河北省石家庄市辛集市2024-2025学年数学九上开学达标检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,a,b,c分别表示苹果、梨、桃子的质量,同类水果质量相等,则下列关系正确的是
A.B.C.D.
2、(4分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:
则这些运动员成绩的中位数、众数分别为
A.、B.、C.、D.、
3、(4分)关于的一元二次方程有两个相等的实数根,则的值( )
A.2B.3C.D.
4、(4分)下列二次根式中,不是最简二次根式的是( )
A.B.C.D.
5、(4分)如图,正方形ABCD与正方形EBHG的边长均为,正方形EBHG的顶点E恰好落在正方形ABCD的对角线BD上,边EG与CD相交于点O,则OD的长为
A.
B.
C.
D.
6、(4分)甲、乙、丙、丁四人进行射击测试,每人10次射击成绩平均数均是9.2环,方差分别为 ,则成绩最稳定的是( )
A.甲B. 乙C.丙D.丁
7、(4分)下列语句:①每一个外角都等于的多边形是六边形;②“反证法”就是举反例说明一个命题是假命题;③“等腰三角形两底角相等”的逆命题是真命题;④分式值为零的条件是分子为零且分母不为零,其中正确的个数为( )
A.1B.2C.3D.4
8、(4分)在四边形中,若,则等于( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)廖老师为了了解学生周末利用网络进行学习的时间,在所任教班级随机调查了10名学生,其统计数据如下表:
则这10名学生周末利用网络进行学习的平均时间是________小时.
10、(4分)如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B、D重合),折痕为EF,若BC=4,BG=3,则GE的长为________.
11、(4分)若关于x的方程-2=会产生增根,则k的值为________
12、(4分)如图,在等腰梯形中,∥ ,,⊥,则∠=________.
13、(4分)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见,现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)某公司招聘职员,对甲、乙两位候选人进行了面试和笔试,面试中包括形体和口才,笔试中包括专业水平和创新能力考察,他们的成绩(百分制)如下表:
(1)若公司想招一个综合能力较强的职员,计算两名候选人的平均成绩,应该录取谁?
(2)若公司根据经营性质和岗位要求认为:形体、口才、专业水平、创新能力按照1:3:4:2的比确定,请计算甲、乙两人各自的平均成绩,看看谁将被录取?
15、(8分)某城镇在对一项工程招标时,接到甲、乙两个工程队的投标书,每施工一天,需付甲队工程款2万元,付乙队工程款1.5万元.现有三种施工方案:()由甲队单独完成这项工程,恰好如期完工;()由乙队单独完成这项工程,比规定工期多6天;()由甲乙两队后,剩下的由乙队单独做,也正好能如期完工.小聪同学设规定工期为天,依题意列出方程:.
(1)请将()中被墨水污染的部分补充出来:________;
(2)你认为三种施工方案中,哪种方案既能如期完工,又节省工程款?说明你的理由.
16、(8分)如图,等腰直角三角形OAB的三个定点分别为、、,过A作y轴的垂线.点C在x轴上以每秒的速度从原点出发向右运动,点D在上以每秒的速度同时从点A出发向右运动,当四边形ABCD为平行四边形时C、D同时停止运动,设运动时间为.当C、D停止运动时,将△OAB沿y轴向右翻折得到△,与CD相交于点E,P为x轴上另一动点.
(1)求直线AB的解析式,并求出t的值.
(2)当PE+PD取得最小值时,求的值.
(3)设P的运动速度为1,若P从B点出发向右运动,运动时间为,请用含的代数式表示△PAE的面积.
17、(10分)已知关于x的一元二次方程(m为常数)
(1)求证:不论m为何值,方程总有两个不相等的实数根;
(2)若方程有一个根是2,求m的值及方程的另一个根.
18、(10分)(1)化简:;(2)先化简,再求值:,选一个你喜欢的数求值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图所示,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若平移距离为2,则四边形ABED的面积等于_______.
20、(4分)如图,已知,点是等腰斜边上的一动点,以为一边向右下方作正方形,当动点由点运动到点时,则动点运动的路径长为______.
21、(4分)已知反比例函数y=(k≠0)的图象在第二、四象限,则k的值可以是:____(写出一个满足条件的k的值).
22、(4分)若关于的分式方程有增根,则的值为__________.
23、(4分)如图,把菱形ABCD沿AH折叠,使B点落在BC上的E点处,若∠B=70°,则∠EDC的大小为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)对于给定的两个“函数,任取自变量x的一个值,当x<1时,它们对应的函数值互为相反数;当x≥1时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x-4,它的相关函数为.
(1)一次函数y= -x+5的相关函数为______________.
(2)已知点A(b-1,4),点B坐标(b+3,4),函数y=3x-2的相关函数与线段AB有且只有一个交点,求b的取值范围.
(3)当b+1≤x≤b+2时,函数y=-3x+b-2的相关函数的最小值为3,求b的值.
25、(10分)如图,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD对折,点C落在点C′的位置,BC′交AD于点G.
(1)求证:AG=C′G;
(2) 求△BDG的面积.
26、(12分)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,
(1)求证:OE=OF;
(2)若CE=12,CF=5,求OC的长;
(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据图形就可以得到一个相等关系与一个不等关系,就可以判断a,b,c的大小关系.
【详解】
解:依图得3b<2a,
∴a>b,
∵2c=b,
∴b>c,
∴a>b>c
故选C.
本题考查了一元一次不等式的应用,解题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.
2、C
【解析】
根据中位数和众数的概念进行求解.
【详解】
解:将数据从小到大排列为:1.50,150,1.60,1.60,160,1.65,1.65, 1.1,1.1,1.1,1.75,1.75,1.75,1.75,1.80
众数为:1.75;
中位数为:1.1.
故选C.
本题考查1.中位数;2.众数,理解概念是解题关键.
3、A
【解析】
由方程有两个相等的实数根,可得出关于m的一元一次方程,解之即可得出结论.
【详解】
∵方程有两个相等的实数根,
∴,
解得:m=1.
故选:A.
本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.
4、C
【解析】
根据最简二次根式的定义对各选项分析判断即可.
【详解】
解:A、是最简二次根式,不合题意,故本选项错误;
B、是最简二次根式,不合题意,故本选项错误;
C、因为=2,所以不是最简二次根式,符合题意,故本选项正确;
D、是最简二次根式,不合题意,故本选项错误;
故选C.
本题考查了最简二次根式的定义,根据定义,最简二次根式必须满足被开方数不含分母且不含能开得尽方的因数或因式.
5、B
【解析】
由正方形性质可得AB=AD=CD=BE=,∠A=∠C=∠DEO=90〬,∠EDO=45〬,由勾股定理得BD=,求出DE,再根据勾股定理求OD.
【详解】
解:因为,正方形ABCD与正方形EBHG的边长均为,
所以,AB=AD=CD=BE=,∠A=∠C=∠DEO=90〬,∠EDO=45〬,
所以,BD=,
所以,DE=BD-BE=2- ,
所以,OD=
故选B.
本题考核知识点:正方形,勾股定理.解题关键点:运用勾股定理求出线段长度.
6、D
【解析】
因为=0.56,=0.60,=0.50,=0.45
所以<<<,由此可得成绩最稳定的为丁.
故选.
点睛:方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
7、C
【解析】
根据多边形的外角,反证法的定义,等腰三角形的性质与判定,分式有意义的条件,进行逐一判定分析,即可解答.
【详解】
①每一个外角都等于60°的多边形是六边形,正确;
②“反证法”就是从反面的角度思考问题的证明方法,故错误;
③“等腰三角形两底角相等”的逆命题是有两个角相等的三角形为等腰三角形,是真命题,正确;
④分式值为零的条件是分子为零且分母不为零,故正确;
正确的有3个.
故选C.
此题考查命题与定理,解题关键在于掌握各性质定理.
8、B
【解析】
如图,连接BD.利用三角形法则解题即可.
【详解】
如图,连接BD.
∵,
∴.
又,
∴,即.
故选B.
考查了平面向量,属于基础题,熟记三角形法则即可解题,解题时,注意转化思想的应用.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2.1
【解析】
依据加权平均数的概念求解可得.
【详解】
解:这10名学生周末利用网络进行学习的平均时间是:
;
故答案为:2.1.
本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.
10、.
【解析】
根据菱形的性质、折叠的性质,以及∠ABC=120°,可以得到△ABD△BCD都是等边三角形,根据三角形的内角和和平角的意义,可以找出△BGE∽△DFG,对应边成比例,设AF=x、AE=y,由比例式列出方程,解出y即可.
【详解】
解:∵菱形ABCD中,∠ABC=120°,
∴AB=BC=CD=DA,∠A=60°,
∴AB=BC=CD=DA=BD=3+1=4,
∴∠ADB=∠ABD=60°,
由折叠得:AF=FG,AE=EG,∠EGF=∠A=60°,
∵∠DFG+∠DGF=180°-60°=120°,∠BGE+∠DGF=180°-60°=120°,
∴∠DFG=∠BGE,
∴△BGE∽△DFG,
∴ ,
设AF=x=FG,AE=y=EG,则:DF=4-x,BE=4-y,
即: ,
当 时,即:x= ,
当 时,即:x= ,
∴ ,
解得:y1=0舍去,y2=,
故答案为:.
本题考查菱形的性质、折叠的性质、等边三角形的判定和性质以及分式方程等知识,根据折叠和菱形等边三角形的性质进行转化,从而得到关于EG的关系式,是解决问题的关键.
11、
【解析】
根据方程有增根可得x=3,把-2=去分母后,再把x=3代入即可求出k的值.
【详解】
∵关于x的方程-2=会产生增根,
∴x-3=0,
∴x=3.
把-2=的两边都乘以x-3得,
x-2(x-3)=-k,
把x=3代入,得
3=-k,
∴k=-3.
故答案为:-3.
本题考查的是分式方程的增根,在分式方程变形的过程中,产生的不适合原方程的根叫做分式方程的增根.增根使最简公分母等于0,不适合原分式方程,但是适合去分母后的整式方程.
12、60°
【解析】
利用平行线及∥,证明,再证明,再利用直角三角形两锐角互余可得答案.
【详解】
解:因为:∥,所以:
因为:,所以: ,
所以;,
因为:等腰梯形,
所以:,
设: ,所以,
因为:⊥,
所以:,解得:
所以:.
故答案为:.
本题考查等腰梯形的性质,等腰三角形的性质及平行线的性质,掌握相关性质是解题关键.
13、1
【解析】
先求出100名学生中持“赞成”意见的学生人数所占的比例,再用总人数相乘即可.
【详解】
解:∵100名学生中持“反对”和“无所谓”意见的共有30名学生,
∴持“赞成”意见的学生人数=100-30=70名,
∴全校持“赞成”意见的学生人数约=2400×=1(名).
故答案为:1.
本题考查的是用样本估计总体,先根据题意得出100名学生中持赞成”意见的学生人数是解答此题的关键.
三、解答题(本大题共5个小题,共48分)
14、 (1)应该录取乙;(2)应该录取甲
【解析】
(1)根据平均数的公式算出即可.
(2)根据加权平均数的公式算出即可.
【详解】
(1), ,
故应该录取乙.
(2) ,,
从应该录取甲.
本题考查平均数和加权平均数的计算,关键在于牢记基础公式.
15、(1)合作5天;(2)方案(C)既能如期完工,又节省工程款.
【解析】
(1)设规定的工期为x天,根据题意得出的方程为:,可知被墨水污染的部分为:若甲、乙两队合作5天;
(2)根据题意先求得规定的天数,然后算出三种方案的价钱之后,再根据题意选择既按期完工又节省工程款的方案.
【详解】
(1)根据题意及所列的方程可知被墨水污染的部分为:甲、乙两队合作5天.
故答案是:甲、乙两队合作5天;
(2)设规定的工期为x天,
根据题意列出方程:,
解得:x=1.
经检验:x=1是原分式方程的解.
这三种施工方案需要的工程款为:
(A)2×1=60(万元);
(B)1.5×(1+6)=54(万元),但不能如期完工;
(C)2×5+1.5×1=55(万元).
综上所述,(C)方案是既按期完工又节省工程款的方案:即由乙队单独完成这项工程.
本题主要考查分式方程的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤,即①根据题意找出等量关系;②列出方程;③解出分式方程;④检验;⑤作答.注意:分式方程的解必须检验.
16、(1);(2); (3)①当时,S△PAE=,②当时, S△PAE=.
【解析】
(1)设直线AB为,把B(-3,0)代入,求得k,确定解析式;再设设秒后构成平行四边形,根据题意列出方程,求出t即可;
(2)过E作关于轴对于点,连接EE′交x轴于点P,则此时PE+PD最小.由(1)得到当t=2时,有C(,0),D(,3),再根据AB∥CD,求出直线CD和AB1的解析式,确定E的坐标;然后再通过乘法公式和线段运算,即可完成解答.
(3)根据(1)可以判断有和两种情况,然后分类讨论即可.
【详解】
(1)解:设直线AB为,把B(-3,0)代入得:
∴
∴
由题意得:
设秒后构成平行四边形,则
解之得:,
(2)如图:过E作关于轴对于点,
连接EE′交x轴于点P,则此时PE+PD最小.
由(1)t=2得:
∴C(,0),D(,3)
∵AB∥CD
∴设CD为
把C(,0)代入得
b1=
∴CD为:
易得为:
∴
解之得:E(,)
∴
(3)①当时
S△PAE=S△PAB1-S△PEB1=
②当时:
S△PAE=S△PAB1-S△PEB1=
本题是一次函数的综合题型,主要考查了用待定系数求一次函数的关系式,点的坐标的确定,动点问题等知识点.解题的关键是扎实的基本功和面对难题的自信.
17、 (1)见解析;
(2) 即m的值为0,方程的另一个根为0.
【解析】
(1)可用根的判别式,计算判别式得到△=(m+2)2−4×1⋅m=m2+4>0,则方程有两个不相等实数解,于是可判断不论m为何值,方程总有两个不相等的实数根;
(2)设方程的另一个根为t,利用根与系数的关系得到2+t= ,2t=m,最终解出关于t和m的方程组即可.
【详解】
(1)证明:
△=(m+2)2−4×1⋅m=m2+4,
∵无论m为何值时m2≥0,
∴m2+4≥4>0,
即△>0,
所以无论m为何值,方程总有两个不相等的实数根.
(2)设方程的另一个根为t,
根据题意得2+t= ,2t=m,
解得t=0,
所以m=0,
即m的值为0,方程的另一个根为0.
本题考查根的判别式和根于系数关系,对于问题(1)可用根的判别式进行判断,在判断过程中注意对△的分析,在分析时可借助平方的非负性;问题(2)可先设另一个根为t,用根于系数关系列出方程组,在求解.
18、(1);(2)选时,3.
【解析】
(1)分别利用完全平方公式和平方差公式进行化简,再约分即可
(2)首先将括号里面通分,再将分子与分母分解因式进而化简得出答案
【详解】
解:(1)原式
(2)原式
,
∵
∴可选时,原式.(答案不唯一)
此题考查分式的化简求值,掌握运算法则是解题关键
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
先根据平移的性质可得,,,再根据矩形的判定与性质可得,从而可得,然后根据平行线四边形的判定可得四边形ABED是平行四边形,最后根据平行四边形的面积公式即可得.
【详解】
由平移的性质得,,
四边形ACFD是矩形
四边形ABED是平行四边形(一组对边平行且相等的四边形是平行四边形)
则四边形ABED的面积为
故答案为:1.
本题考查了平移的性质、平行四边形的判定、矩形的判定与性质等知识点,掌握平移的性质是解题关键.
20、
【解析】
连接,根据题意先证出,然后得出,所以点运动的路径长度即为点从到的运动路径,继而得出结论
【详解】
连接,
∵,是等腰直角三角形,
∴,∠ABC=90°
∵四边形是正方形
∴BD=BF,∠DBF=∠ABC=90°,
∴∠ABD=∠CBF,
在△DAP与△BAP中
∴,
∴,
点运动的路径长度即为点从到的运动路径,为.
故答案为:
本题主要考查的是等腰直角三角形的性质、等边三角形的性质、正方形的性质以及全等三角形的性质和判定,熟练掌握全等三角形的判定和性质是解题的关键.
21、-1(答案不唯一)
【解析】
由反比例函数的性质:当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限可写出一个满足条件的k的值.
【详解】
解:∵函数图象在二四象限,
∴k<0,
∴k可以是-1.
故答案为-1 (答案不唯一).
本题考查了反比例函数图象的性质(1)反比例函数y=(k≠0)的图象是双曲线;(1)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.
22、
【解析】
增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x-1)(x+1)=0,得到x=1或-1,然后代入化为整式方程的方程,满足即可.
【详解】
方程两边都乘(x-5),
得1-a=x-5,
∴x=7-a
∵原方程有增根,
∴最简公分母x-5=0,
解得x=5,
∴7-a=5;
∴a=1.
故答案为:1.
本题考查了分式方程的增根,难度适中.确定增根可按如下步骤进行:
①让最简公分母为0确定可能的增根;
②化分式方程为整式方程;
③把可能的增根代入整式方程,使整式方程成立的值即为分式方程的增根.
23、15°
【解析】
根据菱形的性质,可得∠ADC=∠B=70°,从而得出∠AED=∠ADE.又因为AD∥BC,故∠DAE=∠AEB=70°,∠ADE=∠AED=55°,即可求解.
【详解】
解:根据菱形的对角相等得∠ADC=∠B=70°.
∵AD=AB=AE,
∴∠AED=∠ADE.
根据折叠得∠AEB=∠B=70°.
∵AD∥BC,
∴∠DAE=∠AEB=70°,
∴∠ADE=∠AED=(180°-∠DAE)÷2=55°.
∴∠EDC=70°-55°=15°.
故答案为:15°.
本题考查了翻折变换,菱形的性质,三角形的内角和定理以及平行线的性质,熟练运用折叠的性质是本题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1);
(2)当x<1时,≤b≤;当x≥1时,≤b≤;
(3)当x<1时,b=-1; 当x≥1时,b=-
【解析】
(1)根据相关函数的概念可直接得出答案;
(2)由A(b-1,4),B(b+3,4)得到线段AB在直线y=4上,再求出y=3x-2的两个相关函数的图象与直线y=4的交点坐标,从而得到不等式,解不等式即可得出b的取值范围.
(3)分两种情况,当x<1时,y=-3x+b-2的相关函数是y=3x+2-b,根据一次函数的性质得到当x=b+1时,y有最小值为3,列出方程求解即可得出b值;同理,当x≥1时,y=-3x+b-2的相关函数是y=-3x+b-2, 由函数性质列出方程可得出b值.
【详解】
解:(1)根据相关函数的概念可得,一次函数y= -x+5的相关函数为;
(2)∵A(b-1,4),B(b+3,4),
∴线段AB在直线y=4上,且点A在点B的左边,
当x<1时,y=3x-2的相关函数是y=2-3x,
把y=4代入y=2-3x,得2-3x=4,解得x=-
∴直线y=4与直线y=2-3x的交点的横坐标是x=-,
∴b-1≤-≤b+3
解得≤b≤
当x≥1时,y=3x-2的相关函数是y=3x-2,
把y=4代入y=3x-2,得3x-2=4,解得x=2
∴直线y=4与直线y=3x-2的交点的横坐标是x=2,
∴b-1≤2≤b+3
解得≤b≤
综上所述,当x<1时,≤b≤;当x≥1时,≤b≤.
(3)当x<1时,y=-3x+b-2的相关函数是y=3x+2-b,
∵k=3>0,y随x的增大而增大,
∵b+1≤x≤b+2
∴当x=b+1时,y有最小值为3
∴3(b+1)+2-b=3
解得b=-1;
当x≥1时,y=-3x+b-2的相关函数是y=-3x+b-2,
∵k=-3<0,y随x的增大而减小,
∵b+1≤x≤b+2
∴当x=b+2时,y有最小值为3
∴-3(b+2)+b-2=3
解得b=-
综上,当x<1时,b=-1; 当x≥1时,b=-.
本题考查了一次函数和它的相关函数,理解相关函数的概念是解题的关键,本题也考查了一元一次不等式.
25、(1)见解析;(2)
【解析】
(1)根据矩形的性质可得AD=BC,AB=DC,AD∥BC,∠BAD=90°,从而得出∠GDB=∠DBC,然后根据折叠的性质可得BC= BC′,∠GBD=∠DBC,从而得出AD= BC′,∠GBD=∠GDB,然后根据等角对等边可得GD=GB,即可证出结论;
(2)设GD=GB=x,利用勾股定理列出方程即可求出GD的长,然后根据三角形的面积公式求面积即可.
【详解】
(1)证明:∵四边形ABCD为矩形
∴AD=BC,AB=DC,AD∥BC,∠BAD=90°
∴∠GDB=∠DBC
由折叠的性质可得BC= BC′,∠GBD=∠DBC
∴AD= BC′,∠GBD=∠GDB
∴GD=GB
∴AD-GD= BC′-GB
∴AG=C′G;
(2)解:设GD=GB=x,则AG=AD-GD=8-x
在Rt△ABG中
即
解得:
即
∴S△BDG=
此题考查的是矩形的性质、折叠的性质、等腰三角形的判定、勾股定理和求三角形的面积,掌握矩形的性质、折叠的性质、等角对等边、利用勾股定理解直角三角形是解决此题的关键.
26、解:(1)证明:如图,∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,
∴∠2=∠3,2=∠1.
∵MN∥BC,∴∠1=∠3,3=∠1.
∴∠1=∠2,∠3=∠2.∴EO=CO,FO=CO.
∴OE=OF.
(2)∵∠2=∠3,∠2=∠1,∴∠2+∠2=∠3+∠1=90°.
∵CE=12,CF=3,∴.
∴OC=EF=1.3.
(3)当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:
当O为AC的中点时,AO=CO,
∵EO=FO,∴四边形AECF是平行四边形.
∵∠ECF=90°,∴平行四边形AECF是矩形.
【解析】
(1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠2,进而得出答案.
(2)根据已知得出∠2+∠2=∠3+∠1=90°,进而利用勾股定理求出EF的长,即可根据直角三角形斜边上的中线性质得出CO的长.
(3)根据平行四边形的判定以及矩形的判定得出即可.
题号
一
二
三
四
五
总分
得分
成绩
人数
2
3
2
3
4
1
时间(单位:小时)
4
3
2
l
0
人数
3
4
1
1
1
候选人
面试
笔试
形体
口才
专业水平
创新能力
甲
86
90
96
92
乙
92
88
95
93
河北省保定高碑店市2024-2025学年九上数学开学达标检测模拟试题【含答案】: 这是一份河北省保定高碑店市2024-2025学年九上数学开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年河北省石家庄市八校联考数学九上开学达标检测模拟试题【含答案】: 这是一份2024-2025学年河北省石家庄市八校联考数学九上开学达标检测模拟试题【含答案】,共27页。试卷主要包含了选择题,四象限;,解答题等内容,欢迎下载使用。
2024-2025学年河北省石家庄市28中学教育集团数学九上开学复习检测模拟试题【含答案】: 这是一份2024-2025学年河北省石家庄市28中学教育集团数学九上开学复习检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。