搜索
    上传资料 赚现金
    英语朗读宝

    广西壮族自治区百色市平果县2024年九年级数学第一学期开学质量跟踪监视模拟试题【含答案】

    广西壮族自治区百色市平果县2024年九年级数学第一学期开学质量跟踪监视模拟试题【含答案】第1页
    广西壮族自治区百色市平果县2024年九年级数学第一学期开学质量跟踪监视模拟试题【含答案】第2页
    广西壮族自治区百色市平果县2024年九年级数学第一学期开学质量跟踪监视模拟试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广西壮族自治区百色市平果县2024年九年级数学第一学期开学质量跟踪监视模拟试题【含答案】

    展开

    这是一份广西壮族自治区百色市平果县2024年九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列运算正确的是( )
    A.B.2
    C.4×224D.2
    2、(4分)如图,在矩形ABCD中,AB=4,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则AE的长是( )
    A.5B.3C.2.4D.2.5
    3、(4分)化简(-1)2-(-3)0+得( )
    A.0B.-2C.1D.2
    4、(4分)已知一个直角三角形的两边长分别为3和5,则第三边长为 ( )
    A.4B.4或34C.16或34D.4或
    5、(4分)在中,若,则( )
    A.B.C.D.
    6、(4分)下列说法正确的是( )
    A.某个对象出现的次数称为频率B.要了解某品牌运动鞋使用寿命可用普查
    C.没有水分种子发芽是随机事件D.折线统计图用于表示数据变化的特征和趋势
    7、(4分)环保部门根据我市一周的检测数据列出下表.这组数据的中位数是
    A.B.C.D.
    8、(4分)小明家、食堂,图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y(km)与时间x(min)之间的对应关系,根据图象,下列说法正确的是( )
    A.小明吃早餐用了25min
    B.食堂到图书馆的距离为0.6km
    C.小明读报用了30min
    D.小明从图书馆回家的速度为0.8km/min
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)甲、乙、丙、丁四人进行射击测试,每人10次射击成绩平均数均是9.2环,方差分别为,,,,则成绩最稳定的是______.
    10、(4分)如果一组数据a ,a ,…a的平均数是2,那么新数据3a ,3a ,…3a的平均数是______.
    11、(4分)为了了解某校九年级学生的体能情况,随机抽查额其中名学生,测试分钟仰卧起坐的成绩(次数),进行整理后绘制成如图所示的统计图(注:包括,不包括,其他同),根据统计图计算成绩在次的频率是__________.
    12、(4分)某农科院在相同条件下做了某种苹果幼树移植成活率的试验,结果如下,那么该苹果幼树移植成活的概率估计值为______.(结果精确到0.1)
    13、(4分)对于实数a,b,定义运算“﹡”:.例如4﹡2,因为4>2,所以4﹡2=42﹣4×2=1.若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1﹡x2= .
    三、解答题(本大题共5个小题,共48分)
    14、(12分)某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择,为了估计全校学生对这四个活动项日的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:
    (1)求参加这次调查的学生人数,并补全条形统计图;
    (2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;
    (3)若该校共有1600名学生,试估计该校选择“足球”项目的学生有多少人?
    15、(8分)四边形ABCD是正方形,AC与BD,相交于点O,点E、F是直线AD上两动点,且AE=DF,CF所在直线与对角线BD所在直线交于点G,连接AG,直线AG交BE于点H.
    (1)如图1,当点E、F在线段AD上时,求证:∠DAG=∠DCG;
    (2)如图1,猜想AG与BE的位置关系,并加以证明;
    (3)如图2,在(2)条件下,连接HO,试说明HO平分∠BHG.
    16、(8分)如图,已知正比例函数经过点.
    (1)求这个正比例函数的解析式;
    (2)该直线向上平移4个单位,求平移后所得直线的解析式.
    17、(10分)(如图①,将边长为4cm的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B落在AD边上的点 M处,点C落在点N处,MN与CD交于点P, 连接EP.
    ⑴如图②,若M为AD边的中点,①△AEM的周长=_________cm;②求证:EP=AE+DP;
    ⑵随着落点M在AD边上取遍所有的位置(点M不与A、D重合),△PDM的周长是否发生变化?请说明理由.
    18、(10分)感知:如图①,在正方形中,是一点,是延长线上一点,且,求证:;
    拓展:在图①中,若在,且,则成立吗?为什么?
    运用:如图②在四边形中,,,,是上一点,且,,求的长.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)正方形ABCD中,,P是正方形ABCD内一点,且,则的最小值是______.
    20、(4分)在平行四边形ABCD中,已知∠A﹣∠B=60°,则∠C=_____.
    21、(4分)代数式有意义的条件是________.
    22、(4分)在矩形ABCD中,AB=2,BC=6,直线EF经过对角线BD的中点O,分别交边AD,BC于点E,F,点G,H分别是OB,OD的中点,当四边形EGFH为矩形时,则BF的长_________________.
    23、(4分)已知一元二次方程x2-6x+a =0有一个根为2,则另一根为_______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知a满足以下三个条件:①a是整数;②关于x的一元二次方程ax2+4x﹣2=0有两个不相等的实数根;③反比例函数的图象在第二、四象限.
    (1)求a的值.
    (2)求一元二次方程ax2+4x﹣2=0的根.
    25、(10分)如图所示,在□ABCD中,点E,F在它的内部,且AE=CF,BE=DF,试指出AC与EF的关系,并说明理由.
    26、(12分)为了贯彻落实市委政府提出的“精准扶贫”精神,某校特制定了一系列帮扶A、B两贫困村的计划,现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如表:
    (1)求这15辆车中大小货车各多少辆?
    (2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.
    (3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    根据同类二次根式的定义、二次根式的乘、除法公式和二次根式的性质逐一判断即可.
    【详解】
    A. 和不是同类二次根式,故本选项错误;
    B. ≠2,故本选项错误;
    C. ,故本选项正确;
    D. 2,故本选项错误
    故选C.
    此题考查的是二次根式的运算,掌握同类二次根式的定义、二次根式的乘、除法公式和二次根式的性质是解决此题的关键.
    2、A
    【解析】
    根据矩形的性质得出∠CDE=90°,AD=BC=8,AB=DC=4,AO=OC,根据线段垂直平分线性质得出AE=CE,在Rt△CDE中,由勾股定理得出CE =CD+DE,代入求出即可.
    【详解】
    如图,连接EC,
    ∵在矩形ABCD中,AB=4,BC=8,
    ∴∠CDE=90°,AD=BC=8,AB=DC=4,AO=OC,
    ∵OE⊥AC,
    ∴AE=CE,
    在Rt△CDE中,由勾股定理得:CE=CD+DE,
    即AE=4+(8−AE) ,
    解得:AE=5,
    故选A.
    此题考查线段垂直平分线的性质,解题关键在于作辅助线.
    3、D
    【解析】
    先利用乘方的意义、零指数幂的性质以及二次根式的性质分别化简,然后再进一步计算得出答案.
    【详解】
    原式=1-1+1=1.
    故选:D.
    此题主要考查了实数运算,正确化简各数是解题关键.
    4、D
    【解析】
    解:∵个直角三角形的两边长分别为3和5,
    ∴①当5是此直角三角形的斜边时,设另一直角边为x,则x=;
    ②当5是此直角三角形的直角边时,设另一直角边为x,则x=.
    故选D.
    5、A
    【解析】
    根据平行四边形的性质可得出,,因此,,即可得出答案.
    【详解】
    解:根据题意可画出示意图如下:
    ∵四边形ABCD是平行四边形,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴.
    故选:A.
    本题考查的知识点是平行四边形的性质,属于基础题目,易于理解掌握.
    6、D
    【解析】
    根据频次、频数的定义区别,抽样调查、普查的用法区别,不可能事件、随机事件的区分,折线统计图的性质可判断.
    【详解】
    解:某个对象出现的次数称为频数,A错误;
    要了解某品牌运动鞋使用寿命可用抽样调查,B错误;
    没有水分种子发芽是不可能事件,C错误;
    折线统计图用于表示数据变化的特征和趋势,D正确;
    故选:D.
    本题考查频次、频数的定义区别,抽样调查、普查的用法区别,不可能事件、随机事件的区分,折线统计图的性质等知识点,准确掌握相似说法的定义区别是本题的关键.
    7、C
    【解析】
    将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.
    【详解】
    根据中位数的概念,可知这组数据的中位数为:21
    故答案选:C
    本题考查中位数的概念,将一组数据从小到大或从大到小重新排列后,最中间的那个数或者最中间两个数的平均数叫做这组数据中位数,如果中位数的概念掌握不好,不把数据按照要求重新排列,就会出错.
    8、C
    【解析】
    根据题意和函数图象中的数据可以判断各个选项中的说法是否正确,本题得以解决.
    【详解】
    由图象可得,
    小明吃早餐用了25﹣8=17min,故选项A错误;
    食堂到图书馆的距离为:0.8﹣0.6=0.2km,故选项B错误;
    小明读报用了58﹣28=30min,故选项C正确;
    小明从图书馆回家的速度为:0.8÷(68﹣58)=0.08km/min,故选项D错误;
    故选C.
    本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、甲
    【解析】
    根据题目中的四个方差,可以比较它们的大小,由方差越小越稳定可以解答本题.
    【详解】
    解:∵0.57<0.59<0.62<0.67,
    ∴成绩最稳定的是甲,
    故答案为:甲
    本题考查数据的波动。解答本题的关键是明确方差越小越稳定.
    10、6
    【解析】
    根据所给的一组数据的平均数写出这组数据的平均数的表示式,把要求的结果也有平均数的公式表示出来,根据前面条件得到结果.
    【详解】
    解:一组数据,,,的平均数为2,

    ,,,的平均数是
    故答案为6
    本题考查了算术平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.
    11、
    【解析】
    根据频率的求法,频率=,计算可得到答案.
    【详解】
    频率=.
    故答案为:0.7.
    本题考查了随机抽样中的条形图的认识,掌握频率的求法是解题的关键.
    12、0.1
    【解析】
    概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率.
    【详解】
    解:概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率,
    ∴这种苹果幼树移植成活率的概率约为0.1,
    故答案为:0.1.
    此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.
    13、3或﹣3
    【解析】
    试题分析:∵x1,x2是一元二次方程x2﹣5x+6=0的两个根,
    ∴(x﹣3)(x﹣2)=0,解得:x=3或2.
    ①当x1=3,x2=2时,x1﹡x2=32﹣3×2=3;
    ②当x1=2,x2=3时,x1﹡x2=3×2﹣32=﹣3.
    三、解答题(本大题共5个小题,共48分)
    14、(1)补图详见解析,50;(2)72°;(3)1
    【解析】
    (1)由“乒乓球”人数及其百分比可得总人数,根据各项目人数之和等于总人数求出“羽毛球”的人数,补全图形即可;
    (2)用“篮球”人数占被调查人数的比例乘以360°即可;
    (3)用总人数乘以样本中足球所占百分比即可得.
    【详解】
    (1)=50,
    答:参加这次调查的学生人数为50人,
    羽毛球的人数=50-14-10-8=8人
    补全条形统计图如图所示:
    (2)×360°=72°.
    答:扇形统计图中“篮球”项目所对应扇形的圆心角度数为72°.
    (3)1600×=1.
    答:估计该校选择“足球”项目的学生有1人.
    本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    15、(1)证明见解析(2)AG⊥BE(3)证明见解析
    【解析】
    (1)根据正方形的性质得DA=DC,∠ADB=∠CDB=45°,则可根据“SAS”证明△ADG≌△CDG,所以∠DAG=∠DCG;
    (2)根据正方形的性质得AB=DC,∠BAD=∠CDA=90°,根据“SAS”证明△ABE≌△DCF,则∠ABE=∠DCF,由于∠DAG=∠DCG,所以∠DAG=∠ABE,然后利用∠DAG+∠BAG=90°得到∠ABE+∠BAG=90°,于是可判断AG⊥BE;
    (3)如答图1所示,过点O作OM⊥BE于点M,ON⊥AG于点N,证明△AON≌△BOM,可得四边形OMHN为正方形,因此HO平分∠BHG结论成立.
    【详解】
    (1)证明:∵四边形ABCD为正方形,
    ∴DA=DC,∠ADB=∠CDB=45°,
    在△ADG和△CDG中,

    ∴△ADG≌△CDG(SAS),
    ∴∠DAG=∠DCG;
    (2)解:AG⊥BE.理由如下:
    ∵四边形ABCD为正方形,
    ∴AB=DC,∠BAD=∠CDA=90°,
    在△ABE和△DCF中,

    ∴△ABE≌△DCF(SAS),
    ∴∠ABE=∠DCF,
    ∵∠DAG=∠DCG,
    ∴∠DAG=∠ABE,
    ∵∠DAG+∠BAG=90°,
    ∴∠ABE+∠BAG=90°,
    ∴∠AHB=90°,
    ∴AG⊥BE;
    (3)解:由(2)可知AG⊥BE.
    如答图1所示,过点O作OM⊥BE于点M,ON⊥AG于点N,则四边形OMHN为矩形.
    ∴∠MON=90°,
    又∵OA⊥OB,
    ∴∠AON=∠BOM.
    ∵∠AON+∠OAN=90°,∠BOM+∠OBM=90°,
    ∴∠OAN=∠OBM.
    在△AON与△BOM中,

    ∴△AON≌△BOM(AAS).
    ∴OM=ON,
    ∴矩形OMHN为正方形,
    ∴HO平分∠BHG.
    此题是四边形综合题,主要考查了正方形的性质,矩形的判定和性质,全等三角形的判定和性质,角平分线的意义,垂直的判定,利用全等三角形的判断方法判断三角形是解本题的关键.
    16、(1);(2)
    【解析】
    (1)把P(2,1)代入y=kx得到方程,求出方程的解即可;
    (2)设平移后所得直线的解析式是y=2x+b,把(0,1)代入求出b即可.
    【详解】
    解:(1)把代入,得,
    ∴,
    ∴这个正比例函数的解析式是.
    (2)设平移后所得直线的解析式是y=2x+b,
    把(0,1)代入得:1=b,
    ∴y=2x+1.
    答:平移后所得直线的解析式是y=2x+1.
    本题主要考查对用待定系数法求一次函数、正比例函数的解析式,一次函数与几何变换,解一元一次方程等知识点的理解和掌握,能用待定系数法正确求函数的解析式是解此题的关键.
    17、(1)①6 ,②见解析;(2)△PDM的周长保持不变,理由见解析.
    【解析】
    (1)①由折叠知BE=EM,AE+EM+AM=AE+EB+AM=AB+AM,根据边长及中点易求周长;②延长EM交CD延长线于Q点.可证△AEM≌△DQM,得AE=DQ,EM=MQ.所以PM垂直平分EQ,得EP=PQ,得证;
    (2)不变化,可证△AEM∽△DMP,两个三角形的周长比为AE:MD,设AM=x,根据勾股定理可以用x表示MD的长与△MAE的周长,再根据周长比等于相似比,即可求解.
    【详解】
    (1)①由折叠可知,BE=BM,∠B=∠MEP=90°,
    △AEM的周长= AE+EM+AM=AE+EB+AM=AB+AM.
    ∵AB=4,M是AD中点,
    ∴△AEM的周长=6(cm)
    ②证明:延长EM交CD延长线于Q点.
    ∵∠A=∠MDQ=90°,AM=DM,∠AME=∠DMQ,
    ∴△AME≌△DMQ.
    ∴AE=DQ,EM=MQ.
    又∵∠EMP=∠B=90°,
    ∴PM垂直平分EQ,有EP=PQ.
    ∵PQ=PD+DQ,
    ∴EP=AE+PD.
    (2)△PDM的周长保持不变,
    证明:设AM=xcm,则DM=(4-x)cm ,
    Rt△EAM中,由,

    ∵∠AME+∠AEM=90°,
    ∠AME+∠PMD=90°,
    ∴∠AEM=∠PMD,
    又∵∠A=∠D=90°,
    ∴△PDM∽△MAE,
    ∴,
    即,
    ∴,
    ∴△PDM的周长保持不变.
    18、(1)见解析;(2)GE=BE+GD成立,理由见解析;(3)
    【解析】
    (1)利用已知条件,可证出△BCE≌△DCF(SAS),即可得到CE=CF;
    (2)借助(1)的结论得出∠BCE=∠DCF,再通过角的计算得出∠GCF=∠GCE,由SAS可得△ECG≌△FCG,则EG=GF,从而得出GE=DF+GD=BE+GD;
    (3)过C作CG⊥AD,交AD延长线于G,先证四边形ABCG是正方形(有一组邻边相等的矩形是正方形),再设DE=x,利用(1)、(2)的结论,在Rt△AED中利用勾股定理构造方程即可求出DE.
    【详解】
    (1)证明:如图①,在正方形ABCD中,BC=CD,∠B=∠ADC=90°,
    ∴∠CDF=90°,即∠B=∠CDF =90°,
    在△BCE和△DCF中,

    ∴△BCE≌△DCF(SAS),
    ∴CE=CF;
    (2)解:如图①,GE=BE+GD成立,理由如下:
    由(1)得△BCE≌△DCF,
    ∴∠BCE=∠DCF,
    ∴∠ECD+∠ECB=∠ECD+∠FCD,
    即∠ECF=∠BCD=90°,
    又∵∠GCE=45°,
    ∴∠GCF=∠ECF−∠ECG=45°,则∠GCF=∠GCE,
    在△GEC和△GFC中,

    ∴△GEC≌△GFC(SAS),
    ∴EG=GF,
    ∴GE=DF+GD=BE+GD;
    (3)解:如图②,过C作CG⊥AD于G,
    ∴∠CGA=90°,
    在四边形ABCD中,AD∥BC,∠A=∠B=90°,
    ∴四边形ABCG为矩形,
    又∵AB=BC,
    ∴四边形ABCG为正方形,
    ∴AG=BC=AB=16,
    ∵∠DCE=45°,由(1)和(2)的结论可得:ED=BE+DG,
    设DE=x,
    ∵,
    ∴AE=12,DG=x−4,
    ∴AD=AG−DG=20−x
    在Rt△AED中,
    由勾股定理得:DE2=AD2+AE2,
    即x2=(20−x)2+122
    解得:,
    即.
    本题是一道几何综合题,内容主要涉及全等三角形的判定与性质和勾股定理的应用,重点考查学生的数学学习能力,是一道好题.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    根据正方形性质,当A,P,C在同一直线上时,PC+PA是值小.
    【详解】
    当A,P,C在同一直线上时,PC+PA是值小.
    因为,四边形ABCD 是正方形,
    所以,AC= .
    故答案为
    本题考核知识点:正方形性质,勾股定理. 解题关键点:利用两点之间线段最短解决问题.
    20、
    【解析】
    根据平行四边形的性质可得到答案.
    【详解】
    ∵四边形ABCD是平行四边形,∴∠A+∠B=180°,又∠A-∠B=60°,故可知∠A=120°,∴∠C=∠A=120°,故答案为120°.
    本题主要考查了平行四边形的基本性质,解本题的要点在于熟记平行四边形的对角相等.
    21、x≥﹣3
    【解析】
    根据二次根式定义:被开放式大于等于零时根式有意义即可解题.
    【详解】
    解:∵有意义,
    ∴x+3≥0,
    解得:x≥﹣3.
    本题考查了根式有意义的条件,属于简单题,熟悉二次根式的概念是解题关键.
    22、或
    【解析】
    根据矩形ABCD中,AB=2,BC=6,可求出对角线的长,再由点G、H分别是OB、OD的中点,可得GH=BD,从而求出GH的长,若四边形EGFH为矩形时,EF=GH,可求EF的长,通过作辅助线,构造直角三角形,由勾股定理可求出MF的长,最后通过设未知数,列方程求出BF的长.
    【详解】
    解:如图:过点E作EM⊥BC,垂直为M,
    矩形ABCD中,AB=2,BC=6,
    ∴AB=EM=CD=2,AD=BC=6,∠A=90°,OB=OD,
    在Rt△ABD中,BD==2,
    又∵点G、H分别是OB、OD的中点,
    ∴GH=BD=,
    当四边形EGFH为矩形时,GH=EF=,
    在Rt△EMF中,FM==,
    易证△BOF≌△DOE (AAS),
    ∴BF=DE,
    ∴AE=FC,
    设BF=x,则FC=6-x,由题意得:x-(6-x)=,或(6-x)-x=,,
    ∴x=或x=,
    故答案为:或.
    考查矩形的性质、直角三角形的性质,勾股定理等知识,合理的作辅助线,将问题转化显得尤为重要,但是,分情况讨论容易受图形的影响而被忽略,应切实注意.
    23、1
    【解析】
    设方程另一根为t,根据根与系数的关系得到2+t=6,然后解一次方程即可.
    【详解】
    设方程另一根为t,
    根据题意得2+t=6,
    解得t=1.
    故答案为1.
    此题考查一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系,解题关键在于掌握方程的两根为x1,x2,则x1+x2=-.
    二、解答题(本大题共3个小题,共30分)
    24、 (1)-1;(2) x1=2+,x2=2﹣.
    【解析】
    (1)先根据关于x的一元二次方程ax2+4x﹣2=0有两个不相等的实数根求出a的取值范围,再由反比例函数的图象在二、四象限得出a的取值范围,由a为整数即可得出a的值;
    (2)根据a的值得出方程,解方程即可得出结论.
    【详解】
    解:(1)∵方程有两个不相等的实数根,
    ∴△=16+8a>0,得a>﹣2且a≠0;
    ∵反比例函数图象在二,四象限,
    ∴2a+1<0,得a<﹣,
    ∴﹣2<a<﹣.
    ∵a是整数且a≠0,
    ∴a=﹣1;
    (2)∵a=﹣1,
    ∴一元二次方程为﹣x2+4x﹣2=0,即:x2﹣4x+2=0,
    解得:x1=2+,x2=2﹣.
    此题主要考查一元二次方程根的判别式、反比例函数的性质和一元二次方程的解法.
    25、AC与EF互相平分,见解析.
    【解析】
    由题意可证△ABE≌△DCF,可得∠BAE=∠DCF,即可得∠CAE=∠ACF,可证AE∥CF即可证AECF是平行四边形,可得AC与EF的关系.
    【详解】
    AC与EF互相平分
    ∵▱ABCD
    ∴AB∥CD,AB=CD
    ∴∠BAC=∠ACD
    ∵AB=CD,AE=CF,BE=DF
    ∴△ABE≌△CDF
    ∴∠BAE=∠FCD且∠BAC=∠ACD
    ∴∠EAC=∠FCA
    ∴CF∥AE且AE=CF
    ∴四边形AECF是平行四边形
    ∴AC与EF互相平分
    本题考查了平行四边形的性质,全等三角形的判定和性质,证AECF是平行四边形是本题的关键.
    26、(1)大货车用8辆,小货车用7辆;(2)y=100x+1.(3)见解析.
    【解析】
    (1)设大货车用x辆,小货车用y辆,根据大、小两种货车共15辆,运输152箱鱼苗,列方程组求解;
    (2)设前往A村的大货车为x辆,则前往B村的大货车为(8-x)辆,前往A村的小货车为(10-x)辆,前往B村的小货车为[7-(10-x)]辆,根据表格所给运费,求出y与x的函数关系式;
    (3)结合已知条件,求x的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.
    【详解】
    (1)设大货车用x辆,小货车用y辆,根据题意得:
    解得:.∴大货车用8辆,小货车用7辆.
    (2)y=800x+900(8-x)+400(10-x)+600[7-(10-x)]=100x+1.(3≤x≤8,且x为整数).
    (3)由题意得:12x+8(10-x)≥100,解得:x≥5,又∵3≤x≤8,∴5≤x≤8且为整数,
    ∵y=100x+1,k=100>0,y随x的增大而增大,∴当x=5时,y最小,
    最小值为y=100×5+1=9900(元).
    答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往B村.最少运费为9900元.
    题号





    总分
    得分
    车型
    目的地
    A村(元/辆)
    B村(元/辆)
    大货车
    800
    900
    小货车
    400
    600

    相关试卷

    广西贵港市2025届数学九年级第一学期开学质量跟踪监视模拟试题【含答案】:

    这是一份广西贵港市2025届数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    甘肃省会宁县2025届数学九年级第一学期开学质量跟踪监视模拟试题【含答案】:

    这是一份甘肃省会宁县2025届数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届山东滨州阳信县数学九年级第一学期开学质量跟踪监视模拟试题【含答案】:

    这是一份2025届山东滨州阳信县数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map