专题35 几何综合压轴题(40题)练习(教师版+学生版)2025版 2024年中考数学真题分类汇编 全国通用
展开一、解答题
1.(2024·黑龙江大兴安岭地·中考真题)已知是等腰三角形,,,在的内部,点M、N在上,点M在点N的左侧,探究线段之间的数量关系.
(1)如图①,当时,探究如下:
由,可知,将绕点A顺时针旋转,得到,则且,连接,易证,可得,在中,,则有.
(2)当时,如图②:当时,如图③,分别写出线段之间的数量关系,并选择图②或图③进行证明.
2.(2024·四川广元·中考真题)小明从科普读物中了解到,光从真空射入介质发生折射时,入射角的正弦值与折射角的正弦值的比值叫做介质的“绝对折射率”,简称“折射率”.它表示光在介质中传播时,介质对光作用的一种特征.
(1)若光从真空射入某介质,入射角为,折射角为,且,,求该介质的折射率;
(2)现有一块与(1)中折射率相同的长方体介质,如图①所示,点A,B,C,D分别是长方体棱的中点,若光线经真空从矩形对角线交点O处射入,其折射光线恰好从点C处射出.如图②,已知,,求截面的面积.
3.(2024·内蒙古呼伦贝尔·中考真题)如图,在平行四边形中,点在边上,,连接,点为的中点,的延长线交边于点,连接
(1)求证:四边形是菱形:
(2)若平行四边形的周长为,求的长.
4.(2024·四川甘孜·中考真题)如图,为⊙O的弦,C为的中点,过点C作,交的延长线于点D.连接.
(1)求证:是⊙O的切线;
(2)若,求的面积.
5.(2024·甘肃临夏·中考真题)如图1,在矩形中,点为边上不与端点重合的一动点,点是对角线上一点,连接,交于点,且.
【模型建立】
(1)求证:;
【模型应用】
(2)若,,,求的长;
【模型迁移】
(3)如图2,若矩形是正方形,,求的值.
6.(2024·黑龙江绥化·中考真题)如图1,是正方形对角线上一点,以为圆心,长为半径的与相切于点,与相交于点.
(1)求证:与相切.
(2)若正方形的边长为,求的半径.
(3)如图2,在(2)的条件下,若点是半径上的一个动点,过点作交于点.当时,求的长.
7.(2024·内蒙古赤峰·中考真题)数学课上,老师给出以下条件,请同学们经过小组讨论,提出探究问题.如图1,在中,,点D是上的一个动点,过点D作于点E,延长交延长线于点F.
请你解决下面各组提出的问题:
(1)求证:;
(2)探究与的关系;
某小组探究发现,当时,;当时,.
请你继续探究:
①当时,直接写出的值;
②当时,猜想的值(用含m,n的式子表示),并证明;
(3)拓展应用:在图1中,过点F作,垂足为点P,连接,得到图2,当点D运动到使时,若,直接写出的值(用含m,n的式子表示).
8.(2024·广东·中考真题)【问题背景】
如图1,在平面直角坐标系中,点B,D是直线上第一象限内的两个动点,以线段为对角线作矩形,轴.反比例函数的图象经过点A.
【构建联系】
(1)求证:函数的图象必经过点C.
(2)如图2,把矩形沿折叠,点C的对应点为E.当点E落在y轴上,且点B的坐标为时,求k的值.
【深入探究】
(3)如图3,把矩形沿折叠,点C的对应点为E.当点E,A重合时,连接交于点P.以点O为圆心,长为半径作.若,当与的边有交点时,求k的取值范围.
9.(2024·四川遂宁·中考真题)如图,是的直径,是一条弦,点是的中点,于点,交于点,连结交于点.
(1)求证:;
(2)延长至点,使,连接.
①求证:是的切线;
②若,,求的半径.
10.(2024·四川德阳·中考真题)已知的半径为5,是上两定点,点是上一动点,且的平分线交于点.
(1)证明:点为上一定点;
(2)过点作的平行线交的延长线于点.
①判断与的位置关系,并说明理由;
②若为锐角三角形,求的取值范围.
11.(2024·四川泸州·中考真题)如图,是的内接三角形,是的直径,过点B作的切线与的延长线交于点D,点E在上,,交于点F.
(1)求证:;
(2)过点C作于点G,若,,求的长.
12.(2024·四川南充·中考真题)如图,正方形边长为,点E为对角线上一点,,点P在边上以的速度由点A向点B运动,同时点Q在边上以的速度由点C向点B运动,设运动时间为t秒().
(1)求证:.
(2)当是直角三角形时,求t的值.
(3)连接,当时,求的面积.
13.(2024·安徽·中考真题)如图1,的对角线与交于点O,点M,N分别在边,上,且.点E,F分别是与,的交点.
(1)求证:;
(2)连接交于点H,连接,.
(ⅰ)如图2,若,求证:;
(ⅱ)如图3,若为菱形,且,,求的值.
14.(2024·江苏扬州·中考真题)在综合实践活动中,“特殊到一般”是一种常用方法,我们可以先研究特殊情况,猜想结论,然后再研究一般情况,证明结论.
如图,已知,, 是的外接圆,点在上(),连接、、.
【特殊化感知】
(1)如图1,若,点在延长线上,则与的数量关系为________;
【一般化探究】
(2)如图2,若,点、在同侧,判断与的数量关系并说明理由;
【拓展性延伸】
(3)若,直接写出、、满足的数量关系.(用含的式子表示)
15.(2024·山东·中考真题)一副三角板分别记作和,其中,,,.作于点,于点,如图1.
(1)求证:;
(2)在同一平面内,将图1中的两个三角形按如图2所示的方式放置,点与点重合记为,点与点重合,将图2中的绕按顺时针方向旋转后,延长交直线于点.
①当时,如图3,求证:四边形为正方形;
②当时,写出线段,,的数量关系,并证明;当时,直接写出线段,,的数量关系.
16.(2024·江西·中考真题)综合与实践
如图,在中,点D是斜边上的动点(点D与点A不重合),连接,以为直角边在的右侧构造,,连接,.
特例感知
(1)如图1,当时,与之间的位置关系是______,数量关系是______;
类比迁移
(2)如图2,当时,猜想与之间的位置关系和数量关系,并证明猜想.
拓展应用
(3)在(1)的条件下,点F与点C关于对称,连接,,,如图3.已知,设,四边形的面积为y.
①求y与x的函数表达式,并求出y的最小值;
②当时,请直接写出的长度.
17.(2024·湖南·中考真题)【问题背景】
已知点A是半径为r的上的定点,连接,将线段绕点O按逆时针方向旋转得到,连接,过点A作的切线l,在直线l上取点C,使得为锐角.
【初步感知】
(1)如图1,当时, ;
【问题探究】
(2)以线段为对角线作矩形,使得边过点E,连接,对角线,相交于点F.
①如图2,当时,求证:无论在给定的范围内如何变化,总成立:
②如图3,当,时,请补全图形,并求及的值.
18.(2024·河南·中考真题)综合与实践
在学习特殊四边形的过程中,我们积累了一定的研究经验,请运用已有经验,对“邻等对补四边形”进行研究
定义:至少有一组邻边相等且对角互补的四边形叫做邻等对补四边形.
(1)操作判断
用分别含有和角的直角三角形纸板拼出如图1所示的4个四边形,其中是邻等对补四边形的有________(填序号).
(2)性质探究
根据定义可得出邻等对补四边形的边、角的性质.下面研究与对角线相关的性质.
如图2,四边形是邻等对补四边形,,是它的一条对角线.
①写出图中相等的角,并说明理由;
②若,,,求的长(用含m,n,的式子表示).
(3)拓展应用
如图3,在中,,,,分别在边,上取点M,N,使四边形是邻等对补四边形.当该邻等对补四边形仅有一组邻边相等时,请直接写出的长.
19.(2024·黑龙江齐齐哈尔·中考真题)综合与实践:如图1,这个图案是3世纪我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”,受这幅图的启发,数学兴趣小组建立了“一线三直角模型”.如图2,在中,,将线段绕点顺时针旋转得到线段,作交的延长线于点.
(1)【观察感知】如图2,通过观察,线段与的数量关系是______;
(2)【问题解决】如图3,连接并延长交的延长线于点,若,,求的面积;
(3)【类比迁移】在(2)的条件下,连接交于点,则______;
(4)【拓展延伸】在(2)的条件下,在直线上找点,使,请直接写出线段的长度.
20.(2024·黑龙江齐齐哈尔·中考真题)综合与探究:如图,在平面直角坐标系中,已知直线与x轴交于点A,与y轴交于点C,过A,C两点的抛物线与x轴的另一个交点为点,点P是抛物线位于第四象限图象上的动点,过点P分别作x轴和y轴的平行线,分别交直线于点E,点F.
(1)求抛物线的解析式;
(2)点D是x轴上的任意一点,若是以为腰的等腰三角形,请直接写出点D的坐标;
(3)当时,求点P的坐标;
(4)在(3)的条件下,若点N是y轴上的一个动点,过点N作抛物线对称轴的垂线,垂足为M,连接,则的最小值为______.
21.(2024·四川广元·中考真题)数学实验,能增加学习数学的乐趣,还能经历知识“再创造”的过程,更是培养动手能力,创新能力的一种手段.小强在学习《相似》一章中对“直角三角形斜边上作高”这一基本图形(如图1)产生了如下问题,请同学们帮他解决.
在中,点为边上一点,连接.
(1)初步探究
如图2,若,求证:;
(2)尝试应用
如图3,在(1)的条件下,若点为中点,,求的长;
(3)创新提升
如图4,点为中点,连接,若,,,求的长.
22.(2024·内蒙古包头·中考真题)如图,在中,为锐角,点在边上,连接,且.
(1)如图1,若是边的中点,连接,对角线分别与相交于点.
①求证:是的中点;
②求;
(2)如图2,的延长线与的延长线相交于点,连接的延长线与相交于点.试探究线段与线段之间的数量关系,并证明你的结论.
23.(2024·吉林·中考真题)如图,在中,,,,是的角平分线.动点P从点A出发,以的速度沿折线向终点B运动.过点P作,交于点Q,以为边作等边三角形,且点C,E在同侧,设点P的运动时间为,与重合部分图形的面积为.
(1)当点P在线段上运动时,判断的形状(不必证明),并直接写出的长(用含t的代数式表示).
(2)当点E与点C重合时,求t的值.
(3)求S关于t的函数解析式,并写出自变量t的取值范围.
24.(2024·吉林长春·中考真题)如图,在中,,.点是边上的一点(点不与点、重合),作射线,在射线上取点,使,以为边作正方形,使点和点在直线同侧.
(1)当点是边的中点时,求的长;
(2)当时,点到直线的距离为________;
(3)连结,当时,求正方形的边长;
(4)若点到直线的距离是点到直线距离的3倍,则的长为________.(写出一个即可)
25.(2024·湖北·中考真题)如图,矩形中,分别在上,将四边形沿翻折,使的对称点落在上,的对称点为交于.
(1)求证:.
(2)若为中点,且,求长.
(3)连接,若为中点,为中点,探究与大小关系并说明理由.
26.(2024·内蒙古通辽·中考真题)数学活动课上,某小组将一个含的三角尺利一个正方形纸板如图1摆放,若,.将三角尺绕点逆时针方向旋转角,观察图形的变化,完成探究活动.
【初步探究】
如图2,连接,并延长,延长线相交于点交于点.
问题1 和的数量关系是________,位置关系是_________.
【深入探究】
应用问题1的结论解决下面的问题.
问题2 如图3,连接,点是的中点,连接,.求证.
【尝试应用】
问题3 如图4,请直接写出当旋转角从变化到时,点经过路线的长度.
27.(2024·甘肃·中考真题)【模型建立】
(1)如图1,已知和,,,,.用等式写出线段,,的数量关系,并说明理由.
【模型应用】
(2)如图2,在正方形中,点E,F分别在对角线和边上,,.用等式写出线段,,的数量关系,并说明理由.
【模型迁移】
(3)如图3,在正方形中,点E在对角线上,点F在边的延长线上,,.用等式写出线段,,的数量关系,并说明理由.
28.(2024·湖南长沙·中考真题)对于凸四边形,根据它有无外接圆(四个顶点都在同一个圆上)与内切圆(四条边都与同一个圆相切),
可分为四种类型,我们不妨约定:
既无外接圆,又无内切圆的四边形称为“平凡型无圆”四边形;
只有外接圆,而无内切圆的四边形称为“外接型单圆”四边形;
只有内接圆,而无外接圆的四边形称为“内切型单圆”四边形;
既有外接圆,又有内切圆的四边形称为“完美型双圆”四边形.
请你根据该约定,解答下列问题:
(1)请你判断下列说法是否正确(在题后相应的括号中,正确的打“√”,错误的打“×”,
①平行四边形一定不是“平凡型无圆”四边形; ( )
②内角不等于的菱形一定是“内切型单圆”四边形; ( )
③若“完美型双圆”四边形的外接圆圆心与内切圆圆心重合,外接圆半径为R,内切圆半径为r,则有.( )
(2)如图1,已知四边形内接于,四条边长满足:.
①该四边形是“______”四边形(从约定的四种类型中选一种填入);
②若的平分线交于点E,的平分线交于点F,连接.求证:是的直径.
(3)已知四边形是“完美型双圆”四边形,它的内切圆与分别相切于点E,F,G,H.
①如图2.连接交于点P.求证:.
②如图3,连接,若,,,求内切圆的半径r及的长.
29.(2024·黑龙江大兴安岭地·中考真题)如图,在平面直角坐标系中,等边三角形的边在x轴上,点A在第一象限,的长度是一元二次方程的根,动点P从点O出发以每秒2个单位长度的速度沿折线运动,动点Q从点O出发以每秒3个单位长度的速度沿折线运动,P、Q两点同时出发,相遇时停止运动.设运动时间为t秒(),的面积为S.
(1)求点A的坐标;
(2)求S与t的函数关系式;
(3)在(2)的条件下,当时,点M在y轴上,坐标平面内是否存在点N,使得以点O、P、M、N为顶点的四边形是菱形.若存在,直接写出点N的坐标;若不存在,说明理由.
30.(2024·重庆·中考真题)在中,,,过点作.
(1)如图1,若点在点的左侧,连接,过点作交于点.若点是的中点,求证:;
(2)如图2,若点在点的右侧,连接,点是的中点,连接并延长交于点,连接.过点作交于点,平分交于点,求证:;
(3)若点在点的右侧,连接,点是的中点,且.点是直线上一动点,连接,将绕点逆时针旋转得到,连接,点是直线上一动点,连接,.在点的运动过程中,当取得最小值时,在平面内将沿直线翻折得到,连接.在点的运动过程中,直接写出的最大值.
31.(2024·重庆·中考真题)在中,,点是边上一点(点不与端点重合).点关于直线的对称点为点,连接.在直线上取一点,使,直线与直线交于点.
(1)如图1,若,求的度数(用含的代数式表示);
(2)如图1,若,用等式表示线段与之间的数量关系,并证明;
(3)如图2,若,点从点移动到点的过程中,连接,当为等腰三角形时,请直接写出此时的值.
32.(2024·江苏连云港·中考真题)【问题情境】
(1)如图1,圆与大正方形的各边都相切,小正方形是圆的内接正方形,那么大正方形面积是小正方形面积的几倍?小昕将小正方形绕圆心旋转45°(如图2),这时候就容易发现大正方形面积是小正方形面积的__________倍.由此可见,图形变化是解决问题的有效策略;
【操作实践】
(2)如图3,图①是一个对角线互相垂直的四边形,四边a、b、c、d之间存在某种数量关系.小昕按所示步骤进行操作,并将最终图形抽象成图4.请你结合整个变化过程,直接写出图4中以矩形内一点P为端点的四条线段之间的数量关系;
【探究应用】
(3)如图5,在图3中“④”的基础上,小昕将绕点逆时针旋转,他发现旋转过程中存在最大值.若,,当最大时,求AD的长;
(4)如图6,在中,,点D、E分别在边AC和BC上,连接DE、AE、BD.若,,求的最小值.
33.(2024·上海·中考真题)在梯形中,,点E在边上,且.
(1)如图1所示,点F在边上,且,联结,求证:;
(2)已知;
①如图2所示,联结,如果外接圆的心恰好落在的平分线上,求的外接圆的半径长;
②如图3所示,如果点M在边上,联结、、,与交于N,如果,且,,求边的长.
34.(2024·四川成都·中考真题)数学活动课上,同学们将两个全等的三角形纸片完全重合放置,固定一个顶点,然后将其中一个纸片绕这个顶点旋转,来探究图形旋转的性质.已知三角形纸片和中,,,.
【初步感知】
(1)如图1,连接,,在纸片绕点旋转过程中,试探究的值.
【深入探究】
(2)如图2,在纸片绕点旋转过程中,当点恰好落在的中线的延长线上时,延长交于点,求的长.
【拓展延伸】
(3)在纸片绕点旋转过程中,试探究,,三点能否构成直角三角形.若能,直接写出所有直角三角形的面积;若不能,请说明理由.
35.(2024·河北·中考真题)已知的半径为3,弦,中,.在平面上,先将和按图1位置摆放(点B与点N重合,点A在上,点C在内),随后移动,使点B在弦上移动,点A始终在上随之移动,设.
(1)当点B与点N重合时,求劣弧的长;
(2)当时,如图2,求点B到的距离,并求此时x的值;
(3)设点O到的距离为d.
①当点A在劣弧上,且过点A的切线与垂直时,求d的值;
②直接写出d的最小值.
36.(2024·四川乐山·中考真题)在一堂平面几何专题复习课上,刘老师先引导学生解决了以下问题:
【问题情境】
如图1,在中,,,点D、E在边上,且,,,求的长.
解:如图2,将绕点A逆时针旋转得到,连接.
由旋转的特征得,,,.
∵,,
∴.
∵,
∴,即.
∴.
在和中,
,,,
∴___①___.
∴.
又∵,
∴在中,___②___.
∵,,
∴___③___.
【问题解决】
上述问题情境中,“①”处应填:______;“②”处应填:______;“③”处应填:______.
刘老师进一步谈到:图形的变化强调从运动变化的观点来研究,只要我们抓住了变化中的不变量,就能以不变应万变.
【知识迁移】
如图3,在正方形中,点E、F分别在边上,满足的周长等于正方形的周长的一半,连结,分别与对角线交于M、N两点.探究的数量关系并证明.
【拓展应用】
如图4,在矩形中,点E、F分别在边上,且.探究的数量关系:______(直接写出结论,不必证明).
【问题再探】
如图5,在中,,,,点D、E在边上,且.设,,求y与x的函数关系式.
37.(2024·北京·中考真题)在平面直角坐标系中,的半径为1,对于的弦和不在直线上的点,给出如下定义:若点关于直线的对称点在上或其内部,且,则称点是弦的“可及点”.
(1)如图,点,.
①在点,,中,点___________是弦的“可及点”,其中____________;
②若点是弦的“可及点”,则点的横坐标的最大值为__________;
(2)已知是直线上一点,且存在的弦,使得点是弦的“可及点”.记点的横坐标为,直接写出的取值范围.
38.(2024·广东·中考真题)【知识技能】
(1)如图1,在中,是的中位线.连接,将绕点D按逆时针方向旋转,得到.当点E的对应点与点A重合时,求证:.
【数学理解】
(2)如图2,在中,是的中位线.连接,将绕点D按逆时针方向旋转,得到,连接,,作的中线.求证:.
【拓展探索】
(3)如图3,在中,,点D在上,.过点D作,垂足为E,,.在四边形内是否存在点G,使得?若存在,请给出证明;若不存在,请说明理由.
39.(2024·广东广州·中考真题)如图,在菱形中,.点在射线上运动(不与点,点重合),关于的轴对称图形为.
(1)当时,试判断线段和线段的数量和位置关系,并说明理由;
(2)若,为的外接圆,设的半径为.
①求的取值范围;
②连接,直线能否与相切?如果能,求的长度;如果不能,请说明理由.
40.(2024·云南·中考真题)如图,是的直径,点、是上异于、的点.点在外,,延长与的延长线交于点,点在的延长线上,,.点在直径上,,点是线段的中点.
(1)求的度数;
(2)求证:直线与相切:
(3)看一看,想一想,证一证:
以下与线段、线段、线段有关的三个结论:,,,你认为哪个正确?请说明理由.
专题36 函数综合压轴题(27题)练习(教师版+学生版)2025版 2024年中考数学真题分类汇编 全国通用: 这是一份专题36 函数综合压轴题(27题)练习(教师版+学生版)2025版 2024年中考数学真题分类汇编 全国通用,文件包含专题36函数综合压轴题27题教师版-2025版2024年中考数学真题分类汇编全国通用docx、专题36函数综合压轴题27题学生版-2025版2024年中考数学真题分类汇编全国通用docx等2份试卷配套教学资源,其中试卷共70页, 欢迎下载使用。
专题16 二次函数解答题压轴题(35题)练习(教师版+学生版)2025版 2024年中考数学真题分类汇编 全国通用: 这是一份专题16 二次函数解答题压轴题(35题)练习(教师版+学生版)2025版 2024年中考数学真题分类汇编 全国通用,文件包含专题16二次函数解答题压轴题35题教师版-2025版2024年中考数学真题分类汇编全国通用docx、专题16二次函数解答题压轴题35题学生版-2025版2024年中考数学真题分类汇编全国通用docx等2份试卷配套教学资源,其中试卷共135页, 欢迎下载使用。
专题35 几何综合压轴题(40题)(教师卷+学生卷)- 2024年中考数学真题分类汇编(全国通用): 这是一份专题35 几何综合压轴题(40题)(教师卷+学生卷)- 2024年中考数学真题分类汇编(全国通用),文件包含专题35几何综合压轴题40题教师卷-2024年中考数学真题分类汇编全国通用docx、专题35几何综合压轴题40题学生卷-2024年中考数学真题分类汇编全国通用docx等2份试卷配套教学资源,其中试卷共161页, 欢迎下载使用。