,则AD=12-x,根据(2)可得:DE=BE+DF=4+x,在直角△ADE中利用勾股定理即可求解;
    ②作∠EAB=∠BAD,∠GAC=∠DAC,过B作AE的垂线,垂足是E,过C作AG的垂线,垂足是G,BE和GC相交于点F,BF=2-2=4,设GC=x,则CD=GC=x,FC=2-x,BC=2+x.在直角△BCF中利用勾股定理求得CD的长,则三角形的面积即可求解.
    【详解】
    (1)证明:如图1,在正方形ABCD中,
    ∵BC=CD,∠B=∠CDF,BE=DF,
    ∴△CBE≌△CDF,
    ∴CE=CF;
    (2)证明:如图2,延长AD至F,使DF=BE,连接CF,
    由(1)知△CBE≌△CDF,
    ∴∠BCE=∠DCF.
    ∴∠BCE+∠ECD=∠DCF+∠ECD
    即∠ECF=∠BCD=90°,
    又∵∠GCE=45°,∴∠GCF=∠GCE=45°,
    ∵CE=CF,∠GCE=∠GCF,GC=GC,
    ∴△ECG≌△FCG,
    ∴GE=GF,
    ∴GE=DF+GD=BE+GD;
    (4)①过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形.
    AE=AB﹣BE=12﹣4=8,
    设DF=x,则AD=12﹣x,
    根据(2)可得:DE=BE+DF=4+x,
    在直角△ADE中,AE2+AD2=DE2,则82+(12﹣x)2=(4+x)2,
    解得:x=2.
    则DE=4+2=4.
    故答案是:4;
    ②作∠EAB=∠BAD,∠GAC=∠DAC,过B作AE的垂线,垂足是E,过C作AG的垂线,垂足是G,BE和GC相交于点F,则四边形AEFG是正方形,且边长=AD=2,BE=BD=2,
    则BF=2﹣2=4,设GC=x,则CD=GC=x,FC=2﹣x,BC=2+x.
    在直角△BCF中,BC2=BF2+FC2,
    则(2+x)2=42+x2,
    解得:x=4.
    则BC=2+4=5,
    则△ABC的面积是:AD•BC=×2×5=1.
    本题考查了全等三角形的判定和性质以及正方形的性质,解决本题的关键是注意每个题目之间的关系,正确作出辅助线.
    16、(1)详见解析;(2)详见解析.
    【解析】
    (1)利用勾股定理得出符合题意的四边形;
    (2)利用平行四边形的面积求法得出符合题意的答案.
    【详解】
    (1)如图1,平行四边形ABCD即为所求
    图1
    (2)如图2,菱形ABCD即为所求
    图2
    此题主要考查了应用设计与作图以及勾股定理确定线段长度,正确借助网格得出是解题关键.
    17、(1)详见解析;(2)1.
    【解析】
    试题分析:(1)通过AE⊥BD,CF⊥BD证明AE∥CF,再由四边形ABCD是平行四边形得到AB∥CD,由两组对边分别平行的四边形是平行四边形可证得四边形CMAN是平行四边形;(2)证明△MDE≌∠NBF,根据全等三角形的性质可得DE=BF=4,再由勾股定理得BN=1.
    试题解析:(1)证明:∵AE⊥BD CF⊥BD
    ∴AE∥CF
    又∵四边形ABCD是平行四边形
    ∴AB∥CD
    ∴四边形CMAN是平行四边形
    (2)由(1)知四边形CMAN是平行四边形
    ∴CM=AN.
    又∵四边形ABCD是平行四边形
    ∴ AB=CD,∠MDE=∠NBF.
    ∴AB-AN=CD-CM,即DM=BN.
    在△MDE和∠NBF中
    ∠MDE=∠NBF,∠DEM=∠BFN=90°,DM=BN
    ∴△MDE≌∠NBF
    ∴DE=BF=4,
    由勾股定理得BN===1.
    答:BN的长为1.
    考点:平行四边形的判定与性质;全等三角形的判定与性质;勾股定理.
    18、(1)候选人乙将被录用;(2)候选人丙将被录用.
    【解析】
    (1)先根据扇形统计图中的数据即可求得甲、乙、丙的民主评议得分,再根据平均数的概念求得甲、乙、丙的平均成绩,进行比较;
    (2)根据加权成绩分别计算三人的个人成绩,进行比较.
    【详解】
    解:(l)甲、乙、丙的民主评议得分分别为:甲:200×25%=50 分,
    乙:200×40%=80 分,丙:200×35%=70 分.
    甲的平均成绩为(分),
    乙的平均成绩为:(分),
    丙的平均成绩(分).
    由于1.67>1>2.67,所以候选人乙将被录用.
    (2)如果将笔试、面试、民主评议三项测试得分按5 : 2 : 3的比例确定个人成绩,那么,甲的个人成绩为:(分)
    乙的个人成绩为:(分).
    丙的个人成绩为:(分)
    由于丙的个人成绩最高,所以候选人丙将被录用.
    本题考查加权平均数的概念及求法,要注意各部分的权重与相应的数据的关系,牢记加权平均数的计算公式是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    由和平分,可证,从而可知为等腰三角形,则,由,,即可求出.
    【详解】
    解:中,AD//BC,
    平分
    故答案为1.
    本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.
    20、-1
    【解析】
    分析:根据点在曲线上点的坐标满足方程的关系,将点(-1,2)代入,得:,解得:k=-1.
    21、.
    【解析】
    分析:
    根据“反比例函数的图象所处象限与的关系”进行解答即可.
    详解:
    ∵反比例函数的图象在第一、三象限内,
    ∴,解得:.
    故答案为.
    点睛:熟记“反比例函数的图象所处象限与的关系:(1)当时,反比例函数的图象在第一、三象限;(2)当时,反比例函数的图象在第二、四象限.”是正确解答本题的关键.
    22、5
    【解析】
    由折叠的AE=EC,设AE=x,则EB=8-x,利用勾股定理求解即可.
    【详解】
    由折叠的AE=EC,设AE=x,则EB=8-x
    ∵矩形ABCD
    ∴∠B=90°
    ∴42+(8-x)2=x2
    ∴x=5
    故AE=5.
    本题考查的是折叠,熟练掌握勾股定理是解题的关键.
    23、7
    【解析】试题分析:将=10和g=10代入可得:S=-5+10t,则最大值为: =5,则离地面的距离为:5+2=7m.
    考点:二次函数的最值.
    二、解答题(本大题共3个小题,共30分)
    24、(1)y=x;(2)当线段PA的长度最小时,点P的坐标为.
    【解析】
    (1)由两直线平行可得出k1=k2=1、b1≠b2=﹣3,取b1=0即可得出结论;
    (2)过点A作AP⊥直线y=﹣3x+2于点P,此时线段PA的长度最小,由两直线平行可设直线PA的解析式为y=x+b,由点A的坐标利用待定系数法可求出直线PA的解析式,联立两直线解析式成方程组,再通过解方程组即可求出:当线段PA的长度最小时,点P的坐标.
    【详解】
    .解:(1)∵两直线平行,
    ∴k1=k2=1,b1≠b2=﹣3,
    ∴该直线可以为y=x.
    故答案为y=x.
    (2)过点A作AP⊥直线y=﹣3x+2于点P,此时线段PA的长度最小,如图所示.
    ∵直线PA与直线y=﹣3x+2垂直,
    ∴设直线PA的解析式为y=x+b.
    ∵点A(﹣1,0)在直线PA上,
    ∴×(﹣1)+b=0,解得:b=,
    ∴直线PA的解析式为y=x+.
    联立两直线解析式成方程组,得:
    ,解得: .
    ∴当线段PA的长度最小时,点P的坐标为(,).
    本题考查待定系数法求一次函数解析式、垂线段以及两直线平行或相交,解题的关键是:(1)根据材料一找出与已知直线平行的直线;(2)利用点到直线之间垂直线段最短找出点P的位置.
    25、AD=2.
    【解析】试题分析:先设AD=x.由△DEF为等腰直角三角形,可以得到一对边相等,一对角相等,再加上一对直角相等,那么△ADE和△BEF全等,就有AD=BE.那么利用边相等可得x+x+2=1,解之即得AD.
    解:先设AD=x.
    ∵△DEF为等腰三角形.
    ∴DE=EF,∠FEB+∠DEA=90°.
    又∵∠AED+∠ADE=90°.
    ∴∠FEB=∠EDA.
    又∵四边形ABCD是矩形,
    ∴∠B=∠A=90°
    ∴△ADE≌△BEF(AAS).
    ∴AD=BE.
    ∴AD+CD=AD+AB=x+x+2=1.
    解得x=2.
    即AD=2.
    考点:矩形的性质;全等三角形的判定与性质;等腰直角三角形.
    26、(1)C(3,7),D(7,4);(2)①y=x;②.
    【解析】
    (1)根据题意把m=4,n=3代入解答即可;
    (2)①利用待定系数法确定函数关系式即可;
    ②根据B、D坐标表示出E点坐标,由勾股定理可得到m、n之间的关系式,用m表示出C点坐标,根据函数关系式解答即可.
    【详解】
    解:(1)∵OA=m,OB=n,以AB为边在第一象限内作正方形ABCD,
    ∴C(n,m+n),D(m+n,m),
    把m=4,n=3代入可得:
    C(3,7),D(7,4),
    (2)①设C(a,2a),由题意可得:,
    解得:m=n=a,
    ∴D(2a,a),
    ∴直线OD的解析式为:y=x,
    ②由B(0,n),D(m+n,m),
    可得:E(,),OE=OA,
    ∴()2+()2=8m2,
    可得:(m+n)2=16m2,
    ∴m+n=4m,n=3n,
    ∴C(3m,4m),
    ∴直线OC的解析式为:y=x,
    可得:k=.
    故答案为(1)C(3,7),D(7,4);(2)①y=x;②.
    此题是考查一次函数的综合题,关键是根据待定系数法确定函数关系式和勾股定理解答.
    题号





    总分
    得分
    相关试卷

    贵州安龙县2024-2025学年数学九上开学达标检测试题【含答案】: 这是一份贵州安龙县2024-2025学年数学九上开学达标检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    甘肃省古浪县2024-2025学年九上数学开学达标检测模拟试题【含答案】: 这是一份甘肃省古浪县2024-2025学年九上数学开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年山西省长治市壶关县九上数学开学达标检测模拟试题【含答案】: 这是一份2024-2025学年山西省长治市壶关县九上数学开学达标检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map