![黑龙江省哈尔滨市阿城区朝鲜族中学2024-2025学年九年级数学第一学期开学监测模拟试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16276886/0-1729559986661/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![黑龙江省哈尔滨市阿城区朝鲜族中学2024-2025学年九年级数学第一学期开学监测模拟试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16276886/0-1729559986696/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![黑龙江省哈尔滨市阿城区朝鲜族中学2024-2025学年九年级数学第一学期开学监测模拟试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16276886/0-1729559986730/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
黑龙江省哈尔滨市阿城区朝鲜族中学2024-2025学年九年级数学第一学期开学监测模拟试题【含答案】
展开
这是一份黑龙江省哈尔滨市阿城区朝鲜族中学2024-2025学年九年级数学第一学期开学监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列调查中,适合采用普查的是 ( )
A.夏季冷饮市场上冰激凌的质量B.某本书中的印刷错误
C.《舌尖上的中国》第三季的收视率D.公民保护环境的意识
2、(4分)已知P1(1,y1),P2(2,y2)是正比例函数y=-2x图象上的两个点,则y1、y2 的大小关系是( )
A.y1<y2B.y1>y2C.y1=y2D.y1≥y2
3、(4分)如图,已知一次函数y=kx+b的图象经过点A(5,0)与B(0,﹣4),那么关于x的不等式kx+b<0的解集是( )
A.x<5B.x>5C.x<﹣4D.x>﹣4
4、(4分)在数轴上用点B表示实数b.若关于x的一元二次方程x2+bx+1=0有两个相等的实数根,则( )
A.B.C.D.
5、(4分)把一元二次方程x2﹣6x+1=0配方成(x+m)2=n的形式,正确的是( )
A.(x+3)2=10 B.(x﹣3)2=10 C.(x+3)2=8 D.(x﹣3)2=8
6、(4分)如图,等腰梯形 ABCD 的对角线 AC、BD 相交于 O,则图中的全等三 角形有( )
A.1 对B.2 对C.3 对D.4 对
7、(4分)在下列四个标志中,既是中心对称又是轴对称图形的是( )
A.B.C.D.
8、(4分)下列运算,正确的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,已知一次函数y=ax+b和y=kx的图象交于点P(﹣4,﹣2),则关于x的不等式ax+b≤kx<1的解集为______.
10、(4分)如图,已知矩形ABCD中,AB=6,AD=10,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(x),当P,E,B三点在同一直线上时对应t的值为 .
11、(4分)已知直线在轴上的截距是-2,且与直线平行,那么该直线的解析是______
12、(4分)如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线AC的长等于________米.
13、(4分)如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为_______cm.
三、解答题(本大题共5个小题,共48分)
14、(12分)今年5月19日为第29个“全国助残日”.我市某中学组织了献爱心捐款活动,该校数学课外活动小组对本次捐款活动做了一次抽样调查,并绘制了如下不完整的频数分布表和频数分布直方图(每组含前一个边界,不含后一个边界).
(1)填空:_________,_________.
(2)补全频数分布直方图.
(3)该校有2000名学生,估计这次活动中爱心捐款额在的学生人数.
15、(8分)解方程:
(1)解分式方程:
(2)解一元二次方程x2+8x﹣9=1.
16、(8分)已知三角形纸片ABC的面积为41,BC的长为1.按下列步骤将三角形纸片ABC进行裁剪和拼图:
第一步:如图1,沿三角形ABC的中位线DE将纸片剪成两部分.在线段DE上任意取一点F,在线段BC上任意取一点H,沿FH将四边形纸片DBCE剪成两部分;
第二步:如图2,将FH左侧纸片绕点D旋转110°,使线段DB与DA重合;将FH右侧纸片绕点E旋转110°,使线段EC与EA重合,再与三角形纸片ADE拼成一个与三角形纸片ABC面积相等的四边形纸片.
图1 图2
(1)当点F,H在如图2所示的位置时,请按照第二步的要求,在图2中补全拼接成的四边形;
(2)在按以上步骤拼成的所有四边形纸片中,其周长的最小值为_________.
17、(10分)如图,在四边形ABCD中,∠D=90°,AB=13,BC=12,CD=4,AD=3.
求:(1)AC的长度;
(2)判断△ACB是什么三角形?并说明理由?
(3)四边形ABCD的面积。
18、(10分)在数学兴趣小组活动中,小明将边长为2的正方形与边长为的正方形按如图1方式放置,与在同一条直线上,与在同一条直线上.
(1)请你猜想与之间的数量与位置关系,并加以证明;
(2)在图2中,若将正方形绕点逆时针旋转,当点恰好落在线段上时,求出的长;
(3)在图3中,若将正方形绕点继续逆时针旋转,且线段与线段相交于点,写出与面积之和的最大值,并简要说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若关于的方程有实数根,则的值可以是_____(写出一个即可)
20、(4分)确定一个的值为________,使一元二次方程无实数根.
21、(4分)如图,直线y=与y=x交于A(3,1)与x轴交于B(6,0),则不等式组0的解集为_____.
22、(4分)如图,在梯形中, ,对角线,且,则梯形的中位线的长为_________.
23、(4分)关于的一元二次方程有实数根,则的取值范围是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)某小区要在面积为128平方米的正方形空地上建造一个休闲园地,并进行规划(如图):在休闲园地内建一个面积为72平方米的正方形儿童游乐场,游乐场两边铺设健身道,剩下的区域作为休息区.现在计划在休息区内摆放占地面积为31.5平方米“背靠背”休闲椅(如图),并要求休闲椅摆放在东西方向上或南北方向上,请通过计算说明休息区内最多能摆放几张这样的休闲椅.
25、(10分)计算:(1);(2)解方程.
26、(12分)如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:四边形DEBF是平行四边形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
分析:根据抽样调查和全面调查的意义解答即可.
详解: A.调查夏季冷饮市场上冰激凌的质量具有破坏性,宜采用抽样调查;
B. 调查某本书中的印刷错误比较重要,宜采用普查;
C. 调查《舌尖上的中国》第三季的收视率工作量比较大,宜采用抽样调查;
D. 调查公民保护环境的意识工作量比较大,宜采用抽样调查;
故选B.
点睛: 本题考查了抽样调查和全面调查的选择,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
2、B
【解析】
由y=-1x中k=-1<0,可知y随x的增大而减小,再结合1<1即可得出y1、y1的大小关系.
【详解】
解:∵正比例函数y=-1x中,k=-1<0,
∴y随x增大而减小,
∵1<1,
∴y1>y1.
故选:B.
本题考查了正比例函数的图象与性质,注意:y=kx(k≠0)中,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.
3、A
【解析】
由题意可得:一次函数y=kx+b中,y<0时,图象在x轴下方,x<5,则关于x的不等式kx+b<0的解集是x<5,故选A.
4、A
【解析】
根据方程有两个相等的实数根,得到根的判别式的值等于0,即可求出b的值.
【详解】
根据题意知△=b1-4=0, 解得:b=±1(负值舍去), 则OB=1. 故选:A.
本题考查了一元二次方程ax1+bx+c=0(a≠0)的根的判别式△=b1-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
5、D
【解析】
直接利用配方法进行求解即可.
【详解】
解:移项可得:x2-6x=-1,
两边加9可得:x2-6x+9=-1+9,
配方可得:(x-3)2=8,
故选:D.
本题主要考查配方法的应用,熟练掌握配方的过程是解题的关键.
6、C
【解析】
由等腰梯形的性质可知,AB=CD,AC=BD,OA=OD,OB=OC,利用这些条件,就可以找图中的全等三角形了,有三对.
【详解】
∵四边形ABCD是等腰梯形,
∴AB=CD,AC=BD,OA=OD,OB=OC,AD∥CB,
∴△AOB≌△DOC,△ABD≌△ACD,△ABC≌△DCB.
故选C.
本题考查等腰梯形的性质, 全等三角形的判定.解本题时应先观察图,尽可能多的先找出图中的全等三角形,然后根据已知条件进行证明.
7、C
【解析】
根据轴对称图形与中心对称图形的概念对各选项分析判断利用排除法求解.
【详解】
解:A、不是中心对称图形,是轴对称图形,故本选项不合题意;
B、既不是中心对称图形,也不是轴对称图形,故本选项不合题意;
C、既是中心对称图形又是轴对称图形,故本选项符合题意;
D、不是中心对称图形,是轴对称图形,故本选项不合题意.
故选:C.
本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
8、D
【解析】
分别根据同底数幂的乘除运算法则以及幂的乘方和合并同类项法则求出即可.
【详解】
A选项:m•m2•m3=m6,故此选项错误;
B选项:m2+m2=2m2,故此选项错误;
C选项:(m4)2=m8,故此选项错误;
D选项:(-2m)2÷2m3=,此选项正确.
故选:D.
考查了同底数幂的乘除运算法则以及幂的乘方和合并同类项法则等知识,熟练应用运算法则是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、﹣4≤x<1
【解析】
先利用待定系数法求出y=kx的表达式,然后求出y=1时对应的x值,再根据函数图象得出结论即可.
【详解】
解:∵已知一次函数y=ax+b和y=kx的图象交于点P(﹣4,﹣1),
∴﹣4k=﹣1,
解得:k=,
∴解析式为y=x,
当y=1时,x=1,
∵由函数图象可知,当x≥﹣4时一次函数y=ax+b在一次函数y=kx图象的下方,
∴关于x的不等式ax+b≤kx<1的解集是﹣4≤x<1.
故答案为:﹣4≤x<1.
本题主要考查两个一次函数的交点问题,能够数形结合是解题的关键.
10、2
【解析】
根据题意PD=t,则PA=10-t,首先证明BP=BC=10,在Rt△ABP中利用勾股定理即可解决问题,
【详解】
解:如图,根据题意PD=t,则PA=10−t,
∵B、E、P共线,
∴∠BPC=∠DPC,
∵AD∥BC,
∴∠DPC=∠PCB,
∴∠BPC=∠PCB,
∴BP=BC=10,
在Rt△ABP中,
∵,
∴,
∴t=2或18(舍去),
∴PD=2,
∴t=2时,B、E、P共线;
故答案为:2.
本题主要考查了矩形的性质,轴对称的性质,掌握矩形的性质,轴对称的性质是解题的关键.
11、
【解析】
【分析】根据一次函数的性质可求得.对于直线在轴上的截距是b;k是斜率,决定直线的位置关系.
【详解】因为,已知直线在轴上的截距是-2,
所以,b=-2.
又直线与直线平行,
所以,k=3.
故答案为:
【点睛】本题考核知识点:一次函数. 解题关键点:熟记一次函数解析式中系数的意义.
12、6
【解析】
由菱形花坛ABCD的周长是24米,∠BAD=60°,可求得边长AD的长,AC⊥BD,且∠CAD=30°,则可求得OA的长,继而求得答案.
【详解】
解:∵菱形花坛ABCD的周长是24米,∠BAD=60°,
∴AC⊥BD,AC=2OA,∠CAD=∠BAD=30°,AD=6米,
∴OA=AD•cs30°=6×=3米,
∴AC=2OA=6米.
故答案为:6.
此题考查了菱形的性质以及三角函数的应用.熟知菱形的对角线互相垂直且平分是解此题的关键.
13、1.
【解析】
∵将△ABC绕点B顺时针旋转60°,得到△BDE,
∴△ABC≌△BDE,∠CBD=60°,
∴BD=BC=12cm,
∴△BCD为等边三角形,
∴CD=BC=BD=12cm,
在Rt△ACB中,AB===13,
△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=1(cm),
故答案为1.
考点:旋转的性质.
三、解答题(本大题共5个小题,共48分)
14、(1),.(2)补图见解析;(3)1200人.
【解析】
(1)先根据5≤x<l0的频数及其百分比求出样本容量,再根据各组频数之和等于总人数求出a的值,继而由百分比的概念求解可得;
(2)根据所求数据补全图形即可得;
(3)利用样本估计总体思想求解可得.
【详解】
解:(1)∵样本容量为3÷7.5%=40,
∴a=40-(3+7+10+6)=14,
则b=14÷40×100%=35%,
故答案为:14,35%;
(2)补图如下.
(3)估计这次活动中爱心捐款额在15≤x<25的学生人数约为,
2000×(35%+25%)=1200(人).
答:估计这次活动中爱心捐款额在的学生有1200人.
本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
15、 (1)x=3; (2)1或-9.
【解析】
(1)按照解分式方程的一般步骤进行解答即可;
(2)根据本题特点,用“因式分解法”进行解答即可.
详解:
(1)解分式方程:
去分母得:,
移项得:,
合并同类项得:,
系数化为1得:,
检验:当时,,
∴原方程的解是:;
(2)解一元二次方程x2+8x﹣9=1,
原方程可化为:,
∴或,
解得:.
点睛:(1)解答第1小题的关键是:①熟知解分式方程的基本思路是:去分母,化分式方程为整式方程;②知道解分式方程,当求得未知数的值后,需检验所得结果是否是原方程的根,再作结论;(2)解第2小题的关键是能够通过因式分解把原方程化为:的形式.
16、21
【解析】
(1)利用旋转的旋转即可作出图形;
(2)先求出的边长边上的高为,进而求出与间的距离为,再判断出最小时,拼成的四边形的周长最小,即可得出结论.
【详解】
(1)∵DE是△ABC的中位线,
∴四边形BDFH绕点D顺时针旋转,点B和点A重合,
四边形CEFH绕点E逆时针旋转,点C和点A重合,
∴补全图形如图1所示,
(2)∵△ABC的面积是41,BC=1,
∴点A到BC的距离为12,
∵DE是△ABC的中位线,
∴平行线DE与BC间的距离为6,
由旋转知,∠DAH''=∠B,∠CAH'=∠C,
∴∠DAH''+∠BAC+∠CAH'=110°,
∴点H'',A,H'在同一条直线上,
由旋转知,∠AEF'=∠CEF,
∴∠AEF'+∠CEF'=∠CEF+∠CEF'=110°,
∴点F,E,F'在同一条直线上,
同理:点F,D,F''在同一条直线上,
即:点F',F''在直线DE上,
由旋转知,AH''=BH,AH'=CH,DF''=DF,EF'=EF,F''H''=FH=F'H',
∴F'F''=2DE=BC=H'H'',
∴四边形F'H'H''F''是平行四边形,
∴▱F'H'H''F''的周长为2F'F''+2F'H'=4DE+2FH=2BC+2FH=16+2FH,
∵拼成的所有四边形纸片中,其周长的最小时,FH最小,
即:FH⊥BC,
∴FH=6,
∴周长的最小值为16+2×6=21,
故答案为21.
此题是四边形综合题,主要考查了旋转的旋转和作图,判断三点共线的方法,平行四边形的判断和性质,判断出四边形是平行四边形是解本题的关键.
17、(1)5(2)直角三角形,理由见解析(3)36
【解析】
在直角三角形ABD中,利用勾股定理求出BD的长,再利用勾股定理的逆定理得到三角形BCD为直角三角形,根据四边形ABCD的面积=直角三角形ABD的面积+直角三角形BCD的面积,即可求出四边形的面积.
【详解】
(1)在Rt△ACD中,CD=4,AD=3
由勾股定理,得CD +AD=AC
∴AC= =5;
(2)△ACD是直角三角形;
理由如下:∵AB=13,BC=12,AC=5
∴BC+AC=12+5=169AB=13=169
∴BC+AC=AB
∴△ACB是Rt△,∠ACB=90°;
(3)S四边形ABCD=S△ABC+S△ACD
=×12×5+×4×3=30+6=36.
此题考查勾股定理的逆定理,勾股定理,解题关键在于求出BD的长
18、(1),,其理由见解析;(2);(3)6
【解析】
(1)由四边形ABCD与四边形AEFG为正方形,利用正方形的性质得到两对边相等,且夹角相等,利用SAS得到三角形ADG与三角形ABE全等,利用全等三角形对应角相等得∠AGD=∠AEB,如图1所示,延长EB交DG于点H,利用等角的余角相等得到∠DHE=90°,利用垂直的定义即可得DG⊥BE;
(2)由四边形ABCD与四边形AEFG为正方形,利用正方形的性质得到两对边相等,且夹角相等,利用SAS得到三角形ADG与三角形ABE全等,利用全等三角形对应边相等得到DG=BE,如图2,连接交于,则=°=,在Rt△AMD中,求出AO的长,即为DO的长,根据勾股定理求出GO的长,进而确定出DG的长,即为BE的长;
(3)△GHE和△BHD面积之和的最大值为6,理由为:对于△EGH,点H在以EG为直径的圆上,即当点H与点A重合时,△EGH的高最大;对于△BDH,点H在以BD为直径的圆上,即当点H与点A重合时,△BDH的高最大,即可确定出面积的最大值.
【详解】
(1)
证明:,,其理由是:
在正方形和正方形中,
有,,,
∴≌,∴,,
∵,∴
延长交于,则,
∴.
(2)
解:在正方形和正方形中,
有,,,
∴
∴≌,∴
连接交于,则,
∴,,
∴
∴
(3)
与面积之和的最大值为6,其理由是:
对于,长一定,当到的长度最大时,的面积最大,由(1)(2))△GHE和△BHD面积之和的最大值为6,理由为:
对于△EGH,点H在以EG为直径的圆上,
∴当点H与点A重合时,△EGH的高最大;
对于△BDH,点H在以BD为直径的圆上,
∴当点H与点A重合时,△BDH的高最大,
则△GHE和△BHD面积之和的最大值为2+4=6.
本题为几何变换综合题,(1)一般要问两条线段的关系,得分两个方面讨论,一个是长度关系,一个是位置关系(不是平行就是垂直),一般证明长度相等只需要证明三角形全等即可;(2)(1)中已经证明的结论一般为(2)作铺垫,所以只需要求出BE即可求出DG,这里因为出现直角三角形,所求线段的长度,用到了勾股定理;(3)这里主要用到直径所对的圆周角等于90°即可得到H同时在以BD和GH为直径的弦上,此时H在A处时,高最大,为圆的半径.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、4
【解析】
根据一元二次方程根的情况结合根的判别式得出关于的关系式,然后进一步求解即可.
【详解】
∵关于的方程有实数根,
∴,
∴,
∴要使原方程有实数根,可取的值为4,
故答案为:4.
本题主要考查了一元二次方程根的判别式的运用,熟练掌握相关概念是解题关键.
20、
【解析】
根据方程无实数根求出b的取值范围,再确定b的值即可.
【详解】
∵一元二次方程x2+2bx+1=0无实数根,
∴4b2-4
相关试卷
这是一份2024-2025学年黑龙江省哈尔滨市数学九年级第一学期开学检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年黑龙江省哈尔滨市风华中学九年级数学第一学期开学达标检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年黑龙江省哈尔滨市阿城区九上数学开学检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)