年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    河南省郑州市第一中学2025届九上数学开学监测模拟试题【含答案】

    河南省郑州市第一中学2025届九上数学开学监测模拟试题【含答案】第1页
    河南省郑州市第一中学2025届九上数学开学监测模拟试题【含答案】第2页
    河南省郑州市第一中学2025届九上数学开学监测模拟试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    河南省郑州市第一中学2025届九上数学开学监测模拟试题【含答案】

    展开

    这是一份河南省郑州市第一中学2025届九上数学开学监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)在下列各式由左到右的变形中,不是因式分解的是( )
    A.B.
    C.D.
    2、(4分)下列说法中错误的是( )
    A.“买一张彩票中奖”发生的概率是0
    B.“软木塞沉入水底”发生的概率是0
    C.“太阳东升西落”发生的概率是1
    D.“投掷一枚骰子点数为8”是确定事件
    3、(4分)当时,化为最简二次根式的结果是( )
    A.B.C.D.
    4、(4分)某商店在节日期间开展优惠促销活动:购买原价超过200元的商品,超过200元的部分可以享受打折优惠,若购买商品的实际付款金额y(单位:元)与商品原价x(单位:元)的函数关系的图象如图所示,则超过200元的部分可以享受的优惠是( )
    A.打五折B.打六折C.打七折D.打八折
    5、(4分)如果把分式中x、y的值都扩大为原来的2倍,则分式的值( )
    A.扩大为原来的4 倍B.扩大为原来的2倍
    C.不变D.缩小为原来的
    6、(4分)方程x2+x﹣12=0的两个根为( )
    A.x1=﹣2,x2=6B.x1=﹣6,x2=2C.x1=﹣3,x2=4D.x1=﹣4,x2=3
    7、(4分)如图,E、F为菱形ABCD对角线上的两点,∠ADE=∠CDF,要判定四边形BFDE是正方形,需添加的条件是( )
    A.AE=CFB.OE=OFC.∠EBD=45°D.∠DEF=∠BEF
    8、(4分)在函数y=中,自变量x的取值范围是( )
    A.x≤﹣3B.x≥﹣3C.x<﹣3D.x>﹣3
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,点A是x轴上的一个动点,点C在y轴上,以AC为对角线画正方形ABCD,已知点C的坐标是,设点A的坐标为.
    当时,正方形ABCD的边长______.
    连结OD,当时,______.
    10、(4分)如图,有一条折线A1B1A2B2A3B3A4B4…,它是由过A1(0,0),B1(2,2),A2(4,0)组成的折线依次平移4,8,12,…个单位得到的,直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,则k的值为______.
    11、(4分)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=.
    其中正确的序号是 (把你认为正确的都填上).
    12、(4分)如图,在□中,⊥于点,⊥于点.若,,且□的周长为40,则□的面积为_______.
    13、(4分)若关于x的分式方程+2无解,则m的值为________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)求下列分式的值:,并从x=0,﹣1,﹣2中选一个适当的值,计算分式的值.
    15、(8分)如图,已知一次函数的图象经过A(0,-3)、B(4,0)两点.
    (1)求这个一次函数的解析式;
    (2)若过O作OM⊥AB于M,求OM的长.
    16、(8分)如图,在四边形中,,,E为对角线的中点,F为边的中点,连接.
    (1)求证:四边形为菱形;
    (2)连接交于点G,若,,求的长.
    17、(10分)解方程:(1)=;
    (2)-1=.
    18、(10分)在直角坐标系中,已知两点的坐标是M(x1,y1),N(x2,y2),M,N两点之间的距离,可以用公式MN=计算.
    解答下列问题:
    (1)若已知点A(1,2),B(4,-2),求A,B两点间的距离;
    (2)在(1)的条件下,点O是坐标原点,判断△AOB是什么三角形,并说明理由.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知.若整数满足.则=_________.
    20、(4分)化简: =_________.
    21、(4分)不等式4﹣3x>2x﹣6的非负整数解是_____.
    22、(4分)如图,正方形中,,点在边上,且;将沿对折至,延长交边于点,连结,下列结论:①.;②.;③. .其中,正确的结论有__________________.(填上你认为正确的序号)
    23、(4分)已知:AB=2m,CD=28cm,则AB:CD=_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)当今,青少年用电脑手机过多,视力水平下降已引起了全社会的关注,某校为了解八年级1000名学生的视力情况,从中抽查了150名学生的视力情况,通过数据处理,得到如下的频数分布表.解答下列问题:
    (1)分别指出参加抽测学生的视力的众数、中位数所在的范围;
    (2)若视力为4.85以上(含4.85)为正常,试估计该校八年级学生视力正常的人数约为多少?
    (3)根据频数分布表求加权平均数时,统计中常用各组的组中值代表各组的实际数据,把各组的频数相应组中的权.请你估计该校八年级学生的平均视力是多少?
    25、(10分)我县某中学开展“庆十一”爱国知识竞赛活动,九年级(1)、(2)班各选出名选手参加比赛,两个班选出的名选手的比赛成绩(满分为100分)如图所示。
    (1)根据图示填写如表:
    (2)请你计算九(1)和九(2)班的平均成绩各是多少分。
    (3)结合两班竞赛成绩的平均数和中位数,分析哪个班级的竞赛成绩较好
    (4)请计算九(1)、九(2)班的竞赛成绩的方差,并说明哪个班的成绩比较稳定?
    26、(12分)某中学为了解该校学生的体育锻炼情况,随机抽查了该校部分学生一周的体育锻炼时间的情况,并绘制了如下两幅不完整的统计图:
    根据以上信息解答以下问题:
    (1)本次抽查的学生共有多少名,并补全条形统计图;
    (2)写出被抽查学生的体育锻炼时间的众数和中位数;
    (3)该校一共有1800名学生,请估计该校学生一周体育锻炼时间不低于9小时的人数.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.
    【详解】
    解:A、是因式分解,故A不符合题意;
    B、是整式的乘法,故B符合题意;
    C、是因式分解,故C不符合题意;
    D、是因式分解,故D不符合题意;
    故选:B.
    本题考查了因式分解的意义.熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.
    2、A
    【解析】
    直接利用概率的意义以及事件的确定方法分别分析得出答案.
    【详解】
    A、“买一张彩票中奖”发生的概率是0,错误,符合题意;
    B、“软木塞沉入水底”发生的概率是0,正确,不合题意;
    C、“太阳东升西落”发生的概率是1,正确,不合题意;
    D、“投掷一枚骰子点数为8”是确定事件,正确,不合题意;
    故选:A.
    此题主要考查了概率的意义以及事件的确定方法,解题关键是正确理解概率的意义.
    3、B
    【解析】
    直接利用二次根式的性质结合a,b的符号化简求出答案.
    【详解】
    解:当a<0,b<0时,
    故选:B.
    此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.
    4、C
    【解析】
    设超过200元的部分可以享受的优惠是打n折,根据:实际付款金额=200+(商品原价-200)×,列出y关于x的函数关系式,由图象将x=500、y=410代入求解即可得.
    【详解】
    设超过200元的部分可以享受的优惠是打n折,
    根据题意,得:y=200+(x-200)•,
    由图象可知,当x=500时,y=410,即:410=200+(500-200)×,
    解得:n=7,
    ∴超过200元的部分可以享受的优惠是打7折,
    故选C.
    本题考查了一次函数的实际应用,理解题意根据相等关系列出实际付款金额y与商品原价x间的函数关系式是解题的关键.
    5、B
    【解析】
    根据x,y都扩大2倍,即可得出分子扩大4倍,分母扩大2倍,由此即可得出结论.
    【详解】
    解:∵分式中的x与y都扩大为原来的2倍,
    ∴分式中的分子扩大为原来的4倍,分母扩大为原来的2倍,
    ∴分式的值扩大为原来的2倍.
    故选:B.
    此题考查分式的性质,解题关键在于掌握其性质
    6、D
    【解析】
    利用因式分解法解方程即可得出结论.
    【详解】
    解:x2+x-12=0
    (x+4)(x-1)=0,
    则x+4=0,或x-1=0,
    解得:x1=-4,x2=1.
    故选:D.
    本题考查因式分解法解一元二次方程,熟练掌握因式分解的方法是解题的关键.
    7、C
    【解析】
    从对角线的角度看,一个四边形需满足其两条对角线垂直、平分且相等才能判定是正方形,由于菱形的对角线已经垂直,所以要判定四边形BFDE是正方形,只需证明BD和EF相等且平分,据此逐项判断即可.
    【详解】
    解:∵四边形ABCD是菱形,∴AO=CO,BO=DO,AC⊥BD,
    A、若AE=CF,则OE=OF,但EF与BD不一定相等,所以不能判定四边形BFDE是正方形,本选项不符合题意;
    B、若OE=OF,同样EF与BD不一定相等,所以不能判定四边形BFDE是正方形,本选项也不符合题意;
    C、若∠EBD=45°,∵∠BOE=90°,∴∠BEO=45°,∴OE=OB,
    ∵AD=CD,∴∠DAE=∠DCF,又∵∠ADE=∠CDF,
    ∴△ADE≌△CDF(ASA),∴AE=CF,∴OE=OF,
    ∴EF=BD,∴四边形BFDE是正方形,本选项符合题意;
    D、若∠DEF=∠BEF,由C选项的证明知OE=OF,但不能证明EF与BD相等,所以不能判定四边形BFDE是正方形,本选项不符合题意.
    故选:C.
    本题考查的是菱形的性质和正方形的判定,属于常考题型,熟练掌握菱形的性质和正方形的判定方法是解题的关键.
    8、B
    【解析】
    根据二次根式有意义的条件列出不等式即可.
    【详解】
    解:根据题意得:x+3≥0
    解得:x≥-3
    所以B选项是正确的.
    本题考查二次根式及不等式知识,解题时只需找出函数有意义必须满足的条件列出不等式即可,对于一些较复杂的函数一定要仔细.函数自变量的范围一般从三个方面考虑:
    (1)当函数表达式是整式时,自变量可取全体实数;
    (2)当函数表达式是分式时,考虑分式的分母不能为0;
    (3)当函数表达式是二次根式时,被开方数非负.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、; 4或6
    【解析】
    (4)在RtAOC中,利用勾股定理求出AC的长度,然后再求得正方形的边长即可;
    (4)先求得OD与y轴的夹角为45〬,然后依据OD的长,可求得点D的坐标,过D作DM⊥y轴,DN⊥x轴,接下来,再证明△DNA≌△DMC,从而可得到CM=AM,从而可得到点A的坐标.
    【详解】
    解:(4)当n=4时,OA=4,
    在Rt△COA中,AC4=CO4+AO4=4.
    ∵ABCD为正方形,
    ∴AB=CB.
    ∴AC4=AB4+CB4=4AB4=4,
    ∴AB= .
    故答案为.
    (4)如图所示:过点D作DM⊥y轴,DN⊥x轴.
    ∵ABCD为正方形,
    ∴A、B、C、D四点共圆,∠DAC=45°.
    又∵∠COA=90°,
    ∴点O也在这个圆上,
    ∴∠COD=∠CAD=45°.
    又∵OD= ,
    ∴DN=DM=4.
    ∴D(-4,4).
    在Rt△DNA和Rt△DMC中,DC=AD,DM=DN,
    ∴△DNA≌△DMC.
    ∴CM=AN=OC-MO=3.
    ∵D(-4,4),
    ∴A(4,0).
    ∴n=4.
    如下图所示:过点D作DM⊥y轴,DN⊥x轴.
    ∵ABCD为正方形,
    ∴A、B、C、D四点共圆,∠DAC=45°.
    又∵∠COA=90°,
    ∴点O也在这个圆上,
    ∴∠AOD=∠ACD=45°.
    又∵OD= ,
    ∴DN=DM=4.
    ∴D(4,-4).
    同理:△DNA≌△DMC,则AN=CM=5.
    ∴OA=ON+AN=4+5=6.
    ∴A(6,0).
    ∴n=6.
    综上所述,n的值为4或6.
    故答案为4或6.
    本题考核知识点:正方形性质、全等三角形性质,圆等. 解题关键点:熟记相关知识点.
    10、.
    【解析】
    试题分析:∵A1(0,0),A2(4,0),A3(8,0),A4(12,0),…,∴An(4n﹣4,0).
    ∵直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,∴点An+1(4n,0)在直线y=kx+2上,∴0=4nk+2,解得:k=.故答案为.
    考点:一次函数图象上点的坐标特征;坐标与图形变化﹣平移;规律型;综合题.
    11、①②④
    【解析】
    分析:∵四边形ABCD是正方形,∴AB=AD。
    ∵△AEF是等边三角形,∴AE=AF。
    ∵在Rt△ABE和Rt△ADF中,AB=AD,AE=AF,∴Rt△ABE≌Rt△ADF(HL)。∴BE=DF。
    ∵BC=DC,∴BC﹣BE=CD﹣DF。∴CE=CF。∴①说法正确。
    ∵CE=CF,∴△ECF是等腰直角三角形。∴∠CEF=45°。
    ∵∠AEF=60°,∴∠AEB=75°。∴②说法正确。
    如图,连接AC,交EF于G点,
    ∴AC⊥EF,且AC平分EF。
    ∵∠CAD≠∠DAF,∴DF≠FG。
    ∴BE+DF≠EF。∴③说法错误。
    ∵EF=2,∴CE=CF=。
    设正方形的边长为a,在Rt△ADF中,,解得,
    ∴。
    ∴。∴④说法正确。
    综上所述,正确的序号是①②④。
    12、48
    【解析】
    ∵▱ABCD的周长=2(BC+CD)=40,
    ∴BC+CD=20①,
    ∵AE⊥BC于E,AF⊥CD于F,AE=4,AF=6,
    ∴S▱ABCD=4BC=6CD,
    整理得,BC=CD②,
    联立①②解得,CD=8,
    ∴▱ABCD的面积=AF⋅CD=6CD=6×8=48.
    故答案为48.
    13、1
    【解析】
    分析:把原方程去分母化为整式方程,求出方程的解得到x的值,由分式方程无解得到分式方程的分母为0,求出x的值,两者相等得到关于m的方程,求出方程的解即可得到m的值.
    详解:
    去分母得:x﹣2=m+2(x﹣3),整理得:x=4﹣m.
    ∵原方程无解,得到x﹣3=0,即x=3,∴4﹣m=3,解得:m=1.
    故答案为1.
    点睛:本题的关键是让学生理解分式方程无解就是分母等于0,同时要求学生掌握解分式方程的方法,以及转化思想的运用.学生在去分母时,不要忽略分母为1的项也要乘以最简公分母.
    三、解答题(本大题共5个小题,共48分)
    14、-1
    【解析】
    根据分式的加法和除法可以化简题目中的式子,然后从0,-1,-1中选一个使得原分式有意义的值代入即可解答本题
    【详解】
    解:

    =(x+1)+(x﹣1)
    =x+1+x﹣1
    =1x,
    当x=﹣1时,原式=1×(﹣1)=﹣1.
    此题考查分式的化简求值,掌握运算法则是解题关键
    15、(1)y=x-3;(2)OM=.
    【解析】
    (1)设一次函数的解析式为y=kx+b,用待定系数法求解即可;
    (2)先根据勾股定理求出AB的长,再用等面积法求解即可.
    【详解】
    (1)设一次函数的解析式为y=kx+b,
    把A(0,-3)、B(4,0)两点代入y=kx+b得:
    ,
    解得,
    故一次函数的解析式y=x-3;
    (2)在△OAB中,OB=4,OA=3,由勾股定理得AB2=OA2+OB2,即AB2=32+42,
    则AB=5,
    ∵= AB×OM =OA×OB,
    即OM==.
    本题考查了待定系数法求一次函数解析式,勾股定理及等积法求线段的长,熟练掌握待定系数法是解答本题的关键.
    16、(1)见解析;(2)
    【解析】
    由三角形中位线定理可得,,,可得,,由菱形的判定可得结论;
    由菱形的性质可得,,,由勾股定理可得,可求,由勾股定理可求AD的长.
    【详解】
    (1)证明:∵分别为的中点,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴,
    ∴四边形是平行四边形.
    ∵,
    ∴,
    ∴四边形是菱形.
    (2)解:∵四边形是菱形,,
    ∴,,
    在中,,可得.
    ∴,
    ∵E为中点,
    ∴.
    ∴.
    在中,.
    本题考查了菱形的性质,三角形中位线定理,勾股定理,熟练运用菱形的性质是本题的关键.
    17、(1)x=2-2(2)无解
    【解析】
    (1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;
    (2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
    【详解】
    (1)方程两边同时乘以x得:
    2=(+1)x,
    解得:x==2-2,
    检验:当x=2-2时,x≠0
    所以x=2-2是分式方程的解;
    (2)方程两边同时乘以得:
    x2+2x+1-x2+1=4,
    解得:x=1,
    检验:当x=1时,
    所以x=1是增根,分式方程无解.
    此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
    18、(1)A,B两点间的距离AB=5;(2)△AOB是直角三角形,见解析.
    【解析】
    (1)根据题意给出的公式即可求出答案.
    (2)根据勾股定理逆定理即可求出答案.
    【详解】
    (1)由题意可知:AB=;
    (2)由两点之间距离公式可求得:AB2=25,AO2=5,BO2=20,
    ∴AB2=AO2+BO2,
    ∴△AOB是直角三角形;
    本题考查勾股定理,解题的关键是正确理解题意给出的公式,本题属于中等题型.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、2
    【解析】
    根据题意可知m-3≤0,被开方数是非负数列不等式组可得m的取值,又根据,表示m的值代入不等式的解集中可得结论.
    【详解】
    解:,

    解得:.
    ∵为整数,



    故答案为:2;
    本题考查了二次根式的性质和估算、不等式组的解法,有难度,能正确表示m的值是本题的关键.
    20、
    【解析】
    根据根式的性质即可化简.
    【详解】
    解: =
    本题考查了根式的化简,属于简单题,熟悉根式的性质是解题关键.
    21、0,2
    【解析】
    求出不等式2x+2>3x﹣2的解集,再求其非负整数解.
    【详解】
    解:移项得,﹣2x﹣3x>﹣6﹣4,
    合并同类项得,﹣5x>﹣20,
    系数化为2得,x<2.
    故其非负整数解为:0,2.
    本题考查了一元一次不等式的整数解,解答此题不仅要明确不等式的解法,还要知道非负整数的定义.解答时尤其要注意,系数为负数时,要根据不等式的性质3,将不等号的方向改变.
    22、①②③
    【解析】
    分析:根据折叠的相知和正方形的性质可以证明⊿≌⊿;根据勾股定理可以证得;先证得 ,由平行线的判定可证得;由于⊿和⊿等高的 .故由⊿:⊿求得面积比较即解得.
    详解:∵ , ,
    ∴⊿≌⊿ ( ),
    ∴ , 故①正确的.
    ∵,
    ∴, ,
    设,则 , ,
    在⊿中,根据勾股定理有: ,即,
    解得 即 ,则,
    ∴ ,
    ∴ ,
    ∵ 且满足 ,
    ∴ ,
    ∴ 故②正确的.
    ∵ ,且⊿和⊿等高的 .
    ∴⊿:⊿= ,
    ∵⊿ = ,
    ∴⊿=⊿ = , 故③正确的.
    故答案为:①②③ .
    点睛:本题是一道综合性较强的几何题,其中勾股定理与方程思想的结合起来为破解②③提供了有力的支撑,技巧性比较强,也是本题的难点所在,对于大多数同学来说具有一定的挑战性.
    23、50:7
    【解析】
    先将2m转换为200cm,再代入计算即可.
    【详解】
    ∵AB=2m=200cm,CD=28cm,
    ∴AB:CD=200:28=50:7.
    故答案为50:7.
    本题考查比例线段,学生们掌握此定理即可.
    二、解答题(本大题共3个小题,共30分)
    24、(1)众数在4.85≤x<5.15的范围内,中位数在4.85≤x<5.15的范围内;(2)八年级视力正常的学生约有600人;(3)八年级1000名学生平均视力为4.1.
    【解析】
    (1)根据众数和中位数的定义,就是出现次数最多的数和中间的数(中间两数的平均数),据此即可判断;
    (2)利用总人数1000乘以对应的比例即可求解;
    (3)根据用样本估计总体解答即可.
    【详解】
    (1)众 数 在4.85≤x<5.15的范围内,
    中位数在4.85≤x<5.15的范围内;
    (2)依题意,八年级视力正常的学生约有人;
    (3)依题意,抽样调查150名学生的平均视力为

    由于可以用样本估计总体,
    因此得到八年级1000名学生平均视力为4.1.
    本题考查读频数分布表的能力和利用统计图表获取信息的能力;利用统计图表获取信息时,必须认真观察、分析、研究统计图表,才能作出正确的判断和解决问题.
    25、(1);(2)甲:85,乙:85;(3)九(1)班成绩较好;(4)九(1)班成绩比较稳定.
    【解析】
    (1)观察图分别写出九(1)班和九(2)班5名选手的比赛成绩,然后根据中位数和众数的定义求解即可;(2)根据平均数公式计算即可;(3)在平均数相同的情况下,中位数较高的成绩较好;(4)先根据方差公式分别计算两个班比赛成绩的方差,再根据方差的意义判断即可.
    【详解】
    由图可知:九(1)班5位同学的成绩分别为:75,80,85,85,100,所以中位数为85,众数为85;九(2)班5位同学的成绩分别为:70,100,100,75,80,排序为:70,75,80,100,100,所以中位数为80,众数为100,即填表如下:
    (2)九(1)班的平均成绩为(分),
    九(2)班的平均成绩为(分);
    (3)因为两个班级的平均数都相同,九(1)班的中位数较高,所以在平均数相同的情况下中位数较高的九(1)班成绩较好;
    (4);
    因为
    所以九(1)班成绩比较稳定.
    本题考查了平均数、中位数、众数和方差的意义即运用.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    26、(1)40,图形见解析;(2)众数是8,中位数是8.5;(3)900名
    【解析】
    (1) 本次抽查的学生数=每天锻炼10小时的人数÷每天锻炼10小时的人数占抽查学生的百分比;一周体育锻炼时间为9小时的人数 =抽查的人数-(每天锻炼7小时的人数+每天锻炼8小时的人数+每天锻炼10小时的人数);根据求得的数据补充条形统计图即可;
    (2)一组数据中出现次数最多的数是众数,结合条形图,8出现了18次,所以确定众数就是18;把一组数据按从小到大的数序排列,处于中间位置的一个数字(或两个数字的平均值)叫做这组数据的中位数。由图可知第20、21个数分别是8、9,所以中位数是它们的平均数;
    (3)该校学生一周体育锻炼时间不低于9小时的估计人数 =该校学生总数×一周体育锻炼时间不低于9小时的频率.
    【详解】
    (1)解:本次抽查的学生共有8÷20%=40(名)
    一周体育锻炼时间为9小时的人数是40-(2+18+8)=12(名)
    条形图补充如下:
    (2)解:由条形图可知,8出现了18次,此时最多,所以众数是8
    将40个数据按从小到大的顺序排列,第20、21个数分别是8、9,所以中位数是(8+9)÷2=8.5
    (3)解:1800× =900(名)
    答:估计该校学生一周体育锻炼时间不低于9小时的大约有900名.
    此题主要考查统计调查的应用,解题的关键是根据题意得到本次抽查的学生的总人数.
    题号





    总分
    得分
    视力范围分组
    组中值
    频数
    3.95≤x<4.25
    4.1
    20
    4.25≤x<4.55
    4.4
    10
    4.55≤x<4.85
    4.7
    30
    4.85≤x<5.15
    5.0
    60
    5.15≤x<5.45
    5.3
    30
    合计
    150
    班级
    中位数(分)
    众数(分)
    九(1)

    85
    九(2)
    80

    班级
    中位数(分)
    众数(分)
    九(1)
    85
    85
    九(2)
    80
    100

    相关试卷

    河南省郑州市郑州中学2025届九年级数学第一学期开学学业质量监测模拟试题【含答案】:

    这是一份河南省郑州市郑州中学2025届九年级数学第一学期开学学业质量监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    河南省郑州市实验中学2024年数学九上开学教学质量检测模拟试题【含答案】:

    这是一份河南省郑州市实验中学2024年数学九上开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届河南省郑州市数学九年级第一学期开学学业质量监测模拟试题【含答案】:

    这是一份2025届河南省郑州市数学九年级第一学期开学学业质量监测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map