|试卷下载
搜索
    上传资料 赚现金
    2025届河北省邯郸市复兴区九上数学开学统考试题【含答案】
    立即下载
    加入资料篮
    2025届河北省邯郸市复兴区九上数学开学统考试题【含答案】01
    2025届河北省邯郸市复兴区九上数学开学统考试题【含答案】02
    2025届河北省邯郸市复兴区九上数学开学统考试题【含答案】03
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届河北省邯郸市复兴区九上数学开学统考试题【含答案】

    展开
    这是一份2025届河北省邯郸市复兴区九上数学开学统考试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在矩形ABCD中,AB=6,AD=8,以BC为斜边在矩形的外部作直角三角形BEC,点F是CD的中点,则EF的最大值为( )
    A.8B.9C.10D.2
    2、(4分)若分式的值为零,则()
    A.B.C.D.
    3、(4分)若有意义,则m能取的最小整数值是( )
    A.B.C.D.
    4、(4分)若关于x的一元二次方程kx2﹣2x﹣1=0有实数根,则k的取值范围是( )
    A.k≥﹣1且k≠0B.k≥﹣1C.k≤1D.k≤1且k≠0
    5、(4分)如图,△ABC中,CD是AB边上的高,若AB=1.5,BC=0.9,AC=1.2,则CD的值是( )
    A.0.72B.2.0C.1.125D.不能确定
    6、(4分)等腰三角形的底边和腰长分别是10和12,则底边上的高是( )
    A.13B.8C.D.
    7、(4分)甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.3环,方差分别为S甲2=0.1.S乙2=0.62,S丙2=0.50,S丁2=0.45,则成绩最稳定的是( )
    A.甲B.乙C.丙D.丁
    8、(4分)甲、乙、丙、丁四人进行射击测试,每人射击10次,四人的平均成绩均是9.4环,方差分别是0.43,1.13,0.90,1.68,则在本次射击测试中,成绩最稳定的是( )
    A.甲B.乙C.丙D.丁
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP=_____.
    10、(4分)已知一个一元二次方程,它的二次项系数为1,两根分别是2和3,则这个方程是______.
    11、(4分)若直线y=kx+b与直线y=2x平行,且与y轴相交于点(0,﹣3),则直线的函数表达式是_________.
    12、(4分)某地区为了增强市民的法治观念,随机抽取了一部分市民进行一次知识竞赛,将竞赛成绩(得分取整数)整理后分成五组并绘制成如图所示的频数直方图.请结合图中信息,解答下列问题:
    抽取了多少人参加竞赛?
    这一分数段的频数、频率分别是多少?
    这次竞赛成绩的中位数落在哪个分数段内?
    13、(4分)如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B、D重合),折痕为EF,若BC=4,BG=3,则GE的长为________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)在平面直角坐标系中,的位置如图所示(每个小方格都是边长为个单位长度的正方形).
    (1)将沿轴方向向左平移个单位,画出平移后得到的;
    (2)将绕着点顺时针旋转,画出旋转后得到的.
    15、(8分)如图,四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,顺次连接E、F、G、H,得到的四边形EFGH叫中点四边形.
    (1)求证:四边形EFGH是平行四边形;
    (2)如图,当四边形ABCD变成等腰梯形时,它的中点四边形是菱形,请你探究并填空:
    当四边形ABCD变成平行四边形时,它的中点四边形是 ;
    当四边形ABCD变成矩形时,它的中点四边形是 ;
    当四边形ABCD变成菱形时,它的中点四边形是 ;
    当四边形ABCD变成正方形时,它的中点四边形是 ;
    (3)根据以上观察探究,请你总结中点四边形的形状由原四边形的什么决定的?
    16、(8分)阅读下列材料并解答问题:
    数学中有很多恒等式可以用图形的面积来得到例如,图1中阴影部分的面积可表示为;若将阴影部分剪下来,重新拼成一个矩形如图,它的长,宽分别是,,由图1,图2中阴影部分的面积相等,可得恒等式.
    (1)观察图3,根据图形,写出一个代数恒等式:______;
    (2)现有若干块长方形和正方形硬纸片如图4所示请你仿照图3,用拼图的方法推出恒等式,画出你的拼图并标出相关数据;
    (3)利用前面推出的恒等式和计算:
    ①;
    ②.
    17、(10分)如图1,在△ABC中,∠BAC=90°,AB=AC,在△ABC内部作△CED,使∠CED=90°,E在BC上,D在AC上,分别以AB,AD为邻边作平行四边形ABFD,连接AF、AE、EF.
    (1)证明:AE=EF;
    (2)判断线段AF,AE的数量关系,并证明你的结论;
    (3)在图(1)的基础上,将△CED绕点C逆时针旋转,请判断(2)问中的结论是否成立?若成立,结合图(2)写出证明过程;若不成立,请说明理由
    18、(10分)解方程:
    (1)
    (2)2x2﹣2x﹣1=0
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)人数相同的八年级甲,乙两班同学在同一次数学单元测试中,班级平均分和方差如下:,,则成绩较为稳定的班级是_______.
    20、(4分)如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3),若直线y=2x与线段AB有公共点,则n的值可以为_____.(写出一个即可)
    21、(4分)如图,在矩形ABCD中,∠B的平分线BE与AD交于点E,∠BED的平分线EF与DC交于点F,当点F是CD的中点时,若AB=4,则BC=_____.
    22、(4分)若一组数据1,3,5,,的众数是3,则这组数据的方差为______.
    23、(4分)如图,矩形ABCD中,,,CE是的平分线与边AB的交点,则BE的长为______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分) “端午节小长假”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.
    根据以上信息,解答下列问题:
    (1)甲公司每小时的租费是 元;
    (2)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数解析式;
    (3)请你帮助小明计算并分析选择哪个出游方案合算.
    25、(10分)在平面直角坐标系中,点的坐标为,点和点的坐标分别为,,且,四边形是矩形
    (1)如图,当四边形为正方形时,求,的值;
    (2)探究,当为何值时,菱形的对角线的长度最短,并求出的最小值.
    26、(12分)计算:,
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    取BC中点O,连接OE,OF,根据矩形的性质可求OC,CF的长,根据勾股定理可求OF的长,根据直角三角形的性质可求OE的长,根据三角形三边关系可求得当点O,点E,点F共线时,EF有最大值,即EF=OE+OF.
    【详解】
    解:如图,取BC中点O,连接OE,OF,
    ∵四边形ABCD是矩形,
    ∴AB=CD=6,AD=BC=8,∠C=10°,
    ∵点F是CD中点,点O是BC的中点,
    ∴CF=3,CO=4,
    ∴OF==5,
    ∵点O是Rt△BCE的斜边BC的中点,
    ∴OE=OC=4,
    ∵根据三角形三边关系可得:OE+OF≥EF,
    ∴当点O,点E,点F共线时,EF最大值为OE+OF=4+5=1.
    故选:B.
    本题考查了矩形的性质,三角形三边关系,勾股定理,直角三角形的性质,找到当点O,点E,点F共线时,EF有最大值是本题的关键.
    2、D
    【解析】
    分式的值为零:分子为零,且分母不为零.
    【详解】
    解:根据题意,得
    x+3=1,x﹣2≠1,
    解得,x=﹣3,x≠2;
    故选:D.
    本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1.这两个条件缺一不可.
    3、C
    【解析】
    根据二次根式的性质,被开方数大于等于0,即可求解.
    【详解】
    由有意义,
    则满足1m-3≥0,解得m≥,
    即m≥时,二次根式有意义.
    则m能取的最小整数值是m=1.
    故选C.
    主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.
    4、A
    【解析】
    根据一元二次方程的定义和判别式的意义得到k≠1且△=22-4k×(-1)≥1,然后求出两个不等式的公共部分即可.
    【详解】
    根据题意得k≠1且△=22-4k×(-1)≥1,
    解得k≥-1且k≠1.
    故选A.
    本题考查了一元二次方程ax2+bx+c=1(a≠1)的根的判别式△=b2-4ac:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.也考查了一元二次方程的定义.
    5、A
    【解析】
    先根据勾股定理的逆定理证明△ABC是直角三角形,根据计算直角三角形的面积的两种计算方法求出斜边上的高CD.
    【详解】
    ∵AB=1.5,BC=0.9,AC=1.2,
    ∴AB2=1.52=2.25,BC2+AC2=0.92+1.22=2.25,
    ∴AB2=BC2+AC2,
    ∴∠ACB=90°,
    ∵CD是AB边上的高,
    ∴S△ABC=AB·CD=AC·BC,
    1.5CD=1.2×0.9,
    CD=0.72,
    故选A.
    该题主要考查了勾股定理的逆定理、三角形的面积公式及其应用问题;解题的方法是运用勾股定理首先证明△ABC为直角三角形;解题的关键是灵活运用三角形的面积公式来解答.
    6、D
    【解析】
    先作底边上的高,由等腰三角形的性质和勾股定理即可求出此高的长度.
    【详解】
    解:作底边上的高并设此高的长度为x,
    由等腰三角形三线合一的性质可得高线平分底边,
    根据勾股定理得:52+x2=122,
    解得x=
    本题考点:等腰三角形底边上高的性质和勾股定理,等腰三角形底边上的高所在直线为底边的中垂线.然后根据勾股定理即可求出底边上高的长度.
    7、D
    【解析】
    根据方差越大,则平均值的离散程度越大,波动大;反之,则它与其平均值的离散程度越小,波动小,稳定性越好,比较方差大小即可得出答案.
    【详解】
    ∵S甲2=0.1.S乙2=0.62,S丙2=0.50,S丁2=0.45,
    ∴S丁2∴成绩最稳定的是丁.
    故选D.
    本题考查的知识点是方差.熟练应用方差的性质是解题的关键.
    8、A
    【解析】
    比较方差的大小,即可判定方差最小的较为稳定,即成绩最稳的是甲同学.
    【详解】
    ∵甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.4环,方差分别是0.43,1.13,0.90,1.68,
    ∴,
    ∴成绩最稳定的同学是甲.
    故选A.
    此题主要考查利用方差,判定稳定性,熟练掌握,即可解题.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    分析:根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到DN=AM=3,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到AP=AM=1.
    详解:∵BD=CD,AB=CD,
    ∴BD=BA,
    又∵AM⊥BD,DN⊥AB,
    ∴DN=AM=3,
    又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,
    ∴∠P=∠PAM,
    ∴△APM是等腰直角三角形,
    ∴AP=AM=1,
    故答案为1.
    点睛:本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM是等腰直角三角形.
    10、
    【解析】
    设方程为ax2+bx+c=0,则由已知得出a=1,根据根与系数的关系得,2+3=−b,2×3=c,求出即可.
    【详解】
    ∵二次项系数为1的一元二次方程的两个根为2,3,
    ∴2+3=−b,2×3=c,
    ∴b=-5,c=6
    ∴方程为,
    故答案为:.
    本题考查了根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−,x1x2=.
    11、y=2x﹣1.
    【解析】
    根据两条直线平行问题得到k=2,然后把点(0,﹣1)代入y=2x+b可求出b的值,从而可确定所求直线解析式.
    【详解】
    ∵直线y=kx+b与直线y=2x平行,
    ∴k=2,
    把点(0,﹣1)代入y=2x+b得
    b=﹣1,
    ∴所求直线解析式为y=2x﹣1.
    故答案为:y=2x﹣1.
    考查了待定系数法求函数解析式以及两条直线相交或平行问题,解题时注意:若直线y=k1x+b1与直线y=k2x+b2平行,则k1=k2.
    12、(1)抽取了人参加比赛;(2)频数为,频数为0.25;(3)
    【解析】
    (1)将每组的人数相加即可;
    (2)看频数直方图可知这一分数段的频数为12,用频数÷总人数即可得到频率;
    (3)直接通过频数直方图即可得解.
    【详解】
    解:(人),
    答:抽取了人参加比赛;
    频数为,频数为;
    这次竞赛成绩的中位数落在这个分数段内.
    本题主要考查频数直方图,中位数等,解此题的关键在于熟练掌握其知识点,通过直方图得到有用的信息.
    13、.
    【解析】
    根据菱形的性质、折叠的性质,以及∠ABC=120°,可以得到△ABD△BCD都是等边三角形,根据三角形的内角和和平角的意义,可以找出△BGE∽△DFG,对应边成比例,设AF=x、AE=y,由比例式列出方程,解出y即可.
    【详解】
    解:∵菱形ABCD中,∠ABC=120°,
    ∴AB=BC=CD=DA,∠A=60°,
    ∴AB=BC=CD=DA=BD=3+1=4,
    ∴∠ADB=∠ABD=60°,
    由折叠得:AF=FG,AE=EG,∠EGF=∠A=60°,
    ∵∠DFG+∠DGF=180°-60°=120°,∠BGE+∠DGF=180°-60°=120°,
    ∴∠DFG=∠BGE,
    ∴△BGE∽△DFG,
    ∴ ,
    设AF=x=FG,AE=y=EG,则:DF=4-x,BE=4-y,
    即: ,
    当 时,即:x= ,
    当 时,即:x= ,
    ∴ ,
    解得:y1=0舍去,y2=,
    故答案为:.
    本题考查菱形的性质、折叠的性质、等边三角形的判定和性质以及分式方程等知识,根据折叠和菱形等边三角形的性质进行转化,从而得到关于EG的关系式,是解决问题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)见解析;(1)见解析。
    【解析】
    (1)利用点平移的规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;
    (1)利用网格特点和旋转的性质画出点B、C的对应点B1、C1,从而得到△AB1C1.
    【详解】
    解:(1)如图,△A1B1C1即为所求;
    (1)如图,△AB1C1即为所求.
    本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.
    15、 (1)相等;(2)垂直;(3)见解析.
    【解析】
    (1)连接BD.利用三角形中位线定理推出所得四边形对边平行且相等,故为平行四边形;
    (2)连接AC、BD.根据三角形的中位线定理,可以得到所得四边形的两组对边分别和原四边形的对角线平行,且分别等于原四边形的对角线的一半,再根据矩形、菱形、正方形的判定方法进行判定即可
    (3)由(2)可知,中点四边形的形状是由原四边形的对角线的关系决定的.
    【详解】
    (1)证明:连接BD.
    ∵E、H分别是AB、AD的中点,
    ∴EH是△ABD的中位线.
    ∴EH=BD,EH∥BD.
    同理得FG=BD,FG∥BD.
    ∴EH=FG,EH∥FG.
    ∴四边形EFGH是平行四边形.
    (2)连接AC、BD.根据三角形的中位线定理,可以得到所得四边形的两组对边分别和原四边形的对角线平行,且分别等于原四边形的对角线的一半.
    若顺次连接对角线相等的四边形各边中点,则所得的四边形的四条边都相等,故所得四边形为菱形;
    若顺次连接对角线互相垂直的四边形各边中点,则所得的四边形的四个角都是直角,故所得四边形为矩形;
    若顺次连接对角线相等且互相垂直的四边形各边中点,则综合上述两种情况,故所得的四边形为正方形;
    故答案为:平行四边形,菱形,矩形,正方形;
    (3)中点四边形的形状是由原四边形的对角线的关系决定的.
    此题综合运用了三角形的中位线定理和特殊四边形的判定定理.熟记结论:顺次连接四边形各边中点所得四边形是平行四边形;顺次连接对角线相等的四边形各边中点所得四边形是菱形;顺次连接对角线垂直的四边形各边中点所得四边形是矩形;顺次连接对角线相等且互相垂直的四边形各边中点所得四边形是正方形.
    16、(1);(2);(3)①1;②.
    【解析】
    (1)根据面积的两种表达方式得到图3所表示的代数恒等式;
    (2)作边长为a+b的正方形即可得;
    (3)套用所得公式计算可得.
    【详解】
    解:(1)由图3知,等式为:,
    故答案为;
    (2)如图所示:
    由图可得;
    (3)①原式;
    ②.
    本题考查了完全平方公式的几何背景,根据矩形的面积公式分整体与部分两种思路表示出面积,然后再根据同一个图形的面积相等即可解答.
    17、(1)证明见解析;(2)AF=AE.证明见解析;(3)AF=AE成立.证明见解析.
    【解析】
    (1)根据△ABC是等腰直角三角形,△CDE是等腰直角三角形,四边形ABFD是平行四边形,判定△ACE≌△FDE(SAS),进而得出AE=EF;
    (2)根据∠DFE+∠EAF+∠AFD=90°,即可得出△AEF是直角三角形,再根据AE=FE,得到△AEF是等腰直角三角形,进而得到AF=AE;
    (3)延长FD交AC于K,先证明△EDF≌△ECA(SAS),再证明△AEF是等腰直角三角形即可得出结论.
    【详解】
    (1)如图1,
    ∵△ABC中,∠BAC=90°,AB=AC,
    ∴△ABC是等腰直角三角形,
    ∵∠CED=90°,E在BC上,D在AC上,
    ∴△CDE是等腰直角三角形,
    ∴CE=CD,
    ∵四边形ABFD是平行四边形,
    ∴DF=AB=AC,
    ∵平行四边形ABFD中,AB∥DF,
    ∴∠CDF=∠CAB=90°,
    ∵∠C=∠CDE=45°,
    ∴∠FDE=45°=∠C,
    在△ACE和△FDE中,

    ∴△ACE≌△FDE(SAS),
    ∴AE=EF;
    (2)AF=AE.
    证明:如图1,∵AB∥DF,∠BAD=90°,
    ∴∠ADF=90°,
    ∴Rt△ADF中,∠DAE+∠EAF+∠AFD=90°,
    ∵△ACE≌△FDE,
    ∴∠DAE=∠DFE,
    ∴∠DFE+∠EAF+∠AFD=90°,
    即△AEF是直角三角形,
    又∵AE=FE,
    ∴△AEF是等腰直角三角形,
    ∴AF=AE;
    (3)AF=AE仍成立.
    证明:如图2,延长FD交AC于K.
    ∵∠EDF=180°-∠KDC-∠EDC=135°-∠KDC,
    ∠ACE=(90°-∠KDC)+∠DCE=135°-∠KDC,
    ∴∠EDF=∠ACE,
    ∵DF=AB,AB=AC,
    ∴DF=AC,
    在△EDF和△ECA中,

    ∴△EDF≌△ECA(SAS),
    ∴EF=EA,∠FED=∠AEC,
    ∴∠FEA=∠DEC=90°,
    ∴△AEF是等腰直角三角形,
    ∴AF=AE.
    本题属于四边形综合题,主要考查了全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质等知识的综合应用,等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点.
    18、(1)x=15;(2)x1=,x2=.
    【解析】
    (1)先把分式方程转化成整式方程,求出方程的解即可;
    (2)先求出b2﹣4ac的值,再代入公式求出即可.
    【详解】
    解:(1)方程两边都乘以x﹣7得:x+1=2(x﹣7),
    解得:x=15,
    检验:当x=15时,x﹣7≠0,
    所以x=15是原方程的解,
    即原方程的解是x=15;
    (2)2x2﹣2x﹣1=0,
    b2﹣4ac=(﹣2)2﹣4×2×(﹣1)=12,
    x=,
    x1=,x2=.
    本题考查了分式方程及一元二次方程的解法,解题的关键是熟悉分式方程及一元二次方程的解法,注意分式方程必须要检验.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、甲
    【解析】
    根据方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    【详解】
    ∵,,
    ∴s甲2<s乙2,
    ∴甲班成绩较为稳定,
    故答案为:甲.
    本题考查方差的定义与意义:它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    20、1
    【解析】
    【分析】由直线y=1x与线段AB有公共点,可得出点B在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于n的一元一次不等式,解之即可得出n的取值范围,在其内任取一数即可得出结论.
    【详解】∵直线y=1x与线段AB有公共点,
    ∴1n≥3,
    ∴n≥,
    故答案为:1.
    【点睛】本题考查了一次函数图象上点的坐标特征,用一次函数图象上点的坐标特征,找出关于n的一元一次不等式是解题的关键.
    21、
    【解析】
    分析:
    如下图,延长EF与BC的延长线相交于点H,由已知条件易证:AE=AB=4,BE=,△DEF≌△CHF,从而可得DE=CH,∠DEF=∠H=∠BEH,从而可得BH=BE=,设BC=,则AD=,由此可得DE=AD-AE=,CH=BH-BC=,由此可得,解此方程即可求得BC的值.
    详解:
    如下图,延长EF与BC的延长线相交于点H,设BC=,
    ∵四边形ABCD是矩形,
    ∴∠A=∠D=∠HCF=∠ABC=90°,CD=AB=4,AD=BC=,AD∥BC,
    ∴∠AEB=∠CBE,∠DEF=∠H,
    ∵BE平分∠ABC,
    ∴∠AEB=∠CBE=∠ABE,
    ∴AE=AB=4,
    ∴BE=,DE=AD-AE=,
    ∵点F是DC的中点,EF平分∠BED,
    ∴DF=FC,∠DEF=∠BEF=∠H,
    ∴△DEF≌△CHF,BH=BE=,
    ∴DE=CH=BH-BC=,
    ∴,解得:,
    ∴BC=.
    点睛:“作出如图所示的辅助线,由已知条件证得BH=BE=,通过证△DEF≌△CHF得到DE=CH,从而得到AD-AE=BH-BC”是解答本题的关键.
    22、2
    【解析】
    先根据众数的概念得出x=3,再依据方差的定义计算可得.
    【详解】
    解:∵数据1,3,5,x的众数是3,
    ∴x=3,
    则数据为1、3、3、5,
    ∴这组数据的平均数为:,
    ∴这组数据的方差为:;
    故答案为:2.
    本题主要考查众数和方差,解题的关键是根据众数的概念求出x的值,并熟练掌握方差的定义和计算公式.
    23、
    【解析】
    分析:作于由≌,推出,,,设,则,在中,根据,构建方程求出x即可;
    详解:作于H.
    四边形ABCD是矩形,


    在和中,

    ≌,
    ,,,设,则,
    在中,,



    故答案为:.
    点睛:本题考查矩形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
    二、解答题(本大题共3个小题,共30分)
    24、(1)15;(2)y2=30x(x≥0);(3) 当租车时间为小时,选择甲乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.
    【解析】
    (1)根据函数图象中的信息解答即可;
    (2)根据函数图象中的信息,分别运用待定系数法,求得y1,y2关于x的函数表达式即可;
    (3)当y1=y2时,15x+80=30x,当y1>y2时,15x+80>30x,当y1<y2时,15x+80<30x,分求得x的取值范围即可得出方案.
    【详解】
    解:(1)由图象可得:甲公司每小时的租费是15元;
    故答案为:15;
    (2)设y1=k1x+80,
    把点(1,95)代入,可得
    95=k1+80,
    解得k1=15,
    ∴y1=15x+80(x≥0);
    设y2=k2x,
    把(1,30)代入,可得
    30=k2,即k2=30,
    ∴y2=30x(x≥0);
    (3)当y1=y2时,15x+80=30x,
    解得x=;
    当y1>y2时,15x+80>30x,
    解得x<;
    当y1<y2时,15x+80<30x,
    解得x>;
    ∴当租车时间为小时,选择甲乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.
    本题主要考查了一次函数的应用,解题时注意:求正比例函数y=kx,只要一对x,y的值;而求一次函数y=kx+b,则需要两组x,y的值.
    25、见详解.
    【解析】
    (1)先判断出∠ADE=∠BAO,即可判断出△ABO≌△ADE,得出DE=OA=3,AE=OB,即可求出m;
    (2)先判断出BD⊥x轴时,求出AC的最小值,再求出DM=2,最后用勾股定理求出AE即可得出m.
    【详解】
    解:(1)如图1,过点D作DE⊥y轴于E,
    ∴∠AED=∠AOB=90°,
    ∴∠ADE+∠DAE=90°,
    ∵四边形ABCD是正方形,
    ∴AD=AB,∠BAD=90°,
    ∴∠DAE+∠BAO=90°,
    ∴∠ADE=∠BAO,
    在△ABO和△ADE中,

    ∴△ABO≌△ADE,
    ∴DE=OA,AE=OB,
    ∵A(0,3),B(m,0),D(n,1),
    ∴OA=3,OB=m,OE=1,DE=n,
    ∴n=3,
    ∴OE=OA+AE=OA+OB=3+m=1,
    ∴m=1;
    (2))如图3,由矩形的性质可知,BD=AC,
    ∴BD最小时,AC最小,
    ∵B(m,0),D(n,1),
    ∴当BD⊥x轴时,BD有最小值1,此时,m=n,
    即:AC的最小值为1,
    连接BD,AC交于点M,过点A作AE⊥BD于E,
    由矩形的性质可知,DM=BM=BD=2,
    ∵A(0,3),D(n,1),
    ∴DE=1,
    ∴EM=DM-DE=1,
    在Rt△AEM中,根据勾股定理得,AE=,
    ∴m=,即:
    当m=时,矩形ABCD的对角线AC的长最短为1.
    此题是四边形综合题,主要考查了正方形的性质,矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,解(1)的关键是△ABO≌△ADE,解(2)的关键是△ADE≌△CBF和△AOB∽△DEA,解(3)的关键是作出辅助线,是一道中考常考题.
    26、5-2
    【解析】
    先根据绝对值、整数指数幂和二次根式的性质化简各数,然后进行加减即可得出答案。
    【详解】
    解:原式=2-1×1-2+4
    =5-2
    本题考查了实数的混合运算,熟练掌握运算法则是关键。
    题号





    总分
    得分
    批阅人
    相关试卷

    2025届河北省邯郸市锦玉中学数学九上开学检测试题【含答案】: 这是一份2025届河北省邯郸市锦玉中学数学九上开学检测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届河北省邯郸市邯郸市育华中学数学九上开学学业质量监测模拟试题【含答案】: 这是一份2025届河北省邯郸市邯郸市育华中学数学九上开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年河北省沧州市沧县九上数学开学统考试题【含答案】: 这是一份2024年河北省沧州市沧县九上数学开学统考试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map