


河南省濮阳市油田实验学校2025届九年级数学第一学期开学经典试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y= 的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是( )
A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y3
2、(4分)在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,(如图)则∠EAF等于( )
A.75°B.45°C.60°D.30°
3、(4分)如图,在△ABC中,AB=3,BC=6,AC=4,点D,E分别是边AB,CB的中点,那么DE的长为( )
A.1.5B.2C.3D.4
4、(4分)如图,在平面直角坐标系中,四边形ABCD是菱形,点A的坐标为(0,),分别以A,B为圆心,大于AB的长为半径作弧,两弧交于点E,F,直线EF恰好经过点D,则点D的坐标为( )
A.(2,2)B.(2,)C.(,2)D.(+1,
5、(4分)按如下方法,将△ABC的三边缩小的原来的,如图,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,得△DEF,则下列说法正确的个数是( )
①△ABC与△DEF是位似图形 ②△ABC与△DEF是相似图形
③△ABC与△DEF的周长比为1:2 ④△ABC与△DEF的面积比为4:1.
A.1B.2C.3D.4
6、(4分)如图顺次连接等腰梯形四边中点得到一个四边形,再顺次连接所得四边形四边的中点得到的图形是( )
A.等腰梯形B.直角梯形C.菱形D.矩形
7、(4分)五一小长假,李军与张明相约去宁波旅游,李军从温岭北上沿海高速,同时张明从玉环芦浦上沿海高速,温岭北与玉环芦浦相距44千米,两人约好在三门服务区集合,李军由于离三门近,行驶了1.2小时先到达三门服务站等候张明,张明走了1.4小时到达三门服务站。在整个过程中,两人均保持各自的速度匀速行驶,两人相距的路程y千米与张明行驶的时间x小时的关系如图所示,下列说法错误的是( )
A.李军的速度是80千米/小时
B.张明的速度是100千米/小时
C.玉环芦浦至三门服务站的路程是140千米
D.温岭北至三门服务站的路程是44千米
8、(4分)如图,平行四边形 ABCD 中,AD∥BC,AB=BC=CD=AD=4,∠A=∠C=60°,连接 BD,将△BCD 绕点 B 旋转,当 BD(即 BD′)与 AD 交于一点 E,BC(即 BC′)同时与 CD 交于一点 F 时,下列结论正确的是( )
①AE=DF;②∠BEF=60°;③∠DEB=∠DFB;④△DEF 的周长的最小值是4+2
A.①②B.②③C.①②④D.①②③④
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)当110、(4分)关于x的一元二次方程x2+4x+2k﹣1=0有两个实数根,则k的取值范围是_____.
11、(4分)某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%,小桐的三项成绩(百分制)依次为95,90,1.则小桐这学期的体育成绩是__________.
12、(4分)若直线y=kx+b中,k<0,b>0,则直线不经过第_____象限.
13、(4分)菱形中,,,以为边长作正方形,则点到的距离为_________.
三、解答题(本大题共5个小题,共48分)
14、(12分)小明到服装店参加社会实践活动,服装店经理让小明帮助解决以下问题:
服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件.
(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?
(2)在(1)的条件下,该服装店对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?
15、(8分)解方程组:.
16、(8分)某农机租赁公司共有50台收割机,其中甲型20台、乙型30台,现将这50台联合收割机派往A,B两地区收割小麦,其中30台派往A地区,20台派往B地区,两地区与该农机公司商定的每天租赁价格如下表:
(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机天获得的租金为y元,求y关于x的函数关系式,并写出自变量的取值范围:
(2)若使农机租赁公司这50台收割机一天所获租金不低于79600元,为农机租赁公司拟出一个分派方案,使该公司50台收割机每天获得租金最高,并说明理由.
17、(10分)在一元二次方程x2-2ax+b=0中,若a2-b>0,则称a是该方程的中点值.
(1)方程x2-8x+3=0的中点值是________;
(2)已知x2-mx+n=0的中点值是3,其中一个根是2,求mn的值.
18、(10分)某地区2015年投入教育经费2900万元,2017年投入教育经费3509万元.
(1)求2015年至2017年该地区投入教育经费的年平均增长率;
(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的情况,该地区到2019年需投入教育经费4250万元.如果按(1)中教育经费投入的增长率,到2019年该地区投入的教育经费是否能达到4250万元?请说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)图,矩形中,,,点是矩形的边上的一动点,以为边,在的右侧构造正方形,连接,则的最小值为_____.
20、(4分)分解因式:____________
21、(4分)若二次根式有意义,则x的取值范围是 ▲ .
22、(4分)直线l与直线y=3﹣2x平行,且在y轴上的截距是﹣5,那么直线l的表达式是_____.
23、(4分)一次函数的图象不经过第_______象限.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,已知点A(﹣2,0),点B(6,0),点C在第一象限内,且△OBC为等边三角形,直线BC交y轴于点D,过点A作直线AE⊥BD于点E,交OC于点E
(1)求直线BD的解析式;(2)求线段OF的长;(3)求证:BF=OE.
25、(10分)某商场计划从厂家购进甲、乙两种不同型号的电视机,已知进价分别为:甲种每台1500元,乙种每台2100元.
(1)若商场同时购进这两种不同型号的电视机50台,金额不超过76000元,商场有几种进货方案,并写出具体的进货方案.
(2)在(1)的条件下,若商场销售一台甲、乙型号的电视机的销售价分别为1650元、2300元,以上进货方案中,哪种进货方案获利最多?最多为多少元?
26、(12分)已知一次函数的图象过点,且与一次函数的图象相交于点.
(1)求点的坐标和函数的解析式;
(2)在平面直角坐标系中画出,的函数图象;
(3)结合你所画的函数图象,直接写出不等式的解集.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<x2<0<x1,判断出三点所在的象限,再根据函数的增减性即可得出结论.
【详解】
∵反比例函数y=中,k=1>0,
∴此函数图象的两个分支在一、三象限,
∵x1<x2<0<x1,
∴A、B在第三象限,点C在第一象限,
∴y1<0,y2<0,y1>0,
∵在第三象限y随x的增大而减小,
∴y1>y2,
∴y2<y1<y1.
故选D.
本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限及三点所在的象限是解答此题的关键.
2、C
【解析】
首先连接AC,由四边形ABCD是菱形,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,易得△ABC与△ACD是等边三角形,即可求得∠B=∠D=60°,继而求得∠BAD,∠BAE,∠DAF的度数,则可求得∠EAF的度数.
【详解】
解:连接AC,
∵AE⊥BC,AF⊥CD,且E、F分别为BC、CD的中点,
∴AB=AC,AD=AC,
∵四边形ABCD是菱形,
∴AB=BC=CD=AD,
∴AB=BC=AC,AC=CD=AD,
∴∠B=∠D=60°,
∴∠BAE=∠DAF=30°,∠BAD=180°﹣∠B=120°,
∴∠EAF=∠BAD﹣∠BAE﹣∠DAF=60°.
故选C.
此题考查了菱形的性质、线段垂直平分线的性质以及等边三角形的判定与性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.
3、B
【解析】
∵点,分别是边,的中点,
.故选B.
4、B
【解析】
连接DB,如图,利用基本作图得到EF垂直平分AB,则DA=DB,再根据菱形的性质得到AD∥BC,AD=AB,则可判断△ADB为等边三角形,所以∠DAB=∠ABO=60°,然后计算出AD=2,从而得到D点坐标.
【详解】
连接DB,如图,
由作法得EF垂直平分AB,
∴DA=DB,
∵四边形ABCD是菱形,
∴AD∥BC,AD=AB,
∴AD=AB=DB,
∴△ADB为等边三角形,
∴∠DAB=60°,
∴∠ABO=60°,
∵A(0,),
∴OA=,
∴OB=OA=1,AB=2OB=2,
∴AD=AB=2,
而AD平行x轴,
∴D(2,).
故选:B.
考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质和菱形的性质
5、C
【解析】
根据位似图形的性质,得出①△ABC与△DEF是位似图形进而根据位似图形一定是相似图形得出 ②△ABC与△DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.
【详解】
解:根据位似性质得出①△ABC与△DEF是位似图形,
②△ABC与△DEF是相似图形,
∵将△ABC的三边缩小的原来的,
∴△ABC与△DEF的周长比为2:1,
故③选项错误,
根据面积比等于相似比的平方,
∴④△ABC与△DEF的面积比为4:1.
故选C.
此题主要考查了位似图形的性质,中等难度,熟悉位似图形的性质是解决问题的关键.
6、D
【解析】
首先作出图形,根据三角形的中位线定理,可以得到,,,再根据等腰梯形的对角线相等,即可证得四边形EFGH的四边相等,即可证得是菱形,然后根据三角形中位线定理即可证得四边形OPMN的一组对边平行且相等,则是平行四边形,在根据菱形的对角线互相垂直,即可证得平行四边形的一组临边互相垂直,即可证得四边形OPMN是矩形.
【详解】
解:连接AC,BD.
∵E,F是AB,AD的中点,即EF是的中位线.
,
同理:,,.
又等腰梯形ABCD中,.
.
四边形EFGH是菱形.
是的中位线,
∴EF EG,,
同理,NMEG,
∴EFNM,
四边形OPMN是平行四边形.
,,
又菱形EFGH中,,
平行四边形OPMN是矩形.
故选:D.
本题考查了等腰梯形的性质,菱形的判定,矩形的判定,以及三角形的中位线定理,关键的应用三角形的中位线定理得到四边形EFGH和四边形OPMN的边的关系.
7、D
【解析】
利用函数图像,可知1.2小时张明走了20千米,利用路程÷时间=速度,就可求出张明的速度,从而可求出李军的速度,可对A,B作出判断;再利用路程=速度×时间,就可求出玉环芦浦至三门服务站的路程和温岭北至三门服务站的路程,可对C,D作出判断.
【详解】
解:∵1.2小时,他们两人相距20千米,张明走了1.4小时到达三门服务站,即两人相距路程为0千米,
∴张明的速度为:20÷(1.4-1.2)=100千米/时,故B正确;
李军的速度为:100-(44-20)÷1.2=100-20=80千米/时,故A正确;
∴ 玉环芦浦至三门服务站的路程为100×1.4=140千米。故C正确;
∴温岭北至三门服务站的路程为1.2×80=96千米,故D错误;
故答案为:D .
本题考查一次函数的应用,行程问题等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题,属于中考常考题型.
8、C
【解析】
根据题意可证△ABE≌△BDF,可判断①②③,由△DEF的周长=DE+DF+EF=AD+EF=4+EF,则当EF最小时△DEF的周长最小,根据垂线段最短,可得BE⊥AD时,BE最小,即EF最小,即可求此时△BDE周长最小值.
【详解】
∵AB=BC=CD=AD=4,∠A=∠C=60°,
∴△ABD,△BCD为等边三角形,∴∠A=∠BDC=60°.
∵将△BCD绕点B旋转到△BC'D'位置,
∴∠ABD'=∠DBC',且AB=BD,∠A=∠DBC',
∴△ABE≌△BFD,
∴AE=DF,BE=BF,∠AEB=∠BFD,
∴∠BED+∠BFD=180°.
故①正确,③错误;
∵∠ABD=60°,∠ABE=∠DBF,
∴∠EBF=60°.
故②正确;
∵△DEF的周长=DE+DF+EF=AD+EF=4+EF,
∴当EF最小时.∵△DEF的周长最小.
∵∠EBF=60°,BE=BF,∴△BEF是等边三角形,
∴EF=BE,
∴当BE⊥AD时,BE长度最小,即EF长度最小.
∵AB=4,∠A=60°,BE⊥AD,
∴EB=2,
∴△DEF的周长最小值为4+2.
故④正确.
故选C.
本题考查了旋转的性质,等边三角形的性质,平行四边形的性质,最短路径问题,关键是灵活运用这些性质解决问题.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据二次根式的性质以及绝对值的性质进行化简,然后合并同类项即可.
【详解】
∵1∴a-2<0,a-1>0,
∴
=2-a+a-1
=1,
故答案为:1.
本题考查了二次根式的性质及化简,绝对值的性质,熟练掌握相关性质是解题的关键.
10、k≤
【解析】
根据方程有两个实数根可以得到根的判别式,进而求出的取值范围.
【详解】
解:由题意可知:
解得:
故答案为:
本题考查了根的判别式的逆用---从方程根的情况确定方程中待定系数的取值范围,属中档题型,解题时需注意认真理解题意.
11、2.5
【解析】
根据题意,求小桐的三项成绩的加权平均数即可.
【详解】
95×20%+90×30%+1×50%=2.5(分),
答:小桐这学期的体育成绩是2.5分.
故答案是:2.5
本题主要考查加权平均数,掌握加权平均数的意义,是解题的关键.
12、【解析】
∵k<0,b>0,∴直线y=kx+b经过第一、二、四象限,
故答案为一、二、四.
13、5+或5-.
【解析】
分两种情况讨论:①当正方形ACFE边EF在AC左侧时,②当正方形ACFE边EF在AC右侧时.
【详解】
解:∵四边形ABCD是菱形,∠B=60°,
∴△ACD是等边三角形,且DO⊥AC.
∵菱形的边长为5,
∴DO= =
分两种情况讨论:
①当正方形ACFE边EF在AC左侧时,
过D点作DH2⊥EF,DH2长度表示点D到EF的距离,
DH2=5+DO=5+;
②当正方形ACFE边EF在AC右侧时,
过D点作DH1⊥EF,DH1长度表示点D到EF的距离,
DH1=5-DO=5-.
故答案为:5+或5-.
本题考查菱形的性质、正方形的性质、等边三角形的判定和性质,同时考查了分类讨论思想.解决此类问题要借助画图分析求解.
三、解答题(本大题共5个小题,共48分)
14、(1)75件(2)当x=65时,w有最大值,则购进甲种服装65件,乙种服装35件
【解析】
(1)根据题意设购进甲种服装x件,可知购进甲需80x元,则乙为60(100-x)元,再根据二者之和不超过7500元,可列不等式,求解集可得结果;
(2)根据要求设总利润为w元,因为甲种服装不少于65件,所以65≤x≤75,因此甲的利润为(120-80-a)元,乙的利润为(90-60-a)元,因此可得w=(10-a)x+3000,然后分情况讨论设计方案,①当0<a<10时,由一次函数的性质可判断当x=65时,利润最大;②当a=10时,w=3000,二者一样;③当10<a<20时,根据一次函数的性质可判断,当x=75时,利润最大.
【详解】
解:(1)设购进甲种服装x件,由题意可知:
80x+60(100-x)≤7500
解得:x≤75
答:甲种服装最多购进75件.
(2)设总利润为w元,因为甲种服装不少于65件,所以65≤x≤75
W=(40-a)x+30(100-x)=(10-a)x+3000
方案1:当0<a<10时,10-a>0,w随x的增大而增大
所以当x=75时,w有最大值,则购进甲种服装75件,乙种服装25件;
方案2:当a=10时,所有方案获利相同,所以按哪种方案进货都可以;
方案3:当10<a<20时,10-a<0,w随x的增大而减小
所以当x=65时,w有最大值,则购进甲种服装65件,乙种服装35件.
考点:一元一次不等式,一次函数的应用
15、,
【解析】
注意到可分解为,从而将原高次方程组转换为两个二元一次方程组求解.
【详解】
解:由得,即或,
∴原方程组可化为或.
解得;解得.
∴原方程组的解为,.
16、(1)y=200x+74000(10≤x≤30);(2)将30台乙型收割机全部派往A地区,20台甲型收割机全部派往B地区,这样公司每天获得租金最高,理由见解析.
【解析】
(1)根据未知量,找出相关量,列出函数关系式;
(2)利用不等式的性质进行求解,对x进行分类即可;根据一次函数的单调性可直接判断每天获得租金最高的方案,得出结论.
【详解】
解:(1)由于派往A地的乙型收割机x台,则派往B地的乙型收割机为(30-x)台,派往A,B地区的甲型收割机分别为(30-x)台和(x-10)台.
∴y=1600x+1200(30-x)+1800(30-x)+1600(x-10)=200x+74000(10≤x≤30).
(2)由题意,得200x+74000≥79600,解得x≥28,
∵10≤x≤30,x是正整数,∴x=28、29、30
∴有3种不同分派方案:
①当x=28时,派往A地区的甲型收割机2台,乙型收割机28台,余者全部派往B地区;
②当x=29时,派往A地区的甲型收割机1台,乙型收割机29台,余者全部派往B地区;
③当x=30时,派往A地区的甲型收割机0台,乙型收割机30台,余者全部派往B地区;∵y=200x+74000中,
∴y随x的增大而增大,∴当x=30时,y取得最大值,
此时,y=200×30+74000=80000,
∴农机租赁公司将30台乙型收割机全部派往A地区,20台甲型收割机全部派往B地区,这样公司每天获得租金最高,最高租金为80000元.
故答案为:(1)y=200x+74000(10≤x≤30);(2)将30台乙型收割机全部派往A地区,20台甲型收割机全部派往B地区,这样公司每天获得租金最高,理由见解析.
本题考查利用一次函数解决实际问题,解题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.
17、 (1)4;(2)48.
【解析】
(1)根据中点值的定义进行求解即可;
(2)根据中点值的定义可求得m的值,再将方程的根代入方程可求得n的值,由此即可求得答案.
【详解】
(1),
x2-2×4x+3=0,
42-3=13>0,
所以中点值为4,
故答案为4;
(2)由中点值的定义得:,,
,
将代入方程,得:,,
.
本题考查了一元二次方程的根,新定义,弄懂新定义是解题的关键.
18、 (1)10%(2)不能.
【解析】
(1)增长前量(1+增长率)=增长后量,2015年2900万元为增长前量,2017年3509万元为增长后量,即可列出方程求解;
(2)根据(1)中求得的增长率求出2019年该地区投入的教育经费.
【详解】
(1)设增长率为x,由题意得
,
解得(不合题意,舍去)
答:2015年至2017年该地区投入教育经费的年平均增长率为10%.
(2)2019年该地区投入的教育经费是(万元),
4245.89
答:按(1)中教育经费投入的增长率,到2019年该地区投入的教育经费不能达到4250万元.
此题考查一元二次方程的实际应用,此类是增长率问题的一元二次方程,可以根据“增长前量(1+增长率)=增长后量”列得方程.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
过作,利用正方形的性质和全等三角形的判定得出,进而利用勾股定理解答即可.
【详解】
解:过作,
正方形,
,,
,
,
,且,,
,
,,
当时,的最小值为
故答案为:
本题考查正方形的性质,关键是利用正方形的性质和全等三角形的判定得出.
20、a(x+5)(x-5)
【解析】
先公因式a,然后再利用平方差公式进行分解即可.
【详解】
故答案为a(x+5)(x-5).
21、.
【解析】
根据二次根式有意义的条件:被开方数大于等于0列出不等式求解.
【详解】
根据二次根式被开方数必须是非负数的条件,得.
本题考查二次根式有意义的条件,牢记被开方数必须是非负数.
22、y=﹣2x﹣1
【解析】
因为平行,所以得到两个函数的k值相同,再根据截距是-1,可得b=-1,即可求解.
【详解】
∵直线l与直线y=3﹣2x平行,
∴设直线l的解析式为:y=﹣2x+b,
∵在y轴上的截距是﹣1,
∴b=﹣1,
∴y=﹣2x﹣1,
∴直线l的表达式为:y=﹣2x﹣1.
故答案为:y=﹣2x﹣1.
该题主要考查了一次函数图像平移的问题,
23、三
【解析】
根据一次函数的性质,k<0,过二、四象限,b>0,与y轴交于正半轴,综合来看即可得到结论.
【详解】
因为解析式中,-5<0,3>0,图象过一、二、四象限,故图象不经过第三象限.
故答案为:第三象限.
二、解答题(本大题共3个小题,共30分)
24、(1);(1)OF= 1;(3)见解析.
【解析】
(1)在Rt△ABD中,通过解直角三角形可求出OD的长,进而可得出点D的坐标,再根据点B,D的坐标,利用待定系数法可求出直线BD的解析式;
(1)由等边三角形的性质结合三角形内角和定理,可得出∠BAE=∠CFE=30°,进而可得出∠OAF=∠OFA=30°,再利用等角对等边可得出线段OF的长;
(3)通过解含30度角的直角三角形可求出BE的长,结合BC的长可得出CE=OF=1,由OB=CO,∠BOF=∠OCE及OF=CE可证出△OBF≌△COE(SAS),再利用全等三角形的性质可得出BF=OE.
【详解】
(1)∵△OBC为等边三角形,
∴∠ABC=60°.
在Rt△ABD中,tan∠ABD=,即,
∴AD=,
∴点D的坐标是(0,).
设BD的解析式是y=kx+b(k≠0),
将B(6,0),D(0,)代入y=kx+b,得:,
解得:,
∴直线BD的解析式为.
(1)解:∵AE⊥BC,△OBC是正三角形,
∴∠BAE=∠CFE=30°,
∴∠OAF=∠OFA=30°,
∴OF=OA=1,即OF的长为1.
(3)证明:∵AB=8,∠OBC=60°,AE⊥BC,
∴BE=AB=4,
∴CE=BC-BE=6-4=1,
∴OF=CE.
在△OBF和△COE中,,
∴△OBF≌△COE(SAS),
∴BF=OE.
本题考查了等边三角形、解直角三角形、待定系数法求一次函数解析式、等腰三角形的性质、三角形内角和定理以及全等三角形的判定与性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出一次函数的解析式;(1)通过角的计算,找出∠OAF=∠OFA;(3)利用全等三角形的判定定理SAS,证出△OBF≌△COE.
25、(1)有2种进货方案:方案一:是购进甲种型号的电视机49台,乙种型号的电视机1台;方案二:是甲种型号的电视机1台,乙种型号的电视机0台;(2)方案一的利润大,最多为751元.
【解析】
(1)设购进甲种型号的电视机x台,则乙种型号的电视机y台.数量关系为:两种不同型号的电视机1台,金额不超过76000元;
(2)根据利润=数量×(售价-进价),列出式子进行计算,即可得到答案.
【详解】
解:(1)设购进甲种型号的电视机x台,则乙种型号的电视机(1-x)台.则
110x+2100(1-x)≤76000,
解得:x≥48.
则1≥x≥48.
∵x是整数,
∴x=49或x=1.
故有2种进货方案:
方案一:是购进甲种型号的电视机49台,乙种型号的电视机1台;
方案二:是甲种型号的电视机1台,乙种型号的电视机0台;
(2)方案一的利润为:49×(161-110)+(2300-2100)=751(元)
方案二的利润为:1×(161-110)=710(元).
∵751>710
∴方案一的利润大,最多为751元.
本题考查了一元一次不等式的应用.解决问题的关键是读懂题意,依题意列出不等式进行求解.
26、(1),;(2)见解析;(3).
【解析】
(1)将P(2,m)代入y2=x+1,求出m=3,再把(2,3),(0,-2)代入求出k,b的值即可;
(2)找出两点画出直线即可;
(3)根据画出的函数图象求解即可.
【详解】
(1)把点代入得,
,
∴,
把,代入得,
,
;
(2)经过点,作直线,即为的图象,
经过点,作直线,即为的图象,
如图所示:
(3)由图象知,不等式的解集为:.
本题考查了一次函数与一元一次不等式的关系,也考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征以及一次函数的图象与性质等知识.
题号
一
二
三
四
五
总分
得分
河南省濮阳市名校2024年数学九上开学经典模拟试题【含答案】: 这是一份河南省濮阳市名校2024年数学九上开学经典模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年河南省濮阳市油田实验学校数学九上开学监测试题【含答案】: 这是一份2024-2025学年河南省濮阳市油田实验学校数学九上开学监测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河南省濮阳市油田实验学校2023-2024学年数学九上期末调研试题含答案: 这是一份河南省濮阳市油田实验学校2023-2024学年数学九上期末调研试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,抛物线的顶点坐标为,一元二次方程配方为等内容,欢迎下载使用。