河南省商丘市拓城县2025届九年级数学第一学期开学统考试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,周长为34的矩形ABCD被分成7个全等的矩形,则矩形ABCD的面积为
( )
A.280B.140C.70D.196
2、(4分)下图是外周边缘为正八边形的木花窗挂件,则这个八边形的每个内角为( )
A.B.C.D.
3、(4分)能判定四边形ABCD是平行四边形的是( )
A.AD//BC,AB=CDB.∠A=∠B,∠C=∠D
C.∠A=∠C,∠B=∠DD.AB=AD,CB=CD
4、(4分)如图,△ABC是等边三角形,P是∠ABC的平分线BD上一点,PE⊥AB于点E,线段BP的垂直平分线交BC于点F,垂足为点Q.若BF=2,则PE的长为( )
A.2B.2C.D.3
5、(4分)如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,AB=6cm,BC=8cm,则△AEF的周长是( )
A.14cmB.8cmC.9cmD.10cm
6、(4分)如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC的度数是( )
A.15°B.20°C.40°D.50°
7、(4分)小明到单位附近的加油站加油,如图是小明所用的加油机上的数据显示牌,则数据中的变量有( )
A.金额B.数量C.单价D.金额和数量
8、(4分)为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S(米)与所用的时间t(秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第( )秒
A.80B.105C.120D.150
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)函数y=中自变量x的取值范围是______.
10、(4分)如果a-b=2,ab=3,那么a2b-ab2=_________;
11、(4分)如图,的对角线、相交于点,经过点,分别交、于点、,已知的面积是,则图中阴影部分的面积是_____.
12、(4分)若一个等腰三角形的顶角等于70°,则它的底角等于________度,
13、(4分)为了增强青少年的防毒拒毒意识,学校举办了一次“禁毒教育”演讲比赛,其中某位选手的演讲内容、语言表达、演讲技巧这三项得分分别为90分,80分,85分,若依次按50%,30%,20%的比例确定成绩,则该选手的最后得分是__________分.
三、解答题(本大题共5个小题,共48分)
14、(12分)射击队为从甲、乙两名运动员选拔一人参加运动会,对他们进行了六次测试,测试成绩如下表(单位:环)
(1)由表格中的数据,计算出甲的平均成绩是 环,乙的成绩是 环.
(2)结合平均水平与发挥稳定性你认为推荐谁参加比赛更适合,请说明理由.
15、(8分)如图所示,P(a,3)是直线y=x+5上的一点,直线 y=k1x+b与双曲线相交于P、Q(1,m).
(1)求双曲线的解析式及直线PQ的解析式;
(2)根据图象直接写出不等式>k1x+b的解集.
(3)若直线y=x+5与x轴交于A,直线y=k1x+b与x轴交于M求△APQ的面积
16、(8分)2019年4月23日世界读书日这天,滨江初二年级的学生会,就2018年寒假读课外书数量(单位:本)做了调查,他们随机调查了甲、乙两个班的10名同学,调查过程如下
收集数据
甲、乙两班被调查者读课外书数量(单位:本)统计如下:
甲:1,9,7,4,2,3,3,2,7,2
乙:2,6,6,3,1,6,5,2,5,4
整理、描述数据绘制统计表如下,请补全下表:
分析数据、推断结论
(1)该校初二乙班共有40名同学,你估计读6本书的同学大概有_____人;
(2)你认为哪个班同学寒假读书情况更好,写出理由.
17、(10分)如图,中,,两点在对角线上,.
(1)求证:;
(2)当四边形为矩形时,连结、、,求的值.
18、(10分)如图,反比例函数的图像与一次函数的图像交于点,点的横坐标是,点是第一象限内反比例函数图像上的动点,且在直线的上方.
(1)若点的坐标是,则 , ;
(2)设直线与轴分别交于点,求证:是等腰三角形;
(3)设点是反比例函数图像位于之间的动点(与点不重合),连接,比较与的大小,并说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若多项式,则=_______________.
20、(4分)一次函数的图象不经过第_______象限.
21、(4分)已知菱形的两条对角线长分别为4和9,则菱形的面积为_____.
22、(4分)若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为_____.
23、(4分)一副常规的直角三角板如图放置,点在的延长线上,,,若,则______.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知:如图,菱形ABCD的对角线AC,BD相交于O,点E,F分别是AD,DC的中点,已知OE=,EF=3,求菱形ABCD的周长和面积.
25、(10分)如图,已知带孔的长方形零件尺寸(单位:),求两孔中心的距离.
26、(12分)如图,△ABC中,∠ACB=90°,D.E分别是BC、BA的中点,联结DE,F在DE延长线上,且AF=AE.
(1)求证:四边形ACEF是平行四边形;
(2)若四边形ACEF是菱形,求∠B的度数.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
解:设小长方形的长、宽分别为x、y,
依题意得:,
解得:,
则矩形ABCD的面积为7×2×5=1.
故选C.
【点评】考查了二元一次方程组的应用,此题是一个信息题目,首先会根据图示找到所需要的数量关系,然后利用这些关系列出方程组解决问题.
2、D
【解析】
根据多边形的内角和公式,列式计算即可得解.
【详解】
解:这个正八边形每个内角的度数=×(8-2)×180°=135°.
故选:D
本题考查了多边形的内角与外角,熟记多边形的内角和公式是解题的关键.
3、C
【解析】
根据平行四边形的判定定理依次确定即可.
【详解】
A. AD//BC,AB=CD,不能判定四边形ABCD是平行四边形,故不符合题意;
B. ∠A=∠B,∠C=∠D,不能判定四边形ABCD是平行四边形,故不符合题意;
C. ∠A=∠C,∠B=∠D,能判定四边形ABCD是平行四边形,故符合题意;
D. AB=AD,CB=CD,不能判定四边形ABCD是平行四边形,故不符合题意;
故选:C.
此题考查平行四边形的判定定理,熟记定理内容即可正确解答.
4、C
【解析】
解析:∵△ABC是等边三角形P是∠ABC的平分线,
∴∠EBP=∠QBF=30°,
∵BF=2,FQ⊥BP,
∴BQ=BF•cs30°=2×=,
∵FQ是BP的垂直平分线,
∴BP=2BQ=2,
在Rt△BEF中,
∵∠EBP=30°,
∴PE=BP=.
故选C.
5、C
【解析】
利用勾股定理列式求出AC,再根据矩形的对角线互相平分且相等求出OA=OD=AC,然后根据三角形的中位线平行于第三边并且等于第三边的一半可得EF=OD,再求出AF,AE,然后根据三角形的周长公式列式计算即可得解.
【详解】
由勾股定理得,AC==10cm
∵四边形ABCD是矩形
∴OA=OD=AC=×10=5cm
∵点E、F分别是AO、AD的中点
∴EF=OD=cm
AF=×8=4cm
AE=OA=cm
∴△AEF的周长=+4+=9cm.
故选C.
本题考查了三角形的中位线平行于第三边并且等于第三边的一半,矩形的性质,勾股定理,熟记定理与性质是解题的关键.
6、A
【解析】
根据线段垂直平分线求出AD=BD,推出∠A=∠ABD=50°,根据三角形内角和定理和等腰三角形性质求出∠ABC,即可得出答案
【详解】
∵DE垂直平分AB,
∴AD=BD,∠AED=90°,
∴∠A=∠ABD,
∵∠ADE=40°,
∴∠A=90°﹣40°=50°,
∴∠ABD=∠A=50°,
∵AB=AC,
∴∠ABC=∠C= (180°﹣∠A)=65°,
∴∠DBC=∠ABC﹣∠ABD=65°﹣50°=15°,
故选:A.
此题考查线段垂直平分线的性质和等腰三角形的性质,关键在于利用线段垂直平分求出AD=BD
7、D
【解析】
根据常量与变量的定义即可判断.
【详解】
常量是固定不变的量,变量是变化的量,
单价是不变的量,而金额是随着数量的变化而变化,
故选:D.
本题考查常量与变量,解题的关键是正确理解常量与变量,本题属于基础题型.
8、C
【解析】
如图,分别求出OA、BC的解析式,然后联立方程,解方程就可以求出第一次相遇时间.
【详解】
设直线OA的解析式为y=kx,
代入A(200,800)得800=200k,
解得k=4,
故直线OA的解析式为y=4x,
设BC的解析式为y1=k1x+b,由题意,得
,
解得:,
∴BC的解析式为y1=2x+240,
当y=y1时,4x=2x+240,
解得:x=120,
则她们第一次相遇的时间是起跑后的第120秒,
故选C.
本题考查了一次函数的运用,一次函数的图象的意义的运用,待定系数法求一次函数的解析式的运用,解答时认真分析求出一次函数图象的数据意义是关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x⩽2且x≠−1.
【解析】
根据被开方数大于等于0,分母不等于0列式计算即可得解.
【详解】
由题意得,2−x⩾0且x+1≠0,
解得x⩽2且x≠−1.
故答案为:x⩽2且x≠−1.
此题考查函数自变量的取值范围,解题关键在于掌握各性质定义.
10、6
【解析】
首先将a2b-ab2提取公因式,在代入计算即可.
【详解】
解:
代入a-b=2,ab=3
则原式=
故答案为6.
本题主要考查因式分解的计算,关键在于提取公因式,这是基本知识点,应当熟练掌握.
11、
【解析】
只要证明,可得,即可解决问题.
【详解】
四边形是平行四边形,
,,
,
,
,
.
故答案为:.
本题考查平行四边形的性质。全等三角形的判定和性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.
12、1
【解析】
根据等腰三角形的性质和三角形的内角和即可得到结论.
【详解】
解:一个等腰三角形的顶角等于,
它的底角,
故答案为:1.
本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.
13、1
【解析】
根据加权平均数的计算公式列出算式,再进行计算即可得出答案.
【详解】
解:根据题意得:
90×50%+80×30%+85×20%
=45+24+17
=1(分).
答:该选手的最后得分是1分.
故答案为:1.
本题考查了加权平均数的求法.本题易出现的错误是求90,80,85这三个数的平均数,对平均数的理解不正确.
三、解答题(本大题共5个小题,共48分)
14、(1)9,9;(2)甲.
【解析】
分析:1、首先根据图表得出甲、乙每一次的测试成绩,再利用平均数的计算公式分别求出甲、乙的平均成绩;
2、得到甲、乙的平均成绩后,再结合方差的计算公式即可求出甲、乙的方差;接下来结合方差的意义,从稳定性方面进行分析,即可得出结果.
详解:(1)甲的平均成绩是:(10+8+9+8+10+9)÷6=9,
乙的平均成绩是:(10+7+10+10+9+8)÷6=9;
(2)甲的方差=[(10-9)2+(8-9)2+(9-9)2+(8-9)2+(10-9)2+(9-9)2]=.
乙的方差=[(10-9)2+(7-9)2+(10-9)2+(10-9)2+(9-9)2+(8-9)2]= .
推荐甲参加全国比赛更合适,理由如下:
两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.
点睛:本题考查了平均数以及方差的求法及意义,正确掌握方差的计算公式是解答本题的关键. 方差的计算公式为:.
15、(1)双曲线的解析式为,线PQ的解析式为:;
(2)-2<x<0或x>-1;
(3)△APQ的面积为
【解析】
试题分析:(1)利用代入法求出a的值,然后根据交点可求出m的值,从而求出解析式;
(2)根据图像可直接求解出取值范围;
(3)分别求出交点,利用割补法求三角形的面积即可.
试题解析:(1)把代入中得
∴p(-2,3)
把代入中,得k=-6
∴双曲线解析式为
把代入中,得m=-3
∴a(1,-6)
把时,,时,代入
得: ∴
直线pa解析式为:
②-2<x<0 或x>-1
③在与中,y=0 解设x=-1
∴M(-1,0)
∴
=
=
∴△APO面积为
【详解】
请在此输入详解!
16、统计图补全见解析 (1)12 (2)乙班,理由见解析
【解析】
根据平均数、众数、中位数、方差的概念填表
(1)根据样本求出读6本书的学生的占比,再用初二乙班总人数乘以占比即可求解;
(2)根据方差的性质进行判断即可.
【详解】
甲组的众数是2,乙组中位数是
乙组的平均数:
甲组的方差:
补全统计表如下:
(1)
(人)
故估计读6本书的同学大概有12人;
(2)乙班,乙班的方差较小,说明乙班学生普遍有阅读意识,而甲班方差较大,说明甲班虽然存在一部分读书意识较强的同学,但也存在一部分读书意识淡薄的同学.
本题考查了统计图的问题,掌握平均数、众数、中位数、方差的概念以及性质是解题的关键.
17、(1)证明见解析;(1)1.
【解析】
(1)证明△ABE≌△CDF,根据全等三角形的对应边相等即可证得;
(1)根据四边形AECF为矩形,矩形的对角线相等,则AC=EF,据此即可求解.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD.
∴∠1=∠1.
在△ABE和△CDF中,
,
∴△ABE≌△CDF(SAS),
∴AE=CF.
(1)解:∵四边形AECF为矩形,
∴AC=EF,
∴ ,
又∵△ABE≌△CDF,
∴BE=DF,
∴当四边形AECF为矩形时,=1.
此题考查平行四边形的性质,矩形的性质,理解矩形的对角线相等是解题关键.
18、(1), .(2)详见解析;(3),理由详见解析.
【解析】
(1)由P点坐标可直接求得k的值,过P、B两点,构造矩形,利用面积的和差可求得△PBO的面积,利用对称,则可求得△PAB的面积;
(2)可设出P点坐标,表示出直线PA、PB的解析式,则可表示出M、N的坐标,作PG⊥x轴于点G,可求得MG=NG,即G为MN的中点,则可证得结论;
(3)连接QA交x轴于点M′,连接QB并延长交x轴于点N′,利用(2)的结论可求得∠MM′A=∠QN′O,结合(2)可得到∠PMN=∠PNM,利用外角的性质及对顶角进一步可求得∠PAQ=∠PBQ.
【详解】
(1)∵点P(1,4)在反比例函数图象上,
∴k=4×1=4,
∵B点横坐标为4,
∴B(4,1),
连接OP,过P作x轴的平行线,交y轴于点P′,过B作y轴的平行线,交x轴于点B′,两线交于点D,如图1,
则D(4,4),
∴PP′=1,P′O=4,OB′=4,BB′=1,
∴BD=4-1=3,PD=4-1=3,
∴S△POB=S矩形OB′DP′-S△PP′O-S△BB′O-S△BDP=16-2-2-4.5=7.5,
∵A、B关于原点对称,
∴OA=OB,
∴S△PAO=S△PBO,
∴S△PAB=2S△PBO=15;
(2)∵点P是第一象限内反比例函数图象上的动点,且在直线AB的上方,
∴可设点P坐标为(m,),且可知A(-4,-1),
设直线PA解析式为y=k′x+b,
把A、P坐标代入可得,解得,
∴直线PA解析式为,令y=0可求得x=m-4,
∴M(m-4,0),
同理可求得直线PB解析式为,令y=0可求得x=m+4,
∴N(m+4,0),
作PG⊥x轴于点G,如图2,则G(m,0),
∴MG=m-(m-4)=4,NG=m+4-m=4,
∴MG=NG,即G为MN中点,
∴PG垂直平分MN,
∴PM=PN,即△PMN是等腰三角形;
(3)∠PAQ=∠PBQ,理由如下:
连接QA交x轴于M′,连接QB并延长交x轴于点N′,如图3,
由(2)可得PM′=PN′,即∠QM′O=∠QN′O,
∴∠MM′A=∠QN′O,
由(2)知∠PMN=∠PNM,
∴∠PMN-∠MM′A=∠PNM-∠QN′O,
∴∠PAQ=∠NBN′,
又∠NBN′=∠PBQ,
∴∠PAQ=∠PBQ.
本题为反比例函数的综合应用,涉及待定系数法、函数图象的交点、垂直平分线的判定和性质、等于腰三角形的判定和性质等知识.在(1)中求三角形面积时注意矩形的构造,在(2)中设出P点坐标求得MG=NG是解题的关键,在(3)中注意(2)中结论的应用.本题考查知识点较多,综合性较强,难度适中.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、-1
【解析】
利用多项式乘法去括号,根据对应项的系数相等即可求解.
【详解】
∵
∴,
故答案为:-1.
本题主要考查了因式分解与整式的乘法互为逆运算,并且考查了代数式相等的条件:对应项的系数相等.
20、三
【解析】
根据一次函数的性质,k<0,过二、四象限,b>0,与y轴交于正半轴,综合来看即可得到结论.
【详解】
因为解析式中,-5<0,3>0,图象过一、二、四象限,故图象不经过第三象限.
故答案为:第三象限.
21、1
【解析】
利用菱形的面积等于对角线乘积的一半求解.
【详解】
菱形的面积=×4×9=1.
故答案为1.
此题考查菱形的性质,难度不大
22、1
【解析】
解不等式组,得到不等式组的解集,根据整数解的个数判断a的取值范围,解分式方程,用含有a的式子表示y,根据解的非负性求出a的取值范围,确定符合条件的整数a,相加即可.
【详解】
解:,
解①得,x<5;
解②得,
∴不等式组的解集为;
∵不等式有且只有四个整数解,
∴,
解得,﹣1<a≤1;
解分式方程得,y=1﹣a;
∵方程的解为非负数,
∴1﹣a≥0;即a≤1;
综上可知,﹣1<a≤1,
∵a是整数,
∴a=﹣1,0,1,1;
∴﹣1+0+1+1=1
故答案为1.
本题考查了解一元一次不等式组,分式方程,根据题目条件确定a的取值范围,进一步确定符合条件的整数a,相加求和即可
23、
【解析】
作BM⊥FC于M,CN⊥AB于N,根据矩形的性质得到BM=CN,再根据直角三角形的性质求出AB,再根据勾股定理求出BC,结合图形即可求解.
【详解】
作BM⊥FC于M,CN⊥AB于N,
∵AB∥CF,
∴四边形BMCN是矩形,∠BCM=∠ABC=30°,
∴BM=CN,
∵∠ACB=90°,∠ABC=30°,
∴AB=2AC=4,
由勾股定理得BC=
∴BM=CN=BC=
由勾股定理得CM=
∵∠EDF=45°,∴DM=BM=
∴CD=CM-DM=
此题主要考查矩形的判定与性质,解题的关键是熟知勾股定理、含30°的直角三角形及等腰直角三角形的性质.
二、解答题(本大题共3个小题,共30分)
24、20,1
【解析】
首先由菱形ABCD的对角线AC,BD相交于O,点E,F分别是AD,DC的中点,根据直角三角形斜边上的中线等于斜边的一半,可求得AD的长,由三角形中位线定理可求得AC的长,进而可求出菱形的周长,再求出BD的长即可求出菱形的面积.
【详解】
∵菱形ABCD的对角线AC,BD相交于点O,∴AC⊥BD,OA=OC,OB=OD,
∵点E,F分别是AD,DC的中点,∴OE=AD,EF=AC,
∵OE=2.5,EF=3,∴AD=5,AC=6,∴菱形ABCD的周长为:4×5=20;
∵AO=AC=3,AD=5,∴DO==4,∴BD=2DO=8,∴菱形ABCD的面积=AC•BD=1.
本题考查了菱形的性质、三角形中位线的性质、勾股定理以及直角三角形的性质.注意根据题意求得AC与AD的长是解答此题的关键.
25、50mm
【解析】
连接两孔中心,然后如图构造一个直角三角形进而求解即可.
【详解】
如图所示,AC即为所求的两孔中心距离,
∴==50.
∴两孔中心距离为50mm
本题主要考查了勾股定理的运用,根据题意自己构造直角三角形是解题关键.
26、(1)证明见解析;(2)30°.
【解析】
(1)由直角三角形斜边上的中线等于斜边的一半,得到CE=AE=BE,从而得到AF=CE,再由等腰三角形三线合一,得到∠1=∠2,从而有∠F=∠3,得到∠2=∠F,故CE∥AF,然后利用一组对边平行且相等的四边形是菱形证明;
(2)由菱形的性质,得到AC=CE,求出AC=CE=AE,从而得到△AEC是等边三角形,得出∠CAE=60°,然后根据直角三角形两锐角互余解答.
【详解】
解:(1)∵∠ACB=90°,E是BA的中点,∴CE=AE=BE,∵AF=AE,∴AF=CE,在△BEC中,∵BE=CE且D是BC的中点,∴ED是等腰△BEC底边上的中线,∴ED也是等腰△BEC的顶角平分线,∴∠1=∠2,∵AF=AE,∴∠F=∠3,∵∠1=∠3,∴∠2=∠F,∴CE∥AF,又∵CE=AF,∴四边形ACEF是平行四边形;
(2)∵四边形ACEF是菱形,∴AC=CE,由(1)知,AE=CE,∴AC=CE=AE,∴△AEC是等边三角形,∴∠CAE=60°,在Rt△ABC中,∠B=90°﹣∠CAE=90°﹣60°=30°.
本题考查菱形的性质;平行四边形的判定.
题号
一
二
三
四
五
总分
得分
第一次
第二次
第三次
第四次
第五次
第六次
甲
10
8
9
8
10
9
乙
10
7
10
10
9
8
班级
平均数
众数
中位数
方差
甲
4
3
乙
6
3.2
班级
平均数
众数
中位数
方差
甲
4
2
3
6.6
乙
4
6
4.5
3.2
河南省商丘市柘城县2025届数学九上开学统考模拟试题【含答案】: 这是一份河南省商丘市柘城县2025届数学九上开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河南省商丘市永城市实验中学2024年九年级数学第一学期开学统考模拟试题【含答案】: 这是一份河南省商丘市永城市实验中学2024年九年级数学第一学期开学统考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河南省商丘市拓城县2023-2024学年八年级下学期期中 数学试卷(解析版): 这是一份河南省商丘市拓城县2023-2024学年八年级下学期期中 数学试卷(解析版),共16页。试卷主要包含了选择题,填空题,计算题等内容,欢迎下载使用。