|试卷下载
终身会员
搜索
    上传资料 赚现金
    河北省保定市莲池区十三中学2024年数学九年级第一学期开学监测模拟试题【含答案】
    立即下载
    加入资料篮
    河北省保定市莲池区十三中学2024年数学九年级第一学期开学监测模拟试题【含答案】01
    河北省保定市莲池区十三中学2024年数学九年级第一学期开学监测模拟试题【含答案】02
    河北省保定市莲池区十三中学2024年数学九年级第一学期开学监测模拟试题【含答案】03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    河北省保定市莲池区十三中学2024年数学九年级第一学期开学监测模拟试题【含答案】

    展开
    这是一份河北省保定市莲池区十三中学2024年数学九年级第一学期开学监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)已知 x=-1 是一元二次方程 x2+px+q=0 的一个根,则代数式 p-q 的值是( )
    A.1B.-1C.2D.-2
    2、(4分)对四边形ABCD添加以下条件,使之成为平行四边形,正面的添加不正确的是( )
    A.AB∥CD,AD=BCB.AB=CD,AB∥CD
    C.AB=CD,AD=BCD.AC与BD互相平分
    3、(4分)若关于x的方程的解为正数,则m的取值范围是
    A.m<6B.m>6C.m<6且m≠0D.m>6且m≠8
    4、(4分)一种药品经过两次降价,药价从每盒60元下调至每盒48.6元,则平均每次降价的百分比是( )
    A.B.C. D.
    5、(4分)若一个正多边形的一个外角是30°,则这个正多边形的边数是( )
    A.9B.10C.11D.12
    6、(4分)某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:
    根据上表中的信息判断,下列结论中错误的是( )
    A.该班一共有40名同学
    B.该班学生这次考试成绩的众数是45分
    C.该班学生这次考试成绩的中位数是45分
    D.该班学生这次考试成绩的平均数是45分
    7、(4分)如图,在R△ABC中,∠ACB=90°,D为斜边AB的中点,动点P从点B出发,沿B→C→A运动,如图(1)所示,设,点P运动的路程为,若与之间的函数图象如图(2)所示,则的值为
    A.3B.4C.5D.6
    8、(4分)矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为( )
    A.3B.C.2或3D.3或
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)一种病毒长度约为0.0000056mm,数据0.0000056用科学记数法可表示为______.
    10、(4分)如图,在ABCD中,已知AB=9㎝,AD=6㎝,BE平分∠ABC交DC边于点E,则DE等于_____㎝.
    11、(4分)如图,在平面直角坐标系内所示的两条直线,其中函数随增大而减小的函数解析式是______________________
    12、(4分)若关于x的方程产生增根,那么 m的值是______.
    13、(4分)若方程组的解是,则直线y=﹣2x+b与直线y=x﹣a的交点坐标是_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,矩形ABCD中,对角线AC与BD相交于点O.
    (1)写出与相反的向量______;
    (2)填空:++=______;
    (3)求作:+(保留作图痕迹,不要求写作法).
    15、(8分)已知一次函数的图象经过点与点.
    (1)求这个一次函数的解析式;
    (2)若点和点在此一次函数的图象上,比较,的大小.
    16、(8分)如图,在△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点.求证:CD=EF.
    17、(10分)在正方形ABCD 中,点F是BC延长线上一点,过点B作BE⊥DF于点E,交CD于点G,连接CE.
    (1)若正方形ABCD边长为3,DF=4,求CG的长;
    (2)求证:EF+EG=CE.
    18、(10分)某中学八年级举行跳绳比赛,要求每班选出5名学生参加,在规定时间每人跳绳不低于150次为优秀,冠、亚军在八(1)、八(5)两班中产生.下表是这两个班的5名学生的比赛数据(单位:次)
    根据以上信息,解答下列问题:
    (1)求两班的优秀率及两班数据的中位数;
    (2)请你从优秀率、中位数和方差三方面进行简要分析,确定获冠军奖的班级.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在中,,点、、分别为、、的中点,若,则_________.
    20、(4分)若关于x的一元二次方程有实数根,且所有实数根均为整数,请写出一个符合条件的常数m的值:m=_____.
    21、(4分)若分式的值为0,则x的值为_______.
    22、(4分)在平面直角坐标系xOy中,点A、B分别在x轴、y轴的正半轴上运动,点M为线段AB的中点.点D、E分别在x轴、y轴的负半轴上运动,且DE=AB=1.以DE为边在第三象限内作正方形DGFE,则线段MG长度的最大值为_____.
    23、(4分)顺次连结任意四边形各边中点所得到的四边形一定是 .
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知A(n,-2),B(1,4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点,直线AB与y轴交于点C.
    (1)求反比例函数和一次函数的关系式;
    (2)求△AOC的面积;
    (3)求不等式kx+b-<0的解集(直接写出答案).
    25、(10分)一组数据:1,1,2,5,x的平均数是1.
    (1)求x的值;
    (2)求这组数据的方差.
    26、(12分)如图,将--张矩形纸片沿着对角线向上折叠,顶点落到点处,交于点作交于点连接交于点.
    (1)判断四边形的形状,并说明理由,
    (2)若,求的长,
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    由一元二次方程的解的定义,把x=-1代入已知方程,化简整理即可求得结果.
    【详解】
    解:∵x=-1 是一元二次方程 x2+px+q=0 的一个根,
    ∴,即,
    ∴p-q =1.
    故选A.
    本题考查了一元二次方程的解的定义,此类问题的一般思路:见解代入,整理化简.
    2、A
    【解析】
    根据平行四边形的判定方法依次判定各项后即可解答.
    【详解】
    选项A,AB∥CD,AD=BC,一组对边平行,另一组对边相等的四边形不一定是平行四边形,选项A不能够判定四边形ABCD是平行四边形;
    选项B,AB=CD,AB∥CD,一组对边平行且相等的四边形是平行四边形,选项B能够判定四边形ABCD是平行四边形;
    选项C,AB=CD,AD=BC,两组对边分别相等的四边形是平行四边形,选项C能够判定四边形ABCD是平行四边形;
    选项D,AC与BD互相平分,对角线互相平分的四边形是平行四边形,选项D能够判定四边形ABCD是平行四边形.
    故选A.
    本题考查了平行四边形的判定方法,熟练运用判定方法是解决问题的关键.
    3、C
    【解析】
    原方程化为整式方程得:2﹣x﹣m=2(x﹣2),
    解得:x=2﹣,
    ∵原方程的解为正数,
    ∴2﹣>0,
    解得m<6,
    又∵x﹣2≠0,
    ∴2﹣≠2,即m≠0.
    故选C.
    本题主要考查分式方程与不等式,解此题的关键在于先求出方程的解,再得到m的不等式求解即可,需要注意分式方程的分母不能为0.
    4、B
    【解析】
    设平均每次降价的百分比是x,则第一次降价后的价格为60×(1-x)元,第二次降价后的价格在第一次降价后的价格的基础上降低的,为60×(1-x)×(1-x)元,从而列出方程,然后求解即可.
    【详解】
    解:设平均每次降价的百分比是,根据题意得:

    解得:,(不合题意,舍去),
    答:平均每次降价的百分比是10%;
    故选:B.
    本题考查了一元二次方程的应用,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.
    5、D
    【解析】
    首先根据题意计算正多边形的内角,再利用正多边形的内角公式计算,即可得到正多边的边数.
    【详解】
    根据题意正多边形的一个外角是30°
    它的内角为:
    所以根据正多边形的内角公式可得:
    可得
    故选D.
    本题主要考查正多边形的内角公式,是基本知识点,应当熟练掌握.
    6、D
    【解析】
    试题解析:该班人数为:2+5+6+6+8+7+6=40,
    得45分的人数最多,众数为45,
    第20和21名同学的成绩的平均值为中位数,中位数为:=45,
    平均数为: =44.1.
    故错误的为D.
    故选D.
    7、A
    【解析】
    根据已知条件和图象可以得到BC、AC的长度,当x=4时,点P与点C重合,此时△DPC的面积等于△ABC面积的一半,从而可以求出y的最大值,即为a的值.
    【详解】
    根据题意可得,BC=4,AC=7−4=3,当x=4时,点P与点C重合,
    ∵∠ACB=90°,点D为AB的中点,
    ∴S△BDP=S△ABC,
    ∴y=××3×4=3,
    即a的值为3,
    故选:A.
    本题考查动点问题的函数图象,解题的关键是明确题意,利用数形结合的思想解决问题.
    8、D
    【解析】
    当△CEB′为直角三角形时,有两种情况:
    ①当点B′落在矩形内部时,如图1所示.
    连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=1,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.
    ②当点B′落在AD边上时,如图2所示.此时ABEB′为正方形.
    【详解】
    当△CEB′为直角三角形时,有两种情况:
    ①当点B′落在矩形内部时,如图1所示.
    连结AC,
    在Rt△ABC中,AB=1,BC=4,
    ∴AC==5,
    ∵∠B沿AE折叠,使点B落在点B′处,
    ∴∠AB′E=∠B=90°,
    当△CEB′为直角三角形时,只能得到∠EB′C=90°,
    ∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,
    ∴EB=EB′,AB=AB′=1,
    ∴CB′=5-1=2,
    设BE=x,则EB′=x,CE=4-x,
    在Rt△CEB′中,
    ∵EB′2+CB′2=CE2,
    ∴x2+22=(4-x)2,解得x=,
    ∴BE=;
    ②当点B′落在AD边上时,如图2所示.
    此时ABEB′为正方形,
    ∴BE=AB=1.
    综上所述,BE的长为或1.
    故选D.
    本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、5.1×10-1
    【解析】
    绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】
    解:0.0000051=5.1×10-1.
    故答案为:5.1×10-1.
    本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
    10、3
    【解析】
    ∵BE平分∠ABC,
    ∴∠ABE=∠CBE,
    又∵∠ABE和∠CEB为内错角,
    ∴∠ABE=∠CEB,
    ∴∠CEB=∠CBE,
    ∴CE=BC=AD=6㎝,
    ∵DC=AB=9㎝,
    ∴DE=3cm.
    11、;
    【解析】
    观察图象,分析函数图象随增大而减小的,说明向x轴的正方向移动,y成下降趋势.
    【详解】
    观察图象,分析函数图象随增大而减小的,说明向x轴的正方向移动,y成下降趋势.因此可分析的的图象随着随增大而减小的.
    故答案为
    本题主要考查一次函数的单调性,当k>0是,随增大而增大,当k<0时,随增大而减小.
    12、1
    【解析】
    分式方程去分母转化为整式方程,根据分式方程有增根得到x-2=0,将x=2代入整式方程计算即可求出m的值.
    【详解】
    分式方程去分母得:x−1=m+2x−4,
    由题意得:x−2=0,即x=2,
    代入整式方程得:2−1=m+4−4,
    解得:m=1.
    故答案为:1.
    此题考查分式方程的增根,解题关键在于掌握分式方程中增根的意义.
    13、(-1,3)
    【解析】
    直线y=-2x+b可以变成:2x+y=b,直线y=x-a可以变成:x-y=a,
    ∴两直线的交点即为方程组的解,
    故交点坐标为(-1,3).
    故答案为(-1,3).
    三、解答题(本大题共5个小题,共48分)
    14、 (1) ,;(2);(3)见解析.
    【解析】
    (1)观察图形直接得到结果;
    (2)由+=,+=即可得到答案;
    (3)根据平行四边形法则即可求解.
    【详解】
    解:(1)与相反的向量有,.
    (2)∵+=,+=,
    ∴++=.
    (3)如图,作平行四边形OBEC,连接AE,即为所求.
    故答案为(1) ,;(2);(3)见解析.
    本题考查了平面向量,平面向量知识在初中数学教材中只有沪教版等极少数版本中出现.
    15、 (1) y=2x-1;(2)m【解析】
    (1)设一次函数解析式为y=kx+b,将已知两点坐标代入得到方程组,求出方程组的解得到k与b的值,即可确定出一次函数解析式;
    (2)利用一次函数图象的增减性进行解答.
    【详解】
    (1)设一次函数的解析式为y=kx+b(k≠0),
    ∵一次函数的图象经过点(3,5)与(-4,-9),
    ∴,解得,
    ∴这个函数的解析式为y=2x-1;
    (2)∵k=2>0,
    ∴y随x的增大而增大.
    ∵a<a+1,
    ∴m本题考查待定系数法求一次函数解析式,属于比较基础的题,注意待定系数法的掌握,待定系数法是中学数学一种很重要的解题方法.
    16、根据直角三角形的性质可得,再根据中位线定理可得,问题得证.
    【解析】
    根据直角三角形斜边中中线等于斜边的一半可得,再根据中位线定理可得,从而可以得到
    17、 (1);(2)证明见解析.
    【解析】
    (1)根据正方形的性质可得∠BCG=∠DCB=∠DCF=90°,BC=DC,再根据同角的余角相等求出∠CBG=∠CDF,然后利用“角边角”证明△CBG和△CDF全等,根据全等三角形对应边相等可得BG=DF,再利用勾股定理列式计算即可得解;
    (2)过点过点C作CM⊥CE交BE于点M,根据全等三角形对应边相等可得CG=CF,全等三角形对应角相等可得∠F=∠CGB,再利用同角的余角相等求出∠MCG=∠ECF,然后利用“角边角”证明△MCG和△ECF全等,根据全等三角形对应边相等可得MG=EF,CM=CE,从而判断出△CME是等腰直角三角形,再根据等腰直角三角形的性质证明即可.
    【详解】
    (1)解:∵四边形ABCD是正方形,
    ∴∠BCG=∠DCB=∠DCF=90°,BC=DC,
    ∵BE⊥DF,
    ∴∠CBG+∠F=∠CDF+∠F,
    ∴∠CBG=∠CDF,
    在△CBG和△CDF中,

    ∴△CBG≌△CDF(ASA),
    ∴BG=DF=4,
    ∴在Rt△BCG中,CG2+BC2=BG2,
    ∴CG==;
    (2)证明:如图,过点C作CM⊥CE交BE于点M,
    ∵△CBG≌△CDF,
    ∴CG=CF,∠F=∠CGB,
    ∵∠MCG+∠DCE=∠ECF+∠DCE=90°,
    ∴∠MCG=∠ECF,
    在△MCG和△ECF中,

    ∴△MCG≌△ECF(SAS),
    ∴MG=EF,CM=CE,
    ∴△CME是等腰直角三角形,
    ∴ME=CE,
    又∵ME=MG+EG=EF+EG,
    ∴EF+EG=CE.
    本题考查了正方形的性质;全等三角形的判定与性质;勾股定理;等腰直角三角形,熟练掌握性质定理是解题的关键.
    18、 (1) 八(1)班的优秀率为,八(2)班的优秀率为 八(1)、八(2)班的中位数分别为150,147;(2)八(1)班获冠军奖
    【解析】
    (1)根据表中信息可得出优秀人数和总数,即可得出优秀率;首先将成绩由低到高排列,即可得出中位数;
    (2)直接根据表中信息,分析即可.
    【详解】
    (1)八(1)班的优秀率为,八(2)班的优秀率为
    ∵八(1)班的成绩由低到高排列为139,148,150,153,160
    八(2)班的成绩由低到高排列为139,145,147,150,169
    ∴八(1),八(2)班的中位数分别为150,147
    (2)八(1)班获冠军奖.
    理由:从优秀率看,八(1)班的优秀人数多;
    从中位数来看,八(1)班较大,一般水平较高;
    从方差来看,八(1)班的成绩也比八(2)班的稳定
    ∴八(1)班获冠军奖.
    此题主要考查数据的处理,熟练掌握,即可解题.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    根据直角三角形的性质求出AB,根据三角形中位线定理求出EF.
    【详解】
    解:∵∠ACB=90°,点D为AB的中点,
    ∴AB=2CD=16,
    ∵点E、F分别为AC、BC的中点,
    ∴EF=AB=1,
    故答案为:1.
    本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
    20、0(答案不唯一)
    【解析】
    利用判别式的意义得到△=62-4m≥0,解不等式得到m的范围,在此范围内取m=0即可.
    【详解】
    △=62-4m≥0,
    解得m≤9;
    当m=0时,方程变形为x2+6x=0,解得x1=0,x2=-6,
    所以m=0满足条件.
    故答案为:0(答案不唯一).
    本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.
    21、-1
    【解析】
    根据分式的值为零的条件可以求出x的值.
    【详解】
    解:根据题意得:,
    解得:x=-1.
    故答案为:-1.
    若分式的值为零,需同时具备两个条件:(1)分子为2;(2)分母不为2.这两个条件缺一不可.
    22、1+2
    【解析】
    取DE的中点N,连结ON、NG、OM.根据勾股定理可得.在点M与G之间总有MG≤MO+ON+NG(如图1),M、O、N、G四点共线,此时等号成立(如图2).可得线段MG的最大值.
    【详解】
    如图1,取DE的中点N,连结ON、NG、OM.
    ∵∠AOB=90°,
    ∴OM=AB=2.
    同理ON=2.
    ∵正方形DGFE,N为DE中点,DE=1,
    ∴.
    在点M与G之间总有MG≤MO+ON+NG(如图1),
    如图2,由于∠DNG的大小为定值,只要∠DON=∠DNG,且M、N关于点O中心对称时,M、O、N、G四点共线,此时等号成立,
    ∴线段MG取最大值1+2.
    故答案为:1+2.
    此题考查了直角三角形的性质,勾股定理,四点共线的最值问题,得出M、O、N、G四点共线,则线段MG长度的最大是解题关键.
    23、平行四边形
    【解析】
    试题分析:由三角形的中位线的性质,平行与第三边且等于第三边的一半,根据一组对边平行且相等的四边形是平行四边形.
    考点:平行四边形的判定
    二、解答题(本大题共3个小题,共30分)
    24、 (1)反比例函数关系式:;一次函数关系式:y=1x+1;(1) 3;(3)x<-1或0【解析】
    分析:(1)由B点在反比例函数y=上,可求出m,再由A点在函数图象上,由待定系数法求出函数解析式;
    (1)由上问求出的函数解析式联立方程求出A,B,C三点的坐标,从而求出△AOC的面积;
    (3)由图象观察函数y=的图象在一次函数y=kx+b图象的上方,对应的x的范围.
    详解:(1)∵B(1,4)在反比例函数y=上,
    ∴m=4,
    又∵A(n,-1)在反比例函数y=的图象上,
    ∴n=-1,
    又∵A(-1,-1),B(1,4)是一次函数y=kx+b的上的点,联立方程组解得,
    k=1,b=1,
    ∴y=,y=1x+1;
    (1)过点A作AD⊥CD,
    ∵一次函数y=kx+b的图象和反比例函数y=的图象的两个交点为A,B,联立方程组解得,
    A(-1,-1),B(1,4),C(0,1),
    ∴AD=1,CO=1,
    ∴△AOC的面积为:S=AD•CO=×1×1=1;
    (3)由图象知:当0<x<1和-1<x<0时函数y=的图象在一次函数y=kx+b图象的上方,
    ∴不等式kx+b-<0的解集为:0<x<1或x<-1.
    点睛:此题考查一次函数和反比例函数的性质及图象,考查用待定系数法求函数的解析式,还间接考查函数的增减性,从而来解不等式.
    25、(1)x=4;(2)2.
    【解析】
    (1)根据算术平均数定义列出关于x的方程,解之可得x的值;
    (2)根据方差计算公式计算可得.
    【详解】
    解:(1)根据题意知=1,
    解得:x=4;
    (2)方差为×[(1﹣1)2+(1﹣1)2+(2﹣1)2+(5﹣1)2+(4﹣1)2]=2.
    考查方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2= ,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    26、(1)四边形为菱形,见解析;(2)
    【解析】
    (1)根据已知矩形性质证明四边形为平行四边形,再根据折叠的性质证明,得出即可得出结论;
    (2)根据折叠特性设未知边,构造勾股定理列方程求解.
    【详解】
    解: 四边形为菱形;
    理由如下:
    四边形为矩形,
    四边形为平行四边形
    由折叠的性质,则
    四边形为菱形,

    .
    由得
    设.
    在,
    解得:,

    .
    此题考查了矩形的性质、菱形的判定和性质、勾股定理解答,考查了翻折不变性,综合性较强,是一道好题.
    题号





    总分
    得分
    成绩(分)
    35
    39
    42
    44
    45
    48
    50
    人数(人)
    2
    5
    6
    6
    8
    7
    6
    1号
    2号
    3号
    4号
    5号
    平均数
    方差
    八(1)班
    139
    148
    150
    160
    153
    150
    46.8
    八(5)班
    150
    139
    145
    147
    169
    150
    103.2
    相关试卷

    河北省保定市莲池区十三中学2024年数学九年级第一学期开学达标检测试题【含答案】: 这是一份河北省保定市莲池区十三中学2024年数学九年级第一学期开学达标检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    河北省保定市莲池区冀英学校2024-2025学年九年级数学第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份河北省保定市莲池区冀英学校2024-2025学年九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共19页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。

    河北省保定市莲池区十三中学2023-2024学年数学九上期末达标测试试题含答案: 这是一份河北省保定市莲池区十三中学2023-2024学年数学九上期末达标测试试题含答案,共8页。试卷主要包含了边长等于6的正六边形的半径等于等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map