终身会员
搜索
    上传资料 赚现金

    贵州省遵义市桐梓达兴中学2024年数学九上开学经典试题【含答案】

    立即下载
    加入资料篮
    贵州省遵义市桐梓达兴中学2024年数学九上开学经典试题【含答案】第1页
    贵州省遵义市桐梓达兴中学2024年数学九上开学经典试题【含答案】第2页
    贵州省遵义市桐梓达兴中学2024年数学九上开学经典试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    贵州省遵义市桐梓达兴中学2024年数学九上开学经典试题【含答案】

    展开

    这是一份贵州省遵义市桐梓达兴中学2024年数学九上开学经典试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。


    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列说法正确的是( )
    A.抛掷一枚硬币10次,正面朝上必有5次;
    B.掷一颗骰子,点数一定不大于6;
    C.为了解某种灯光的使用寿命,宜采用普查的方法;
    D.“明天的降水概率为90%”,表示明天会有90%的地方下雨.
    2、(4分)若x-,则x-y的值为( )
    A.2B.1C.0D.-1
    3、(4分)若式子的值等于0,则x的值为( )
    A.±2B.-2C.2D.-4
    4、(4分)如图,已知正方形ABCD的边长为1,连结AC、BD,CE平分∠ACD交BD于点E,则DE长( )
    A.B.C.1D.1﹣
    5、(4分)如图,经过点B(1,0)的直线y=kx+b与直线y=4x+4相交于点A(m,),则kx+b<4x+4的解集为( )
    A.x>B.x<C.x<1D.x>1
    6、(4分)一个菱形的周长是20,一条对角线长为6,则菱形的另一条对角线长为( )
    A.4B.5C.8D.10
    7、(4分)下列代数式是分式的是( )
    A.B.C.D.
    8、(4分)已知是正比例函数,则m的值是( )
    A.8B.4C.±3D.3
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,已知矩形ABCD的边AB=3,AD=8,顶点A、D分别在x轴、y轴上滑动,在矩形滑动过程中,点C到原点O距离的最大值是______.
    10、(4分)小数0.00002l用科学记数法表示为_____.
    11、(4分)观察下面的变形规律:
    =-1,=-,=-,=-,…
    解答下面的问题:
    (1) 若为正整数,请你猜想=________;
    (2) 计算:
    12、(4分)如图,它是个数值转换机,若输入的a值为,则输出的结果应为____.
    13、(4分)写出一个图象经过一,三象限的正比例函数y=kx(k≠0)的解析式(关系式) .
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,点A(1,4)、B(2,a)在函数y=(x>0)的图象上,直线AB与x轴相交于点C,AD⊥x轴于点D.
    (1)m= ;
    (2)求点C的坐标;
    (3)在x轴上是否存在点E,使以A、B、E为顶点的三角形与△ACD相似?若存在,求出点E的坐标;若不存在,说明理由.
    15、(8分)阅读下列解题过程:

    .
    请回答下列问题:
    (1)计算;
    (2)计算.
    16、(8分)如图,矩形中,分别是的中点,分别交于两点.
    求证:(1)四边形是平行四边形;
    (2).

    17、(10分)如图,在四边形ABCD中,AB∥DC,边AD与BC不平行
    (1)若∠A=∠B,求证:AD=BC.
    (2)已知AD=BC,∠A=70°,求∠B的度数.
    18、(10分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(0,﹣1).
    (1)写出A、B两点的坐标
    (1)经过平移,△ABC的顶点A移到了点A1,画出平移后的△A1B1C1;若△ABC内有一点P(a,b),直接写出按(1)的平移变换后得到对应点P1的坐标.
    (3)画出△ABC绕点C旋转180°后得到的△A1B1C1.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)设甲组数:1,1,2,5的方差为S甲2,乙组数是:6,6,6,6的方差为S乙2,则S甲2与S乙2的大小关系是S甲2_____S乙2(选择“>”、“<”或“=”填空).
    20、(4分)在周长为的平行四边形中,相邻两条边的长度比为,则这个平行四边形的较短的边长为________.
    21、(4分)如图,矩形ABCD的对角线AC、BD相交于点O,∠AOB=120°,CE//BD,DE//AC,若AD=5,则四边形CODE的周长______.
    22、(4分)如图,函数y= (x>0)的图象与矩形OABC的边BC交于点D,分别过点A,D作AF∥DE,交直线y=k2x(k2<0)于点F,E.若OE=OF,BD=2CD,四边形ADEF的面积为12,则k1的值为________.
    23、(4分)设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设秒后两车间的距离为千米,关于的函数关系如图所示,则甲车的速度是______米/秒.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)数学综合实验课上,同学们在测量学校旗杆的高度时发现:将旗杆顶端升旗用的绳子垂到地面还多2米;当把绳子的下端拉开8米后,下端刚好接触地面,如图,根据以上数据,同学们准确求出了旗杆的高度,你知道他们是如何计算出来的吗?
    25、(10分)如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF,求证:四边形ADCF是菱形.
    26、(12分)甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.
    甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.
    乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.
    (1)求如图所示的y与x的函数解析式:(不要求写出定义域);
    (2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    利用概率的意义、普查和抽样调查的特点即可作出判断.
    【详解】
    A. 抛掷一枚硬币10次,可能出现正面朝上有5次是随机的,故选项错误;
    B. 正确;
    C. 调查灯泡的使用寿命具有破坏性,因而适合抽查,故选项错误;
    D. “明天的降水概率为90%”,表示明天下雨的可能性是90%,故选项错误。
    故选B.
    此题考查概率的意义,随机事件,全面调查与抽样调查,解题关键在于掌握各性质
    2、B
    【解析】
    直接利用二次根式的性质得出y的值,进而得出答案.
    【详解】
    解:∵与都有意义,
    ∴y=0,
    ∴x=1,
    故选x-y=1-0=1.
    故选:B.
    此题考查二次根式有意义的条件,正确把握二次根式的定义是解题关键.
    3、C
    【解析】
    =0且x²+4x+4≠0,
    解得x=2.
    故选C.
    4、A
    【解析】
    过E作EF⊥DC于F,根据正方形对角线互相垂直以及角平分线的性质可得EO=EF,再由正方形的性质可得CO=AC=,继而可得EF=DF=DC-CF=1-,再根据勾股定理即可求得DE长.
    【详解】
    过E作EF⊥DC于F,
    ∵四边形ABCD是正方形,
    ∴AC⊥BD,
    ∵CE平分∠ACD交BD于点E,
    ∴EO=EF,
    ∵正方形ABCD的边长为1,
    ∴AC=,
    ∴CO=AC=,
    ∴CF=CO=,
    ∴EF=DF=DC-CF=1-,
    ∴DE= =-1,
    故选A.
    本题考查了正方形的性质、角平分线的性质、勾股定理等知识,正确添加辅助线、熟练应用相关性质与定理进行解题是关键.
    5、A
    【解析】
    将点A(m,)代入y=4x+4求出m的值,观察直线y=kx+b落在直线y=4x+4的下方对应的x的取值即为所求.
    【详解】
    ∵经过点B(1,0)的直线y=kx+b与直线y=4x+4相交于点A(m,),
    ∴4m+4=,
    ∴m=-,
    ∴直线y=kx+b与直线y=4x+4的交点A的坐标为(-,),直线y=kx+b与x轴的交点坐标为B(1,0),
    ∴当x>-时,kx+b<4x+4,
    故选A.
    本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
    6、C
    【解析】
    首先根据题意画出图形,由菱形周长为20,可求得其边长,又由它的一条对角线长6,利用勾股定理即可求得菱形的另一条对角线长.
    【详解】
    如图,∵菱形ABCD的周长为20,对角线AC=6,
    ∴AB=5,AC⊥BD,OA=AC=3,
    ∴OB==4,
    ∴BD=2OB=1,
    即菱形的另一条对角线长为1.
    故选:C.
    此题考查菱形的性质以及勾股定理.解题关键在于注意菱形的对角线互相平分且垂直.
    7、D
    【解析】
    判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.
    【详解】
    、、的分母中均不含有字母,因此它们是整式,而不是分式;
    分母中含有字母,因此是分式.
    故选:D.
    考查分式的定义,掌握分式的定义是判断代数式是不是分式的前提.
    8、D
    【解析】
    直接利用正比例函数的定义分析得出即可.
    【详解】
    ∵y=(m+2)xm2﹣8是正比例函数,
    ∴m2﹣8=2且m+2≠0,
    解得m=2.
    故选:D.
    考查了正比例函数的定义,解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为2.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    取AD的中点E,连接OE,CE,OC,根据直角三角形斜边上的中线等于斜边的一半即可求出OE,然后根据勾股定理即可求CE,然后根据两点之间线段最短即可求出OC的最大值.
    【详解】
    如图,取AD的中点E,连接OE,CE,OC,
    ∵∠AOD=10°,
    ∴Rt△AOD中,OE=AD=4,
    又∵∠ADC=10°,AB=CD=3,DE=4,
    ∴Rt△CDE中,CE==5,
    又∵OC≤CE+OE=1(当且仅当O、E、C共线时取等号),
    ∴OC的最大值为1,
    即点C到原点O距离的最大值是1,
    故答案为:1.
    此题考查的是直角三角形的性质和求线段的最值问题,掌握直角三角形斜边上的中线等于斜边的一半、利用勾股定理解直角三角形和两点之间线段最短是解决此题的关键.
    10、2.1×10﹣1
    【解析】
    绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】
    解:小数0.00002l用科学记数法表示为2.1×10-1.
    故答案为2.1×10-1.
    本题考查了用科学记数法表示较小的数,一般形式为a×,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
    11、(1)、;(2)、1.
    【解析】
    试题分析:(1)根据所给等式确定出一般规律,写出即可;
    (2)先将各式分母有理化,此时发现除第二项和倒数第二项外,其他各项的和为0,故可求出答案.
    解:(1)﹣
    (2)原式=[( ﹣1)+( ﹣ )+( ﹣ )+…+( ﹣ )]( +1)
    =( ﹣1)( +1)
    =( )2﹣12
    =2016﹣1
    =1.
    点睛:本题主要考查了代数式的探索与规律,二次根式的混合运算,根据所给的等式找到规律是解题的关键.
    12、-
    【解析】
    [()2-4]==.
    故答案为-
    13、y=2x
    【解析】
    试题分析:根据正比例函数y=kx的图象经过一,三象限,可得k>0,写一个符合条件的数即可.
    解:∵正比例函数y=kx的图象经过一,三象限,
    ∴k>0,
    取k=2可得函数关系式y=2x.
    故答案为y=2x.
    点评:此题主要考查了正比例函数的性质,关键是掌握正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.
    三、解答题(本大题共5个小题,共48分)
    14、(1)1;(2)C的坐标为(3,0);(3)(﹣2,0).
    【解析】
    试题分析:(1)把点代入求值.(2)先利用反比例函数求出A,B,点坐标,再利用待定系数法求直线方程.(3)假设存在E点,因为ACD是直角三角形,假设ABE也是直角三角形,利用勾股定理分别计算A,B,C,是直角时AB长度,均与已知矛盾,所以不存在.
    试题解析:
    解:(1)∵点A(1,1)在反比例函数y=(x>0)的图象上,
    ∴m=1×1=1,
    故答案为1.
    (2)∵点B(2,a)在反比例函数y=的图象上,
    ∴a==2,
    ∴B(2,2).
    设过点A、B的直线的解析式为y=kx+b,
    ∴,解得:,
    ∴过点A、B的直线的解析式为y=﹣2x+2.
    当y=0时,有﹣2x+2=0,
    解得:x=3,
    ∴点C的坐标为(3,0).
    (3)假设存在,设点E的坐标为(n,0).
    ①当∠ABE=90°时(如图1所示),
    ∵A(1,1),B(2,2),C(3,0),
    ∴B是AC的中点,
    ∴EB垂直平分AC,EA=EC=n+3.
    由勾股定理得:AD2+DE2=AE2,即12+(x+1)2=(x+3)2,
    解得:x=﹣2,
    此时点E的坐标为(﹣2,0);
    ②当∠BAE=90°时,∠ABE>∠ACD,
    故△EBA与△ACD不可能相似;
    ③当∠AEB=90°时,∵A(1,1),B(2,2),
    ∴AB=,2>,
    ∴以AB为直径作圆与x轴无交点(如图3),
    ∴不存在∠AEB=90°.
    综上可知:在x轴上存在点E,使以A、B、E为顶点的三角形与△ACD相似,点E的坐标为(﹣2,0).
    15、(1);(2)
    【解析】
    (1)通过分母有理化进行计算;
    (2)先分母有理化,然后合并即可.
    【详解】
    解:(1)
    (2)原式

    .
    考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
    16、(1)证明见解析;(2)证明见解析.
    【解析】
    (1)根据一组对边平行且相等的四边形是平行四边形证明即可;
    (2)可证明EG和FH所在的△DEG、△BFH全等即可.
    【详解】
    解:(1)∵四边形ABCD是矩形,
    ∴AD∥BC,AD=BC,
    ∵E、F分别是AD、BC的中点,
    ∴AE=AD,CF=BC,
    ∴AE=CF,
    ∴四边形AFCE是平行四边形;
    (2)∵四边形AFCE是平行四边形,
    ∴CE∥AF,
    ∴∠DGE=∠AHD=∠BHF,
    ∵AB∥CD,
    ∴∠EDG=∠FBH,
    在△DEG和△BFH中 ,
    ∴△DEG≌△BFH(AAS),
    ∴EG=FH.
    17、 (1)证明见解析;(2)∠B=70°.
    【解析】
    (1)过C作CE∥AD于点E,可证明四边形ADCE是平行四边形,根据平行四边形的性质可得AD=CE,根据AD∥CE,可得∠A=∠CEB,根据等量代换可得∠CEB=∠B,进而得到CE=BC,从而可得AD=BC;
    (2)过C作CE∥AD,可证明四边形ADCE是平行四边形,根据平行四边形的性质可得AD=CE,再由条件AD=BC可得CE=BC,根据等边对等角可得∠B=∠CEB,再根据平行线的性质可得∠A=∠CEB,利用等量代换可得∠B=∠A.
    【详解】
    (1) 证明:过C作CE∥AD于点E,
    ∵AB∥DC,CE∥AD
    ∴四边形ADCE是平行四边形,
    ∴AD=CE,
    ∵AD∥CE,
    ∴∠A=∠CEB,
    ∵∠A=∠B,
    ∴∠CEB=∠B,
    ∴CE=CB,
    ∴AD=CB;
    (2)过C作CE∥AD于点E,
    ∵AB∥DC,CE∥AD
    ∴四边形ADCE是平行四边形,
    ∴AD=CE,
    ∵AD=BC,
    ∴CE=CB,
    ∴∠B=∠CEB,
    ∵AD∥CE,
    ∴∠A=∠CEB,
    ∴∠B=∠A=70°.
    本题主要考查平行四边形的判定及性质,等腰三角形的性质,掌握平行四边形的性质是解题的关键.
    18、(1)A(﹣1,1),B(﹣3,1);(1)P1(a+4,b+1);(3)见解析.
    【解析】
    (1)根据直角坐标系写出A、B两点的坐标即可.
    (1)首先确定点A的平移路径,再将B和C按照点A的平移路线平移,再将平移点连接起来即可.
    (3)首先根据点C将A点和B点旋转 ,再将旋转后的点连接起来即可.
    【详解】
    解:(1)根据图形得:A(﹣1,1),B(﹣3,1);
    (1)如图所示:△A1B1C1,即为所求;
    根据题意得:P1(a+4,b+1);
    (3)如图所示:△A1B1C1,即为所求.
    本题主要考查直角坐标系中图形的平移和旋转,关键在于根据点的平移和旋转来确定图形的平移和旋转.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、>
    【解析】
    根据方差的意义进行判断.
    【详解】
    因为甲组数有波动,而乙组的数据都相等,没有波动,
    所以s甲1>s乙1.
    故答案为:>.
    本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
    20、1
    【解析】
    由已知可得相邻两边的和为9,较短边长为xcm,则较长边长为2x,解方程x+2x=9即可.
    【详解】
    因为平行四边形周长为18cm,所以相邻两边的长度之和为9cm.设较短边长为xcm,则较长边长为2x,所以x+2x=9,解得x=1.故答案为1.
    本题主要考查了平行四边形的性质,解决平行四边形周长问题一定要熟记平行四边形周长等于两邻边和的2倍.
    21、1
    【解析】
    通过矩形的性质可得,再根据∠AOB=11°,可证△AOD是等边三角形,即可求出OD的长度,再通过证明四边形CODE是菱形,即可求解四边形CODE的周长.
    【详解】
    ∵四边形ABCD是矩形

    ∵∠AOB=11°

    ∴△AOD是等边三角形



    ∵CE//BD,DE//AC
    ∴四边形CODE是平行四边形

    ∴四边形CODE是菱形

    ∴四边形CODE的周长
    故答案为:1.
    本题考查了四边形的周长问题,掌握矩形的性质、等边三角形的性质、菱形的性质以及判定定理是解题的关键.
    22、2
    【解析】
    如图,连接OD,过O作OM∥ED交AD于M,可以得出S△AOD=S四边形ADEF,进而得到S矩形OACB的值.作DH⊥OA于H,可得S矩形OCDH,从而得到结论.
    【详解】
    解:如图,连接OD,过O作OM∥ED交AD于M.
    S△AOD=S△AOM+S△DOM=OM×h1+OM×h2==OM(h1+h2),S四边形ADEF=(AF+ED)h.
    又∵OM=(AF+ED),h1+h2=h,故S△AOD=S四边形ADEF=×12=1.
    ∵△AOD和矩形OACB同底等高,故S矩形OACB=12,作DH⊥OA于H.
    ∵ BD=2CD ,BC=3CD,故S矩形OCDH=×12=2,即CD×DH=xy=k1=2.
    故答案为:2.
    本题考查了反比例函数与几何综合.求出S△AOD的值是解答本题的关键.
    23、20
    【解析】
    试题分析:设甲车的速度是m米/秒,乙车的速度是n米/秒,根据题意及图形特征即可列方程组求解.
    设甲车的速度是m米/秒,乙车的速度是n米/秒,由题意得
    ,解得
    则甲车的速度是20米/秒.
    考点:实际问题的函数图象,二元一次方程组的应用
    点评:此类问题是初中数学的重点,在中考中比较常见,一般难度不大,需熟练掌握.
    二、解答题(本大题共3个小题,共30分)
    24、旗杆的高度为12米.
    【解析】
    因为旗杆、绳子、地面正好构成直角三角形,设旗杆的高度AB=x米,则绳子的长度AC=(x+1)米,根据勾股定理即可求得旗杆的高度.
    【详解】
    设旗杆高AB=xm,则绳子长为AC=(x+1)m.
    在Rt△ABC中,∠ABC=90°,
    由勾股定理得AB2+BC2=AC2,
    所以x2+52=(x+1)2.
    解得x=12m.
    所以旗杆的高度为12米.
    本题考查了勾股定理的应用,勾股定理揭示了直角三角形三边长之间的数量关系:直角三角形两直角边的平方和等于斜边的平方.当题目中出现直角三角形,且该直角三角形的一边为待求量时,常使用勾股定理进行求解这在几何的计算问题中是经常用到的,请同学们熟记并且能熟练地运用它.
    25、见解析
    【解析】
    根据AAS证△AFE≌△DBE,推出AF=BD.结合已知条件,利用“有一组对边平行且相等的四边形是平行四边形”得到ADCF是平行四边形,进而证明ADCF是菱形.
    【详解】
    证明:∵AF∥BC,
    ∴∠AFE=∠DBE,
    ∵E是AD的中点,AD是BC边上的中线,
    ∴AE=DE,BD=CD,
    在△AFE和△DBE中,

    ∴△AFE≌△DBE(AAS);
    ∴AF=DB.
    ∵DB=DC,
    ∴AF=CD.
    ∵AF∥BC,
    ∴四边形ADCF是平行四边形,
    ∵∠BAC=90°,D是BC的中点,E是AD的中点,
    ∴AD=BC=DC,
    ∴四边形ADCF是菱形.
    本题考查了全等三角形的性质和判定,平行四边形的判定,菱形的判定的应用,解题的关键是正确寻找全等三角形,利用直角三角形的性质解决问题,属于中考常考题型.
    26、(1)y=5x+1.(2)乙.
    【解析】
    试题分析:(1)利用待定系数法即可解决问题;
    (2)绿化面积是1200平方米时,求出两家的费用即可判断;
    试题解析:(1)设y=kx+b,则有 ,解得 ,
    ∴y=5x+1.
    (2)绿化面积是1200平方米时,甲公司的费用为61元,乙公司的费用为5500+4×200=6300元,
    ∵6300<61
    ∴选择乙公司的服务,每月的绿化养护费用较少.
    题号





    总分
    得分
    批阅人

    相关试卷

    2024年贵州遵义市达兴中学数学九上开学监测模拟试题【含答案】:

    这是一份2024年贵州遵义市达兴中学数学九上开学监测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年贵州省遵义市桐梓县私立达兴中学九上数学开学达标检测试题【含答案】:

    这是一份2024年贵州省遵义市桐梓县私立达兴中学九上数学开学达标检测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年贵州省遵义市桐梓县私立达兴中学数学九上期末调研模拟试题含答案:

    这是一份2023-2024学年贵州省遵义市桐梓县私立达兴中学数学九上期末调研模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,抛物线的顶点坐标是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map