|试卷下载
终身会员
搜索
    上传资料 赚现金
    广西壮族自治区崇左市2024年九上数学开学复习检测试题【含答案】
    立即下载
    加入资料篮
    广西壮族自治区崇左市2024年九上数学开学复习检测试题【含答案】01
    广西壮族自治区崇左市2024年九上数学开学复习检测试题【含答案】02
    广西壮族自治区崇左市2024年九上数学开学复习检测试题【含答案】03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广西壮族自治区崇左市2024年九上数学开学复习检测试题【含答案】

    展开
    这是一份广西壮族自治区崇左市2024年九上数学开学复习检测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)已知等腰△ABC的两边长分别为2和3,则等腰△ABC的周长为( )
    A.7B.8C.6或8D.7或8
    2、(4分)如图,在中,,点、分别是、的中点,点是的中点,若,则的长度为( )
    A.4B.3C.2.5D.5
    3、(4分)受今年五月份雷暴雨影响,深圳某路段长120米的铁路被水冲垮了,施工队抢分夺秒每小时比原计划多修5米,结果提前4小时开通了列车.若原计划每小时修x米,则所列方程正确的是( )
    A.B.C.D.
    4、(4分)我市某一周每天的最高气温统计如下(单位:℃):27,28,1,28,1,30,1.这组数据的众数与中位数分别是( ).
    A.28,28B.28,1C.1,28D.1,1
    5、(4分)某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( )
    A.2400元、2400元
    B.2400元、2300元
    C.2200元、2200元
    D.2200元、2300元
    6、(4分)如图,在矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,使点D落在E处,CE交AB于点O,若BO=3m,则AC的长为( )
    A.6cmB.8cmC.5cmD.4cm
    7、(4分)如图,在平面直角坐标系中,以O(0,0),A(1,1),B(3,0)为顶点,构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是( )
    A.(-3,1)B.(4,1)
    C.(-2,1)D.(2,-1)
    8、(4分)已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是( )
    A.选①②B.选②③C.选①③D.选②④
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,反比例函数 y=的图象经过矩形 OABC 的一个顶点 B,则矩形 OABC 的面积等于___.
    10、(4分)如图,有Rt△ABC的三边向外作正方形,若最大正方形的边长为8cm,则正方形M与正方形N的面积之和为 .
    11、(4分)某航空公司规定,乘客所携带行李的重量x(kg)与运费y(元)满足如图所示的函数图象,那么每位乘客最多可免费携带____kg的行李.
    12、(4分)一组数据15、13、14、13、16、13的众数是______,中位数是______.
    13、(4分)已知一元二次方程x2-6x+a =0有一个根为2,则另一根为_______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在正方形ABCD中,AB=3,点E,F分别在CD,AD上,CE=DF,BE,CF相交于点G.
    (1)求BGC的度数;
    (2)若CE=1,H为BF的中点时,求HG的长度;
    (3)若图中阴影部分的面积与正方形ABCD的面积之比为2:3,求△BCG的周长.
    15、(8分)如图所示,点P的坐标为(1,3),把点P绕坐标原点O逆时针旋转90°后得到点Q.
    (1)写出点Q的坐标是________;
    (2)若把点Q向右平移个单位长度,向下平移个单位长度后,得到的点落在第四象限,求的取值范围;
    (3)在(2)条件下,当取何值,代数式取得最小值.
    16、(8分)如图,在平面直角坐标系xOy中,矩形ABCD的边AD=3,A(,0),B(2,0),直线y=kx+b(k≠0)经过B,D两点.
    (1)求直线y=kx+b(k≠0)的表达式;
    (2)若直线y=kx+b(k≠0)与y轴交于点M,求△CBM的面积.
    17、(10分)对于自变量的不同的取值范围,有着不同的对应法则,这样的函数通常叫做分段函数.对于分段函数,在自变量不同的取值范围内,对应的函数表达式也不同.例如:是分段函数,当时,函数的表达式为;当时,函数表达式为.
    (1)请在平面直角坐标系中画出函数的图象;
    (2)当时,求的值;
    (3)当时,求自变量的取值范围.
    18、(10分)我市某火龙果基地销售火龙果,该基地对需要送货且购买量在2000kg~5000kg(含2000kg和5000kg)的客户有两种销售方案(客户只能选择其中一种方案):方案A:每千克6.8元,由基地免费送货;方案B:每千克6元,客户需支付运费2000元 .
    (1)请分别写出按方案A,方案B购买这种火龙果的应付款y(元)与购买数量x(kg)之间的函数表达式;
    (2)求购买量在什么范围时,选择方案A比方案B付款少?
    (3)某水果批发商计划用30000元,选用这两种方案中的一种,购买尽可能多的这种火龙果,他应选择哪种方案?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在平面直角坐标系中,直线y=﹣4x+4与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线y=上;将正方形ABCD沿x轴负方向平移a个单位长度后,点C恰好落在双曲线在第一象限的分支上,则a的值是_____.
    20、(4分)若=3-x,则x的取值范围是__________.
    21、(4分)在中,,,,则斜边上的高为________.
    22、(4分)如图,正方形和正方形中,点在上,,,是的中点,那么的长是__________(用含、的代数式表示).
    23、(4分)在中,,,将绕点A按顺时针方向旋转得到旋转角为,点B,点C的对应点分别为点D,点E,过点D作直线AB的垂线,垂足为F,过点E作直线AC的垂线,垂足为P,当时,点P与点C之间的距离是________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做等对角四边形.请解决下列问题:
    (1)已知:如图1,四边形ABCD是等对角四边形,∠A≠∠C,∠A=70°,∠B=75°,则∠C= °,∠D= °
    (2)在探究等对角四边形性质时:
    小红画了一个如图2所示的等对角四边形ABCD,其中,∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立,请你证明该结论;
    (3)图①、图②均为4×4的正方形网格,线段AB、BC的端点均在网点上.按要求在图①、图②中以AB和BC为边各画一个等对角四边形ABCD.
    要求:四边形ABCD的顶点D在格点上,所画的两个四边形不全等.
    (4)已知:在等对角四边形ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4,求对角线AC的长.
    25、(10分)用适当的方法解方程.
    (1) (2)
    26、(12分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,的顶点均在格点上,点 坐标为.
    (1)画出关于轴对称的;
    (2)画出将绕原点逆时针旋转90°所得的;
    (3)与能组成轴对称图形吗?若能,请你画出所有的对称轴.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    因为等腰三角形的两边分别为2和3,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.
    【详解】
    当2为底时,三角形的三边为3,2、3可以构成三角形,周长为8;
    当3为底时,三角形的三边为3,2、2可以构成三角形,周长为1.
    故选D.
    本题考查了等腰三角形的性质;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.
    2、C
    【解析】
    利用直角三角形斜边中线定理以及三角形的中位线定理即可解决问题.
    【详解】
    解:在Rt△ABC中,
    ∵,点是的中点,
    ∴AD=BD= CD=AB=1,
    ∵BF=DF,BE=EC,
    ∴EF=CD=2.1.
    故选:C.
    本题考查三角形的中位线定理、直角三角形斜边上的中线的性质等知识,解题的关键是熟练掌握三角形的中位线定理以及直角三角形斜边上的中线的性质解决问题,属于中考常考题型.
    3、A
    【解析】
    关键描述语为:提前4小时开通了列车;等量关系为:计划用的时间—实际用的时间.
    【详解】
    题中原计划修小时,实际修了小时,
    可列得方程.
    故选:.
    本题考查了由实际问题抽象出分式方程,从关键描述语找到等量关系是解决问题的关键.
    4、D
    【解析】
    根据中位数和众数的定义,先将这组数据按顺序依次排列,取中间的那个数即为中位数,取出现次数最多的那个数即为众数;
    【详解】
    众数:1;中位数:1;
    故选:D.
    本题主要考查众数和中位数的定义,熟练掌握相关的定义是求解本题的关键.
    5、A
    【解析】
    众数是在一组数据中,出现次数最多的数据;中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)
    【详解】
    这组数据中,出现次数最多的是2400元,故这组数据的众数为2400元.
    将这组数据重新排序为2000,2200,2200,2200,2400,2400,2400,2400,2600,2600,∴中位数是按从小到大排列后第5,6个数的平均数,为:2400元.
    故选A.
    6、D
    【解析】
    根据折叠前后角相等可证AO=CO,在直角三角形CBO中,运用勾股定理求得CO,再根据线段的和差关系和勾股定理求解即可.
    【详解】
    根据折叠前后角相等可知∠DCA=∠ACO,
    ∵四边形ABCD是矩形,
    ∴AB∥CD,AD=BC=4cm,
    ∴∠DCA=∠CAO,
    ∴∠ACO=∠CAO,
    ∴AO=CO,
    在直角三角形BCO中,CO= =5cm,
    ∴AB=CD=AO+BO=3+5=8cm,
    在Rt△ABC中,AC=cm,
    故选:D.
    本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.
    7、A
    【解析】
    解:因为经过三点可构造三个平行四边形,即▱AOBC1、▱ABOC2、▱AOC3B.根据平行四边形的性质,可知B、C、D正好是C1、C2、C3的坐标,
    故选A.
    8、B
    【解析】
    试题分析:A、由①得有一组邻边相等的平行四边形是菱形,由②得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;
    B、由②得有一个角是直角的平行四边形是矩形,由③得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD是正方形,错误,故本选项符合题意;
    C、由①得有一组邻边相等的平行四边形是菱形,由③得对角线相等的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;
    D、由②得有一个角是直角的平行四边形是矩形,由④得对角线互相垂直的平行四边形是菱形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意.
    故选B.
    考点:1.正方形的判定;2.平行四边形的性质.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、4
    【解析】
    因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S=|k|.
    【详解】
    由于点B在反比例函数y=的图象上,k=4
    故矩形OABC的面积S=|k|=4.
    故答案为:4
    本题考查了反比例函数系数k的几何意义,掌握过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S=|k|是解题的关键.
    10、
    【解析】
    试题分析:根据勾股定理即可求得结果.
    由题意得,正方形M与正方形N的面积之和为
    考点:本题考查的是勾股定理
    点评:解答本题的关键是根据勾股定理得到最大正方形的面积等于正方形M、N的面积和.
    11、2
    【解析】
    设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由待定系数法求出其解即可.
    【详解】
    解:设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由题意,得 ,
    解得, ,
    则y=30x-1.
    当y=0时,
    30x-1=0,
    解得:x=2.
    故答案为:2.
    本题考查了运用待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时求出函数的解析式是关键.
    12、13 13.5
    【解析】
    这组数据中出现次数最多的数为众数;把这组数按从小到大的顺序排列,因为数的个数是偶数个,那么中间两个数的平均数即是中位数由此解答.
    【详解】
    解:∵15、13、14、13、16、13中13出现次数最多有3次,
    ∴众数为13,
    将这组数从小到大排列为:13,13,13,14,15,16,最中间的两个数是13,14,所以中位数=(13+14)÷2=13.5
    故答案为:13;13.5.
    此题主要考查了中位数和众数的含义.
    13、1
    【解析】
    设方程另一根为t,根据根与系数的关系得到2+t=6,然后解一次方程即可.
    【详解】
    设方程另一根为t,
    根据题意得2+t=6,
    解得t=1.
    故答案为1.
    此题考查一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系,解题关键在于掌握方程的两根为x1,x2,则x1+x2=-.
    三、解答题(本大题共5个小题,共48分)
    14、(1)90°;(2);(3)△BGC的周长为
    【解析】
    (1)先利用正方形的性质和SAS证明△BCE≌△CDF,可得∠CBE=∠DCF,再利用角的等量代换即可求出结果;
    (2)先根据勾股定理求出BF的长,再利用直角三角形的性质求解即可;
    (3)根据题意可得△BCG的面积与四边形DEGF的面积相等,进一步依据△BCG的面积以及勾股定理,得出BG+CG的长,进而求出其周长.
    【详解】
    解:(1)∵四边形ABCD是正方形,
    ∴BC=CD,∠BCD=∠CDF=90°,
    在△BCE和△CDF中,∵BC=CD,∠BCD=∠CDF,CE=DF,
    ∴△BCE≌△CDF(SAS),
    ∴∠CBE=∠DCF,
    又∵∠BCG+∠DCF=90°,
    ∴∠BCG+∠CBE=90°,
    ∴∠BGC=90°;
    (2)如图,∵CE=1,∴DF=1,∴AF=2,
    在直角△ABF中,由勾股定理得:,
    ∵H为BF的中点,∠BGF=90°,
    ∴;
    (3)∵阴影部分的面积与正方形ABCD的面积之比为2:3,
    ∴阴影部分的面积为×9=6,
    ∴空白部分的面积为9-6=3,
    ∵△BCE≌△CDF,
    ∴△BCG的面积与四边形DEGF的面积相等,均为×3=,
    设BG=a,CG=b,则ab=,∴ab=3,
    又∵a2+b2=32,
    ∴a2+2ab+b2=9+6=15,
    即(a+b)2=15,
    ∴a+b=,即BG+CG=,
    ∴△BCG的周长=+3.
    此题考查了正方形的性质、全等三角形的判定与性质、勾股定理、直角三角形的性质以及三角形面积问题,解题时注意数形结合思想与整体思想的应用.
    15、(1)Q(-3,1)(2)a>3(3)0
    【解析】
    (1)如图,作PA⊥x轴于A,QB⊥x轴于B,则∠PAO=∠OBQ=90°,证明△OBQ≌△PAO(AAS),从而可得OB=PA,QB=OA,继而根据点P的坐标即可求得答案;
    (2)利用点平移的规律表示出Q′点的坐标,然后根据第四象限点的坐标特征得到a的不等式组,再解不等式即可;
    (3)由(2)得,m=-3+a,n=1-a,代入所求式子得 ,继而根据偶次方的非负性即可求得答案 .
    【详解】
    (1)如图,作PM⊥x轴于A,QN⊥x轴于B,则∠PAO=∠OBQ=90°,
    ∴∠P+∠POA=90°,
    由旋转的性质得:∠POQ=90°,OQ=OP,
    ∴∠QOB+∠POA=90°,
    ∴∠QOB=∠P,
    ∴△OBQ≌△PAO(AAS),
    ∴OB=PA,QB=OA,
    ∵点P的坐标为(1,3),
    ∴OB=PA=3,QB=OA=1,
    ∴点Q的坐标为(-3,1);
    (2)把点Q(-3,1)向右平移a个单位长度,向下平移a个单位长度后,
    得到的点M的坐标为(-3+a,1-a),
    而M在第四象限,
    所以,
    解得a>3,
    即a的范围为a>3;
    (3)由(2)得,m=-3+a,n=1-a,



    ∵,
    ∴当a=4时,代数式的最小值为0.
    本题考查了坐标与图形变换-旋转,象限内点的坐标特征,解不等式组,配方法在求最值中的应用等,综合性较强,熟练掌握相关知识是解题的关键.
    16、(1)y=-2x+4;(2)S△BCM=1.
    【解析】
    (1)利用矩形的性质,得出点D坐标,再利用待定系数法求得函数解析式;
    (2)由三角形的面积公式,即可解答.
    【详解】
    (1)∵在矩形ABCD中,AD=1,A(,0),B(2,0),
    ∴D(,1),C(2,1).
    把B(2,0),D(,1)代入y=kx+b(k≠0)得:,解得:,
    ∴直线表达式为:y=-2x+4;
    (2)连接CM.
    ∵B(2,0),
    ∴OB=2.
    ∴S△BCM=∙BC∙OB=×1×2=1.
    本题主要考查待定系数法求一次函数解析式以及矩形的性质,掌握待定系数法,是解题的关键.
    17、 (1)见解析;(2)y=-1;(3) .
    【解析】
    (1)当时,,为一次函数,可以画出其图象,当,,也为一次函数,同理可以画出其图象即可;
    (2)当时,代入,求解值即可;
    (3)时,分别代入两个表达式,求解即可.
    【详解】
    (1)图象如图所示:
    (2)当时,;
    (3)时,,解得:,
    ,,
    故.
    本题考查的是一次函数的性质,涉及了函数图象的画法、函数值的计算等,正确把握相关知识是解题的关键.
    18、(1)方案A:yA=6.8x;方案B:yB=6x+1;(2)1≤x<2;(3)选择方案B
    【解析】
    (1)根据题意确定出两种方案应付款y与购买量x之间的函数表达式即可;
    (2)根据A付款比B付款少列出不等式,求出不等式的解集确定出x的范围即可;
    (3)根据题意列出算式,计算比较即可得到结果.
    【详解】
    解:(1)由题意,得方案A的函数表达式为yA=6.8x,
    方案B的函数表达式为yB=6x+1.
    (2)当yA<yB时,6.8x<6x+1.解得x<2.
    故购买量x的范围满足1≤x<2时,
    选择方案A比选择方案B付费少.
    (3)当y=30000时,方案A:6.8x=30 000,
    解得x≈4412(kg)
    方案B:6x+1=30000,解得x≈4667 (kg),
    ∵4412<4667
    ∴要购买尽可能多的火龙果,应该选择方案B.
    本题考查了一次函数的应用,弄清题中的两种方案是解本题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    根据直线的关系式可以求出A、B的坐标,由正方形可以通过作辅助线,构造全等三角形,进而求出C、D的坐标,求出反比例函数的关系式,进而求出C点 平移后落在反比例函数图象上的点G的坐标,进而得出平移的距离.
    【详解】
    当x=0时,y=4,∴B(0,4),当y=0时,x=1,
    ∴A(1,0),
    ∴OA=1,OB=4,
    ∵ABCD是正方形,
    ∴AB=BC=CD=DA,∠ABC=∠BCD=∠CDA=∠DAB=90°,
    过点D、C作DM⊥x轴,CN⊥y轴,垂足为M、N,
    ∴∠ABO=∠BCN=∠DAM,
    ∵∠AOB=∠BNC=∠AMD=90°,
    ∴△AOB≌△BNC≌△DMA (AAS),
    ∴OA=DM=BN=1,AM=OB=CN=4
    ∴OM=1+4=5,ON=4+1=5,
    ∴C(4,5),D(5,1),
    把D(5,1)代入y=得:k=5,
    ∴y=,
    当y=5时,x=1,
    ∴E(1,5),
    点C向左平移到E时,平移距离为4﹣1=1,即:a=1,
    故答案为:1.
    考查反比例函数的图象和性质、正方形的性质、全等三角形的判定和性质以及平移的性质等知识,确定平移前后对应点C、E的坐标是解决问题的关键.
    20、
    【解析】
    试题解析:∵=3﹣x,
    ∴x-3≤0,
    解得:x≤3,
    21、
    【解析】
    利用面积法,分别以直角边为底和斜边为底,根据三角形面积相等,可以列出方程,解得答案
    【详解】
    解:设斜边上的高为h,
    在Rt△ABC中,利用勾股定理可得:
    根据三角形面积两种算法可列方程为:
    解得:h=2.4cm,
    故答案为2.4cm
    本题考查勾股定理和利用面积法算垂线段的长度,要熟练掌握.
    22、
    【解析】
    连接AC、CF,根据正方形的性质得到∠ACF=90°,根据勾股定理求出AF的长,根据直角三角形中,斜边上的中线等于斜边的一半计算即可.
    【详解】
    解:连接AC、CF,
    在正方形ABCD和正方形CEFG中,
    ∠ACG=45°,∠FCG=45°,
    ∴∠ACF=90°,
    ∵BC=a,CE=b,

    由勾股定理得: ,
    ∵∠ACF=90°,H是AF的中点,
    ∴CH=AF=.
    本题考查的是直角三角形的性质、勾股定理的应用、正方形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.
    23、3或1.
    【解析】
    由旋转的性质可知△ACB≌△AED,推出∠CAB=∠EAD=∠CBA,则当∠DAF=∠CBA时,分两种情况,一种是A,F,E三点在同一直线上,另一种是 D,A,C在同一条直线上,可分别求出CP的长度.
    【详解】
    解:∵AC=BC=10,
    ∴∠CAB=∠CBA,
    由旋转的性质知,△ACB≌△AED,
    ∴AE=AC=10,∠CAB=∠EAD=∠CBA,
    ①∵∠DAF=∠CBA,
    ∴∠DAF=∠EAD,
    ∴A,F,E三点在同一直线上,如图1所示,
    过点C作CH⊥AB于H,
    则AH=BH=AB=7,
    ∵EP⊥AC,
    ∴∠EPA=∠CHA=90°,
    又∵∠CAH=∠EAP,CA=EA,
    ∴△CAH≌△EAP(AAS),
    ∴AP=AH=7,
    ∴PC=AC-AP=10-7=3;
    ②当D,A,C在同一条直线上时,如图2,
    ∠DAF=∠CAB=∠CBA,
    此时AP=AD=AB=7,
    ∴PC=AC+AP=10+7=1.
    故答案为:3或1.
    本题考查了旋转的性质,等腰三角形的性质,全等三角形的判定等,解题的关键是能够分类讨论,求出两种情况的结果.
    二、解答题(本大题共3个小题,共30分)
    24、(1)140°,1°;(2)证明见解析;(3)见解析;(4)2或2.
    【解析】
    试题分析:(1)根据四边形ABCD是“等对角四边形”得出∠D=∠B=1°,根据多边形内角和定理求出∠C即可;
    (2)连接BD,根据等边对等角得出∠ABD=∠ADB,求出∠CBD=∠CDB,根据等腰三角形的判定得出即可;
    (3)根据等对角四边形的定义画出图形即可求解;
    (4)分两种情况:①当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,先用含30°角的直角三角形的性质求出AE,得出DE,再用三角函数求出CD,由勾股定理求出AC;
    ②当∠BCD=∠DAB=60°时,过点D作DM⊥AB于点M,DN⊥BC于点N,则∠AMD=90°,四边形BNDM是矩形,先求出AM、DM,再由矩形的性质得出DN=BM=3,BN=DM=2,求出CN、BC,根据勾股定理求出AC即可.
    试题解析:
    (1)解:∵四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=1°,
    ∴∠D=∠B=1°,
    ∴∠C=360°﹣1°﹣1°﹣70°=140°;
    (2)证明:如图2,连接BD,
    ∵AB=AD,
    ∴∠ABD=∠ADB,
    ∵∠ABC=∠ADC,
    ∴∠ABC﹣∠ABD=∠ADC﹣∠ADB,
    ∴∠CBD=∠CDB,
    ∴CB=CD;
    (3)如图所示:
    (4)解:分两种情况:
    ①当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,如图3所示:
    ∵∠ABC=90°,∠DAB=60°,AB=5,
    ∴∠E=30°,
    ∴AE=2AB=10,
    ∴DE=AE﹣AD=10﹣4═6,
    ∵∠EDC=90°,∠E=30°,
    ∴CD=2,
    ∴AC=;
    ②当∠BCD=∠DAB=60°时,
    过点D作DM⊥AB于点M,DN⊥BC于点N,如图4所示:
    则∠AMD=90°,四边形BNDM是矩形,
    ∵∠DAB=60°,
    ∴∠ADM=30°,
    ∴AM=AD=2,
    ∴DM=2,
    ∴BM=AB﹣AM=5﹣2=3,
    ∵四边形BNDM是矩形,
    ∴DN=BM=3,BN=DM=2,
    ∵∠BCD=60°,
    ∴CN=,
    ∴BC=CN+BN=3,
    ∴AC=.
    综上所述:AC的长为或.
    故答案为:140,1.
    【点睛】四边形综合题目:考查了新定义、四边形内角和定理、等腰三角形的判定与性质、勾股定理、三角函数、矩形的判定与性质等知识;本题难度较大,综合性强,特别是(4)中,需要进行分类讨论,通过作辅助线运用三角函数和勾股定理才能得出结果.
    25、(1);(2),
    【解析】
    (1)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可;
    (2)整理后求出b2﹣4ac的值,再代入公式求出即可.
    【详解】
    解:(1).
    ∴.
    ∴.
    (2)

    ,.
    本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键.
    26、(1)见解析;(2)见解析;(3)能,图见解析;
    【解析】
    (1)根据网格结构找出点A、B、C关于x轴的对称点A1、B1、C1的位置,然后顺次连接即可;
    (2)根据网格结构找出点A、B、C绕原点O按逆时针旋转90°的对应点A2、B2、C2的位置,然后顺次连接即可;
    (3)从图中可发现成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,做它的垂直平分线.
    【详解】
    (1)如图所示:
    (2)如图所示:
    (3)成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,作它的垂直平分线,如图,对称轴有2条.
    此题考查利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.
    题号





    总分
    得分
    批阅人
    工资(元)
    2000
    2200
    2400
    2600
    人数(人)
    1
    3
    4
    2
    相关试卷

    广西崇左市龙州县2025届九上数学开学质量检测试题【含答案】: 这是一份广西崇左市龙州县2025届九上数学开学质量检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    崇左市重点中学2024-2025学年数学九上开学达标检测试题【含答案】: 这是一份崇左市重点中学2024-2025学年数学九上开学达标检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届广西省崇左市天等县数学九上开学教学质量检测试题【含答案】: 这是一份2025届广西省崇左市天等县数学九上开学教学质量检测试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map