![河北省承德市2024-2025学年九上数学开学教学质量检测试题【含答案】01](http://img-preview.51jiaoxi.com/2/3/16273743/0-1729481983607/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![河北省承德市2024-2025学年九上数学开学教学质量检测试题【含答案】02](http://img-preview.51jiaoxi.com/2/3/16273743/0-1729481983642/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![河北省承德市2024-2025学年九上数学开学教学质量检测试题【含答案】03](http://img-preview.51jiaoxi.com/2/3/16273743/0-1729481983663/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
河北省承德市2024-2025学年九上数学开学教学质量检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,已知菱形ABCD的周长为24,对角线AC、BD交于点O,且AC+BD=16,则该菱形的面积等于( )
A.6B.8C.14D.28
2、(4分)如果,那么( )
A.B.C.D.x为一切实数
3、(4分)下列性质中,菱形具有而矩形不一定具有的是( ).
A.对角线相等;B.对角线互相平分;
C.对角线互相垂直;D.对角相等
4、(4分)如图1,在△ABC和△DEF中,AB=AC=m,DE=DF=n,∠BAC=∠EDF,点D与点A重合,点E,F分别在AB,AC边上,将图1中的△DEF沿射线AC的方向平移,使点D与点C重合,得到图2,下列结论不正确的是( )
A.△DEF平移的距离是mB.图2中,CB平分∠ACE
C.△DEF平移的距离是nD.图2中,EF∥BC
5、(4分)下列命题中,真命题是( )
A.两条对角线垂直的四边形是菱形
B.对角线垂直且相等的四边形是正方形
C.两条对角线相等的四边形是矩形
D.两条对角线相等的平行四边形是矩形
6、(4分)如图,P是正方形ABCD的对角线BD上一点,PE⊥BC于E,PF⊥CD于F,连接EF,给出下列三个结论:①AP=EF;②△APD一定是等腰三角形;③∠PFE=∠BAP.其中正确结论的序号是( )
A.①②B.①③C.②③D.①②③
7、(4分)如图,直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-1.则下列结论:①m<0,n>0;②直线y=nx+4n一定经过点(-4,0);③m与n满足m=1n-1;④当x>-1时,nx+4n>-x+m,其中正确结论的个数是( )
A.1个B.1个C.3个D.4个
8、(4分)如图,一个运算程序,若需要经过两次运算才能输出结果,则的取值范围为
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)从某市5000名初一学生中,随机地抽取100名学生,测得他们的身高数据,得到一个样本,则这个样本数据的平均数、中位数、众数、方差四个统计量中,服装厂最感兴趣的是__________.
10、(4分)多项式与多项式的公因式分别是______.
11、(4分)如图,在△ABC中,BC=9,AD是BC边上的高,M、N分别是AB、AC边的中点,DM=5,DN=3,则△ABC的周长是__.
12、(4分)若关于x的方程=-3有增根,则增根为x=_______.
13、(4分)若关于的一元二次方程有两个不相等的实数根,则的取值范围是________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D,
(1)求证:BE=CF ;
(2)当四边形ACDE为菱形时,求BD的长.
15、(8分)如图1,对角线互相垂直的四边形叫做垂美四边形.
(1)概念理解:如图2,在四边形中,,,问四边形是垂美四边形吗?请说明理由;
(2)性质探究:如图1,四边形的对角线、交于点,.试证明:;
(3)解决问题:如图3,分别以的直角边和斜边为边向外作正方形和正方形,连结、、.已知,,求的长.
16、(8分)已知y与x+3成正比例,且当x=1时,y=8
(1)求y与x之间的函数关系式;
(2)若点(a,6)在这个函数的图象上,求a的值.
17、(10分)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE平分∠ADC交BC于点E,连接OE
(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.
18、(10分)
小明通过试验发现;将一个矩形可以分别成四个全等的矩形,三个全等的矩形,二个全等的矩形(如上图),于是他对含的直角三角形进行分别研究,发现可以分割成四个全等的三角形,三个全等的三角形.
(1)请你在图1,图2依次画出分割线,并简要说明画法;
(2)小明继续想分割成两个全等的三角形,发现比较困难.你能把这个直角三角形分割成两个全等的三角形吗?若能,画出分割线;若不能,请说明理由.(注:备用图不够用可以另外画)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在矩形ABCD中,AB=4,AD=9点F是边BC上的一点,点E是AD上的一点,AE:ED=1:2,连接EF、DF,若EF=2,则CF的长为______________。
20、(4分)如图,已知矩形ABCD中,AB=6,AD=10,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(x),当P,E,B三点在同一直线上时对应t的值为 .
21、(4分)过某矩形的两个相对的顶点作平行线,再沿着平行线剪下两个直角三角形,剩余的图形为如图所示的▱ABCD,AB=4,BC=6,∠ABC=60°,则原来矩形的面积是__.
22、(4分)在矩形ABCD中,AB=2,BC=6,直线EF经过对角线BD的中点O,分别交边AD,BC于点E,F,点G,H分别是OB,OD的中点,当四边形EGFH为矩形时,则BF的长_________________.
23、(4分)已知一元二次方程的两个解恰好分别是等腰的底边长和腰长,则的周长为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)(1) (2)
25、(10分)先化简,再求值:(a+)÷,其中a=1.
26、(12分)如图,AD是△ABC边BC上的中线,AE∥BC,BE交AD于点E,F是BE的中点,连结CE.求证:四边形ADCE是平行四边形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
首先根据题意求出的长度,然后利用菱形的性质以及勾股定理的知识求出的值,最后结合三角形的面积公式即可求出答案.
【详解】
解:四边形是菱形,
,,
菱形的周长为24,
,
,
,
,
,
,
菱形的面积三角形的面积,
故选D.
本题主要考查了菱形的性质,解题的关键是利用菱形的性质以及勾股定理的知识求出的值.
2、B
【解析】
∵,
∴x≥0,x-6≥0,
∴.
故选B.
3、C
【解析】
根据矩形和菱形的性质即可得出答案
【详解】
解:A. 对角线相等是矩形具有的性质,菱形不一定具有;
B. 对角线互相平分是菱形和矩形共有的性质;
C. 对角线互相垂直是菱形具有的性质,矩形不一定具有;
D. 邻边互相垂直是矩形具有的性质,菱形不一定具有.
故选:C.
本题考查矩形和菱形的性质,掌握矩形和菱形性质的区别是解题关键
4、C
【解析】
根据平移的性质即可得到结论.
【详解】
∵AD=AC=m,
∴△DEF平移的距离是m,故A正确,C错误,
∵AB=AC,
∴∠ACB=∠ABC,
∵DE∥AB,
∴∠EDB=∠ABC,
∴∠ACB=∠ECB,
∴CB平分∠ACE,故B正确;
由平移的性质得到EF∥BC,故D正确.
故选C.
本题考查了平移的性质,等腰三角形的性质,平行线的性质,熟练正确平移的性质是解题的关键.
5、D
【解析】A、两条对角线垂直并且相互平分的四边形是菱形,故选项A错误;
B、对角线垂直且相等的平行四边形是正方形,故选项B错误;
C、两条对角线相等的平行四边形是矩形,故选项C错误;
D、根据矩形的判定定理,两条对角线相等的平行四边形是矩形,为真命题,故选项D正确;
故选D.
6、B
【解析】
连接PC,根据正方形的对角线平分一组对角可得∠ABP=∠CBP=45°,然后利用“边角边”证明△ABP和△CBP全等,根据全等三角形对应边相等可得AP=PC,对应角相等可得∠BAP=∠BCP,再根据矩形的对角线相等可得EF=PC,于是得到结论.
【详解】
解:如图,连接PC,在正方形ABCD中,∠ABP=∠CBP=45°,AB=CB,
∵在△ABP和△CBP中,,
∴△ABP≌△CBP(SAS),
∴AP=PC,∠BAP=∠BCP,
又∵PE⊥BC,PF⊥CD,
∴四边形PECF是矩形,
∴PC=EF,∠BCP=∠PFE,
∴AP=EF,∠PFE=∠BAP,故①③正确;
只有点P为BD的中点或PD=AD时,△APD是等腰三角形,故②错误;
故选:B.
本题主要考查了正方形的性质,正确证明△ABP≌△CBP,以及理解P的任意性是解决本题的关键.
7、D
【解析】
①由直线y=-x+m与y轴交于负半轴,可得m<0;y=nx+4n(n≠0)的图象从左往右逐渐上升,可得n>0,即可判断结论①正确;
②将x=-4代入y=nx+4n,求出y=0,即可判断结论②正确;
③由整理即可判断结论③正确;
④观察函数图象,可知当x>-1时,直线y=nx+4n在直线y=-x+m的上方,即nx+4n>-x+m,即可判断结论④正确.
【详解】
解:①∵直线y=-x+m与y轴交于负半轴,∴m<0;
∵y=nx+4n(n≠0)的图象从左往右逐渐上升,∴n>0,
故结论①正确;
②将x=-4代入y=nx+4n,得y=-4n+4n=0,
∴直线y=nx+4n一定经过点(-4,0).
故结论②正确;
③∵直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-1,
∴当x=-1时,y=1+m=-1n+4n,
∴m=1n-1.
故结论③正确;
④∵当x>-1时,直线y=nx+4n在直线y=-x+m的上方,
∴当x>-1时,nx+4n>-x+m,
故结论④正确.
故选:D.
本题考查了一次函数图象上点的坐标特征、一次函数与一元一次不等式以及一次函数的图象,逐一分析四条结论的正误是解题的关键.
8、C
【解析】
输入x,需要经过两次运算才能输出结果,说明第一次运算的结果为:5x+2<37,经过第二次运算5(5x+2)+2≥37,两个不等式联立成为不等式组,解之即可.
【详解】
解:根据题意得:
,
解得:1≤x<7,
即x的取值范围为:1≤x<7,
故选C.
本题考查一元一次不等式组的应用,正确找出等量关系,列出一元一次不等式组是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、众数
【解析】
服装厂最感兴趣的是哪种尺码的服装售量较多,也就是需要参照指标众数.
【详解】
解:由于众数是数据中出现次数最多的数,故服装厂最感兴趣的指标是众数.
故答案为: 众数.
本题主要考查了统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
10、x-1
【解析】
分别对2个多项式因式分解,再取公因式.
【详解】
解:多项式=a(x+1)(x-1)
2x2-4x+2=2(x-1)2
所以两个多项式的公因式是x-1
本题考查公因式相关,熟练掌握并利用求多项式公因式的方法进行分析是解题的关键.
11、1
【解析】
由直角三角形斜边上的中线求得AB=2DM,AC=2DN,结合三角形的周长公式解答.
【详解】
解:∵在△ABC中,AD是BC边上的高,M、N分别是AB、AC边的中点,
∴AB=2DM=10,AC=2DN=6,
又BC=9,
∴△ABC的周长是:AB+AC+BC=10+6+9=1.
故答案是:1.
本题考查三角形的中线性质,尤其是:直角三角形斜边上的中线等于斜边的一半.
12、2
【解析】
增根是化为整式方程后产生的不适合分式方程的根,确定增根的可能值,让最简公分母x-2=0即可.
【详解】
∵关于x的方程=-3有增根,
∴最简公分母x-2=0,
∴x=2.
故答案为:2
本题考查分式方程的增根,确定增根的可能值,只需让最简公分母为0即可.分母是多项式时,应先因式分解.
13、
【解析】
由方程有两个不相等的实数根,可得△>0,建立关于a的不等式,解不等式求出a的取值范围即可.
【详解】
∵关于的一元二次方程有两个不相等的实数根,
∴△=16+4a>0,
解得,.
故答案为:a>-4.
本题考查了一元二次方程根的情况与判别式△的关系:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
三、解答题(本大题共5个小题,共48分)
14、(1)证明见解析(2)-1
【解析】
(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,得出△ACF≌△ABE,从而得出BE=CF;
(2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以BE=AC=,于是利用BD=BE﹣DE求解.
【详解】
(1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,
∴AE=AB,AF=AC,∠EAF=∠BAC,
∴∠EAF+∠BAF=∠BAC+∠BAF,
即∠EAB=∠FAC,
在△ACF和△ABE中,
△ACF≌△ABE
BE=CF.
(2)∵四边形ACDE为菱形,AB=AC=1,
∴DE=AE=AC=AB=1,AC∥DE,
∴∠AEB=∠ABE,∠ABE=∠BAC=45°,
∴∠AEB=∠ABE=45°,
∴△ABE为等腰直角三角形,
∴BE=AC=,
∴BD=BE﹣DE=.
考点:1.旋转的性质;2.勾股定理;3.菱形的性质.
15、 (1) 四边形是垂美四边形,理由见解析;(2)证明见解析;(3) .
【解析】
(1)根据垂直平分线的判定定理,可证直线是线段的垂直平分线,结合“垂美四边形”的定义证明即可;
(2)根据垂直的定义和勾股定理解答即可;
(3)连接、,先证明,得到∴,可证,即,从而四边形是垂美四边形,根据垂美四边形的性质、勾股定理、结合(2)的结论计算即可.
【详解】
(1)四边形是垂美四边形.
证明:连接AC,BD,
∵,
∴点在线段的垂直平分线上,
∵,
∴点在线段的垂直平分线上,
∴直线是线段的垂直平分线,
∴,即四边形是垂美四边形;
(2)猜想结论:垂美四边形的两组对边的平方和相等.
如图2,已知四边形中,,垂足为,
求证:
证明:∵,
∴,
由勾股定理得,,
,
∴;
故答案为:.
(3)连接、,
∵,
∴,即,
在和中,,
∴,
∴,又,
∴,即,
∴四边形是垂美四边形,
由(2)得,,
∵,,
∴,,,
∴,
∴.
本题考查的是正方形的性质、全等三角形的判定和性质、垂直的定义、勾股定理的应用,正确理解垂美四边形的定义、灵活运用勾股定理是解题的关键.
16、(1)y=1x+6;(1)2.
【解析】
分析:(1)根据y与x+3成正比,设y=k(x+3),把x与y的值代入求出k的值,即可确定出关系式;
(1)把点(a,6)代入一次函数解析式求出a的值即可.
详解:(1)根据题意:设y=k(x+3),
把x=1,y=8代入得:8=k(1+3),
解得:k=1.
则y与x函数关系式为y=1(x+3)=1x+6;
(1)把点(a,6)代入y=1x+6得:6=1a+6,
解得a=2.
点睛:此题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.
17、(1)证明见解析;(2)1.
【解析】
分析:(1)只要证明三个角是直角即可解决问题;
(2)作OF⊥BC于F.求出EC、OF的长即可;
详解:(1)证明:∵AD∥BC,
∴∠ABC+∠BAD=180°,
∵∠ABC=90°,
∴∠BAD=90°,
∴∠BAD=∠ABC=∠ADC=90°,
∴四边形ABCD是矩形.
(2)作OF⊥BC于F.
∵四边形ABCD是矩形,
∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD,
∴AO=BO=CO=DO,
∴BF=FC,
∴OF=CD=1,
∵DE平分∠ADC,∠ADC=90°,
∴∠EDC=45°,
在Rt△EDC中,EC=CD=2,
∴△OEC的面积=•EC•OF=1.
点睛:本题考查矩形的判定和性质、角平分线的定义、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题
18、见解析
【解析】
(1)利用三角形中位线的性质以及垂直平分线的性质得出符合要求的图形即可;
(2)利用要把△ABC分割成两个三角形则分割线必须经过三角形的顶点,分别分析得出答案即可.
【详解】
(1)如图1,取AC的中点D作ED⊥AB垂足为E,作DF⊥BC垂足为F,连接DB,
此时△AED≌△BED≌△DFB≌△DFC,
如图2,取AC的中点D,作AC的中垂线交BC于E,连接AE;
此时△ABE≌△ADE≌△CDE;
(2)不能,因为要把△ABC分割成两个三角形则分割线必须经过三角形的顶点,
但分割线过锐角顶点时,分割出的两个三角形必定一个是直角而另一个不是,所以不全等;
当分割线经过直角顶点时,若分割线与斜边不垂直时(见备用图1),分割出的两个三角形必定一个是锐角三角形而另一个是钝角三角形,所以不全等;
而当分割线与斜边垂直时(见备用图2),分割出的两个直角三角形相似,
但相似比是:1:,所以不全等,
综上所述,不能把这个直角三角形分割成两个全等的小三角形。
本题考查作图,根据题意利用三角形中位线的性质以及垂直平分线的性质得出符合要求的图形是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、8或4
【解析】
由题意先求出AE=3,ED=6,因为EF=2>AB,分情况讨论点F在点E的左侧和右侧的情况,根据勾股定理求出GE(EH)即可求解.
【详解】
解:∵AD=9,AE:ED=1:2,
∴AE=3,ED=6,
又∵EF=2>AB,分情况讨论:
如下图:
当点F在点E的左侧时,做FG垂直AD,则FCDG为矩形,AB=FG,
CF=GD=ED+GE,在RT三角形GFE中,GE==2,
则此时CF=6+2=8;
如下图:
当点F在点E的右侧时,做FH垂直AD,同理可得CF=ED-EH,HF=AB=4,EH=2,
则此时CF=6-2=4;
综上,CF的长为8或4.
本题考查矩形,直角三角形的性质,也考查勾股定理解三角形,注意分情况讨论.
20、2
【解析】
根据题意PD=t,则PA=10-t,首先证明BP=BC=10,在Rt△ABP中利用勾股定理即可解决问题,
【详解】
解:如图,根据题意PD=t,则PA=10−t,
∵B、E、P共线,
∴∠BPC=∠DPC,
∵AD∥BC,
∴∠DPC=∠PCB,
∴∠BPC=∠PCB,
∴BP=BC=10,
在Rt△ABP中,
∵,
∴,
∴t=2或18(舍去),
∴PD=2,
∴t=2时,B、E、P共线;
故答案为:2.
本题主要考查了矩形的性质,轴对称的性质,掌握矩形的性质,轴对称的性质是解题的关键.
21、16或21
【解析】
分两种情况,由含30°角的直角三角形的性质求出原来矩形的长和宽,即可得出面积.
【详解】
解:∵四边形ABCD是平行四边形,
∴AD=BC=6,CD=AB=4,
分两种情况:
①四边形BEDF是原来的矩形,如图1所示:
则∠E=∠EBF=90°,
∴∠ABE=90°﹣∠ABC=30°,
∴AE=AB=2,BE=AE=2,
∴DE=AE+AD=8,
∴矩形BEDF的面积=BE×DE=2×8=16;
②四边形BGDH是原来的矩形,如图2所示:
同①得:CH=BC=3,BH=CH=3
∴DH=CH+CD=7,
∴矩形BGDH的面积=BH×DH=3×7=21;
综上所述,原来矩形的面积为16或21;
故答案为:16或21.
本题考查了矩形的性质、平行四边形的性质、含30°角的直角三角形的性质,熟练掌握矩形的性质和平行四边形的性质是解题的关键.
22、或
【解析】
根据矩形ABCD中,AB=2,BC=6,可求出对角线的长,再由点G、H分别是OB、OD的中点,可得GH=BD,从而求出GH的长,若四边形EGFH为矩形时,EF=GH,可求EF的长,通过作辅助线,构造直角三角形,由勾股定理可求出MF的长,最后通过设未知数,列方程求出BF的长.
【详解】
解:如图:过点E作EM⊥BC,垂直为M,
矩形ABCD中,AB=2,BC=6,
∴AB=EM=CD=2,AD=BC=6,∠A=90°,OB=OD,
在Rt△ABD中,BD==2,
又∵点G、H分别是OB、OD的中点,
∴GH=BD=,
当四边形EGFH为矩形时,GH=EF=,
在Rt△EMF中,FM==,
易证△BOF≌△DOE (AAS),
∴BF=DE,
∴AE=FC,
设BF=x,则FC=6-x,由题意得:x-(6-x)=,或(6-x)-x=,,
∴x=或x=,
故答案为:或.
考查矩形的性质、直角三角形的性质,勾股定理等知识,合理的作辅助线,将问题转化显得尤为重要,但是,分情况讨论容易受图形的影响而被忽略,应切实注意.
23、2
【解析】
用因式分解法可以求出方程的两个根分别是3和1,根据等腰三角形的三边关系,腰应该是1,底是3,然后可以求出三角形的周长.
【详解】
x2-9x+18=0
(x-3)(x-1)=0
解得x1=3,x2=1.
由三角形的三边关系可得:腰长是1,底边是3,
所故周长是:1+1+3=2.
故答案为:2.
此题考查解一元二次方程-因式分解,解题关键在于用十字相乘法因式分解求出方程的两个根,然后根据三角形的三边关系求出三角形的周长.
二、解答题(本大题共3个小题,共30分)
24、(1);(2)
【解析】
(1)首先化简二次根式,进而利用二次根式加减运算法则得出答案;
(2)首先化简二次根式,然后先将括号中二次根式相减,然后再除即可得出答案.
【详解】
解:(1)原式
(2)原式
此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.
25、2.
【解析】
分析:把a+通分化简,再把除法转化为乘法,并把分子、分母分解因式约分,化成最简分式(或整式)后把a=1代入计算.
详解:(a+)÷
=[+]•
=•
=•
=,
当a=1时,原式==2.
点睛:本题考查了分式的化简求值,熟练掌握分式混合运算的运算法则是解答本题的关键,本题也考查了运用平方差公式和完全平方公式分解因式.
26、证明见解析.
【解析】
根据三角形中位线定理和平行四边形的判定定理即可得到结论.
【详解】
证明:∵AD是△ABC边BC上的中线,F是BE的中点,
∴BF=EF,BD=CD,
∴DF∥CE,
∴AD∥CE,
∵AE∥BC,
∴四边形ADCE是平行四边形.
本题考查了三角形的中位线定理,平行四边形的判定定理,熟练掌握平行四边形的判定定理是解题的关键.
题号
一
二
三
四
五
总分
得分
河北省滦南县2024-2025学年数学九上开学教学质量检测模拟试题【含答案】: 这是一份河北省滦南县2024-2025学年数学九上开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河北省承德市腰站中学2025届九上数学开学教学质量检测试题【含答案】: 这是一份河北省承德市腰站中学2025届九上数学开学教学质量检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河北省沧州市2024-2025学年九上数学开学教学质量检测模拟试题【含答案】: 这是一份河北省沧州市2024-2025学年九上数学开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。