广西壮族自治区百色市平果县2024年九年级数学第一学期开学质量跟踪监视模拟试题【含答案】
展开
这是一份广西壮族自治区百色市平果县2024年九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列运算正确的是( )
A.B.2
C.4×224D.2
2、(4分)如图,在矩形ABCD中,AB=4,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则AE的长是( )
A.5B.3C.2.4D.2.5
3、(4分)化简(-1)2-(-3)0+得( )
A.0B.-2C.1D.2
4、(4分)已知一个直角三角形的两边长分别为3和5,则第三边长为 ( )
A.4B.4或34C.16或34D.4或
5、(4分)在中,若,则( )
A.B.C.D.
6、(4分)下列说法正确的是( )
A.某个对象出现的次数称为频率B.要了解某品牌运动鞋使用寿命可用普查
C.没有水分种子发芽是随机事件D.折线统计图用于表示数据变化的特征和趋势
7、(4分)环保部门根据我市一周的检测数据列出下表.这组数据的中位数是
A.B.C.D.
8、(4分)小明家、食堂,图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y(km)与时间x(min)之间的对应关系,根据图象,下列说法正确的是( )
A.小明吃早餐用了25min
B.食堂到图书馆的距离为0.6km
C.小明读报用了30min
D.小明从图书馆回家的速度为0.8km/min
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)甲、乙、丙、丁四人进行射击测试,每人10次射击成绩平均数均是9.2环,方差分别为,,,,则成绩最稳定的是______.
10、(4分)如果一组数据a ,a ,…a的平均数是2,那么新数据3a ,3a ,…3a的平均数是______.
11、(4分)为了了解某校九年级学生的体能情况,随机抽查额其中名学生,测试分钟仰卧起坐的成绩(次数),进行整理后绘制成如图所示的统计图(注:包括,不包括,其他同),根据统计图计算成绩在次的频率是__________.
12、(4分)某农科院在相同条件下做了某种苹果幼树移植成活率的试验,结果如下,那么该苹果幼树移植成活的概率估计值为______.(结果精确到0.1)
13、(4分)对于实数a,b,定义运算“﹡”:.例如4﹡2,因为4>2,所以4﹡2=42﹣4×2=1.若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1﹡x2= .
三、解答题(本大题共5个小题,共48分)
14、(12分)某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择,为了估计全校学生对这四个活动项日的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:
(1)求参加这次调查的学生人数,并补全条形统计图;
(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;
(3)若该校共有1600名学生,试估计该校选择“足球”项目的学生有多少人?
15、(8分)四边形ABCD是正方形,AC与BD,相交于点O,点E、F是直线AD上两动点,且AE=DF,CF所在直线与对角线BD所在直线交于点G,连接AG,直线AG交BE于点H.
(1)如图1,当点E、F在线段AD上时,求证:∠DAG=∠DCG;
(2)如图1,猜想AG与BE的位置关系,并加以证明;
(3)如图2,在(2)条件下,连接HO,试说明HO平分∠BHG.
16、(8分)如图,已知正比例函数经过点.
(1)求这个正比例函数的解析式;
(2)该直线向上平移4个单位,求平移后所得直线的解析式.
17、(10分)(如图①,将边长为4cm的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B落在AD边上的点 M处,点C落在点N处,MN与CD交于点P, 连接EP.
⑴如图②,若M为AD边的中点,①△AEM的周长=_________cm;②求证:EP=AE+DP;
⑵随着落点M在AD边上取遍所有的位置(点M不与A、D重合),△PDM的周长是否发生变化?请说明理由.
18、(10分)感知:如图①,在正方形中,是一点,是延长线上一点,且,求证:;
拓展:在图①中,若在,且,则成立吗?为什么?
运用:如图②在四边形中,,,,是上一点,且,,求的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)正方形ABCD中,,P是正方形ABCD内一点,且,则的最小值是______.
20、(4分)在平行四边形ABCD中,已知∠A﹣∠B=60°,则∠C=_____.
21、(4分)代数式有意义的条件是________.
22、(4分)在矩形ABCD中,AB=2,BC=6,直线EF经过对角线BD的中点O,分别交边AD,BC于点E,F,点G,H分别是OB,OD的中点,当四边形EGFH为矩形时,则BF的长_________________.
23、(4分)已知一元二次方程x2-6x+a =0有一个根为2,则另一根为_______.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知a满足以下三个条件:①a是整数;②关于x的一元二次方程ax2+4x﹣2=0有两个不相等的实数根;③反比例函数的图象在第二、四象限.
(1)求a的值.
(2)求一元二次方程ax2+4x﹣2=0的根.
25、(10分)如图所示,在□ABCD中,点E,F在它的内部,且AE=CF,BE=DF,试指出AC与EF的关系,并说明理由.
26、(12分)为了贯彻落实市委政府提出的“精准扶贫”精神,某校特制定了一系列帮扶A、B两贫困村的计划,现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如表:
(1)求这15辆车中大小货车各多少辆?
(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.
(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据同类二次根式的定义、二次根式的乘、除法公式和二次根式的性质逐一判断即可.
【详解】
A. 和不是同类二次根式,故本选项错误;
B. ≠2,故本选项错误;
C. ,故本选项正确;
D. 2,故本选项错误
故选C.
此题考查的是二次根式的运算,掌握同类二次根式的定义、二次根式的乘、除法公式和二次根式的性质是解决此题的关键.
2、A
【解析】
根据矩形的性质得出∠CDE=90°,AD=BC=8,AB=DC=4,AO=OC,根据线段垂直平分线性质得出AE=CE,在Rt△CDE中,由勾股定理得出CE =CD+DE,代入求出即可.
【详解】
如图,连接EC,
∵在矩形ABCD中,AB=4,BC=8,
∴∠CDE=90°,AD=BC=8,AB=DC=4,AO=OC,
∵OE⊥AC,
∴AE=CE,
在Rt△CDE中,由勾股定理得:CE=CD+DE,
即AE=4+(8−AE) ,
解得:AE=5,
故选A.
此题考查线段垂直平分线的性质,解题关键在于作辅助线.
3、D
【解析】
先利用乘方的意义、零指数幂的性质以及二次根式的性质分别化简,然后再进一步计算得出答案.
【详解】
原式=1-1+1=1.
故选:D.
此题主要考查了实数运算,正确化简各数是解题关键.
4、D
【解析】
解:∵个直角三角形的两边长分别为3和5,
∴①当5是此直角三角形的斜边时,设另一直角边为x,则x=;
②当5是此直角三角形的直角边时,设另一直角边为x,则x=.
故选D.
5、A
【解析】
根据平行四边形的性质可得出,,因此,,即可得出答案.
【详解】
解:根据题意可画出示意图如下:
∵四边形ABCD是平行四边形,
∴,
∴,
∵,
∴,
∴.
故选:A.
本题考查的知识点是平行四边形的性质,属于基础题目,易于理解掌握.
6、D
【解析】
根据频次、频数的定义区别,抽样调查、普查的用法区别,不可能事件、随机事件的区分,折线统计图的性质可判断.
【详解】
解:某个对象出现的次数称为频数,A错误;
要了解某品牌运动鞋使用寿命可用抽样调查,B错误;
没有水分种子发芽是不可能事件,C错误;
折线统计图用于表示数据变化的特征和趋势,D正确;
故选:D.
本题考查频次、频数的定义区别,抽样调查、普查的用法区别,不可能事件、随机事件的区分,折线统计图的性质等知识点,准确掌握相似说法的定义区别是本题的关键.
7、C
【解析】
将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.
【详解】
根据中位数的概念,可知这组数据的中位数为:21
故答案选:C
本题考查中位数的概念,将一组数据从小到大或从大到小重新排列后,最中间的那个数或者最中间两个数的平均数叫做这组数据中位数,如果中位数的概念掌握不好,不把数据按照要求重新排列,就会出错.
8、C
【解析】
根据题意和函数图象中的数据可以判断各个选项中的说法是否正确,本题得以解决.
【详解】
由图象可得,
小明吃早餐用了25﹣8=17min,故选项A错误;
食堂到图书馆的距离为:0.8﹣0.6=0.2km,故选项B错误;
小明读报用了58﹣28=30min,故选项C正确;
小明从图书馆回家的速度为:0.8÷(68﹣58)=0.08km/min,故选项D错误;
故选C.
本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、甲
【解析】
根据题目中的四个方差,可以比较它们的大小,由方差越小越稳定可以解答本题.
【详解】
解:∵0.57<0.59<0.62<0.67,
∴成绩最稳定的是甲,
故答案为:甲
本题考查数据的波动。解答本题的关键是明确方差越小越稳定.
10、6
【解析】
根据所给的一组数据的平均数写出这组数据的平均数的表示式,把要求的结果也有平均数的公式表示出来,根据前面条件得到结果.
【详解】
解:一组数据,,,的平均数为2,
,
,,,的平均数是
故答案为6
本题考查了算术平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.
11、
【解析】
根据频率的求法,频率=,计算可得到答案.
【详解】
频率=.
故答案为:0.7.
本题考查了随机抽样中的条形图的认识,掌握频率的求法是解题的关键.
12、0.1
【解析】
概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率.
【详解】
解:概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率,
∴这种苹果幼树移植成活率的概率约为0.1,
故答案为:0.1.
此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.
13、3或﹣3
【解析】
试题分析:∵x1,x2是一元二次方程x2﹣5x+6=0的两个根,
∴(x﹣3)(x﹣2)=0,解得:x=3或2.
①当x1=3,x2=2时,x1﹡x2=32﹣3×2=3;
②当x1=2,x2=3时,x1﹡x2=3×2﹣32=﹣3.
三、解答题(本大题共5个小题,共48分)
14、(1)补图详见解析,50;(2)72°;(3)1
【解析】
(1)由“乒乓球”人数及其百分比可得总人数,根据各项目人数之和等于总人数求出“羽毛球”的人数,补全图形即可;
(2)用“篮球”人数占被调查人数的比例乘以360°即可;
(3)用总人数乘以样本中足球所占百分比即可得.
【详解】
(1)=50,
答:参加这次调查的学生人数为50人,
羽毛球的人数=50-14-10-8=8人
补全条形统计图如图所示:
(2)×360°=72°.
答:扇形统计图中“篮球”项目所对应扇形的圆心角度数为72°.
(3)1600×=1.
答:估计该校选择“足球”项目的学生有1人.
本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
15、(1)证明见解析(2)AG⊥BE(3)证明见解析
【解析】
(1)根据正方形的性质得DA=DC,∠ADB=∠CDB=45°,则可根据“SAS”证明△ADG≌△CDG,所以∠DAG=∠DCG;
(2)根据正方形的性质得AB=DC,∠BAD=∠CDA=90°,根据“SAS”证明△ABE≌△DCF,则∠ABE=∠DCF,由于∠DAG=∠DCG,所以∠DAG=∠ABE,然后利用∠DAG+∠BAG=90°得到∠ABE+∠BAG=90°,于是可判断AG⊥BE;
(3)如答图1所示,过点O作OM⊥BE于点M,ON⊥AG于点N,证明△AON≌△BOM,可得四边形OMHN为正方形,因此HO平分∠BHG结论成立.
【详解】
(1)证明:∵四边形ABCD为正方形,
∴DA=DC,∠ADB=∠CDB=45°,
在△ADG和△CDG中,
,
∴△ADG≌△CDG(SAS),
∴∠DAG=∠DCG;
(2)解:AG⊥BE.理由如下:
∵四边形ABCD为正方形,
∴AB=DC,∠BAD=∠CDA=90°,
在△ABE和△DCF中,
,
∴△ABE≌△DCF(SAS),
∴∠ABE=∠DCF,
∵∠DAG=∠DCG,
∴∠DAG=∠ABE,
∵∠DAG+∠BAG=90°,
∴∠ABE+∠BAG=90°,
∴∠AHB=90°,
∴AG⊥BE;
(3)解:由(2)可知AG⊥BE.
如答图1所示,过点O作OM⊥BE于点M,ON⊥AG于点N,则四边形OMHN为矩形.
∴∠MON=90°,
又∵OA⊥OB,
∴∠AON=∠BOM.
∵∠AON+∠OAN=90°,∠BOM+∠OBM=90°,
∴∠OAN=∠OBM.
在△AON与△BOM中,
,
∴△AON≌△BOM(AAS).
∴OM=ON,
∴矩形OMHN为正方形,
∴HO平分∠BHG.
此题是四边形综合题,主要考查了正方形的性质,矩形的判定和性质,全等三角形的判定和性质,角平分线的意义,垂直的判定,利用全等三角形的判断方法判断三角形是解本题的关键.
16、(1);(2)
【解析】
(1)把P(2,1)代入y=kx得到方程,求出方程的解即可;
(2)设平移后所得直线的解析式是y=2x+b,把(0,1)代入求出b即可.
【详解】
解:(1)把代入,得,
∴,
∴这个正比例函数的解析式是.
(2)设平移后所得直线的解析式是y=2x+b,
把(0,1)代入得:1=b,
∴y=2x+1.
答:平移后所得直线的解析式是y=2x+1.
本题主要考查对用待定系数法求一次函数、正比例函数的解析式,一次函数与几何变换,解一元一次方程等知识点的理解和掌握,能用待定系数法正确求函数的解析式是解此题的关键.
17、(1)①6 ,②见解析;(2)△PDM的周长保持不变,理由见解析.
【解析】
(1)①由折叠知BE=EM,AE+EM+AM=AE+EB+AM=AB+AM,根据边长及中点易求周长;②延长EM交CD延长线于Q点.可证△AEM≌△DQM,得AE=DQ,EM=MQ.所以PM垂直平分EQ,得EP=PQ,得证;
(2)不变化,可证△AEM∽△DMP,两个三角形的周长比为AE:MD,设AM=x,根据勾股定理可以用x表示MD的长与△MAE的周长,再根据周长比等于相似比,即可求解.
【详解】
(1)①由折叠可知,BE=BM,∠B=∠MEP=90°,
△AEM的周长= AE+EM+AM=AE+EB+AM=AB+AM.
∵AB=4,M是AD中点,
∴△AEM的周长=6(cm)
②证明:延长EM交CD延长线于Q点.
∵∠A=∠MDQ=90°,AM=DM,∠AME=∠DMQ,
∴△AME≌△DMQ.
∴AE=DQ,EM=MQ.
又∵∠EMP=∠B=90°,
∴PM垂直平分EQ,有EP=PQ.
∵PQ=PD+DQ,
∴EP=AE+PD.
(2)△PDM的周长保持不变,
证明:设AM=xcm,则DM=(4-x)cm ,
Rt△EAM中,由,
,
∵∠AME+∠AEM=90°,
∠AME+∠PMD=90°,
∴∠AEM=∠PMD,
又∵∠A=∠D=90°,
∴△PDM∽△MAE,
∴,
即,
∴,
∴△PDM的周长保持不变.
18、(1)见解析;(2)GE=BE+GD成立,理由见解析;(3)
【解析】
(1)利用已知条件,可证出△BCE≌△DCF(SAS),即可得到CE=CF;
(2)借助(1)的结论得出∠BCE=∠DCF,再通过角的计算得出∠GCF=∠GCE,由SAS可得△ECG≌△FCG,则EG=GF,从而得出GE=DF+GD=BE+GD;
(3)过C作CG⊥AD,交AD延长线于G,先证四边形ABCG是正方形(有一组邻边相等的矩形是正方形),再设DE=x,利用(1)、(2)的结论,在Rt△AED中利用勾股定理构造方程即可求出DE.
【详解】
(1)证明:如图①,在正方形ABCD中,BC=CD,∠B=∠ADC=90°,
∴∠CDF=90°,即∠B=∠CDF =90°,
在△BCE和△DCF中,
,
∴△BCE≌△DCF(SAS),
∴CE=CF;
(2)解:如图①,GE=BE+GD成立,理由如下:
由(1)得△BCE≌△DCF,
∴∠BCE=∠DCF,
∴∠ECD+∠ECB=∠ECD+∠FCD,
即∠ECF=∠BCD=90°,
又∵∠GCE=45°,
∴∠GCF=∠ECF−∠ECG=45°,则∠GCF=∠GCE,
在△GEC和△GFC中,
,
∴△GEC≌△GFC(SAS),
∴EG=GF,
∴GE=DF+GD=BE+GD;
(3)解:如图②,过C作CG⊥AD于G,
∴∠CGA=90°,
在四边形ABCD中,AD∥BC,∠A=∠B=90°,
∴四边形ABCG为矩形,
又∵AB=BC,
∴四边形ABCG为正方形,
∴AG=BC=AB=16,
∵∠DCE=45°,由(1)和(2)的结论可得:ED=BE+DG,
设DE=x,
∵,
∴AE=12,DG=x−4,
∴AD=AG−DG=20−x
在Rt△AED中,
由勾股定理得:DE2=AD2+AE2,
即x2=(20−x)2+122
解得:,
即.
本题是一道几何综合题,内容主要涉及全等三角形的判定与性质和勾股定理的应用,重点考查学生的数学学习能力,是一道好题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据正方形性质,当A,P,C在同一直线上时,PC+PA是值小.
【详解】
当A,P,C在同一直线上时,PC+PA是值小.
因为,四边形ABCD 是正方形,
所以,AC= .
故答案为
本题考核知识点:正方形性质,勾股定理. 解题关键点:利用两点之间线段最短解决问题.
20、
【解析】
根据平行四边形的性质可得到答案.
【详解】
∵四边形ABCD是平行四边形,∴∠A+∠B=180°,又∠A-∠B=60°,故可知∠A=120°,∴∠C=∠A=120°,故答案为120°.
本题主要考查了平行四边形的基本性质,解本题的要点在于熟记平行四边形的对角相等.
21、x≥﹣3
【解析】
根据二次根式定义:被开放式大于等于零时根式有意义即可解题.
【详解】
解:∵有意义,
∴x+3≥0,
解得:x≥﹣3.
本题考查了根式有意义的条件,属于简单题,熟悉二次根式的概念是解题关键.
22、或
【解析】
根据矩形ABCD中,AB=2,BC=6,可求出对角线的长,再由点G、H分别是OB、OD的中点,可得GH=BD,从而求出GH的长,若四边形EGFH为矩形时,EF=GH,可求EF的长,通过作辅助线,构造直角三角形,由勾股定理可求出MF的长,最后通过设未知数,列方程求出BF的长.
【详解】
解:如图:过点E作EM⊥BC,垂直为M,
矩形ABCD中,AB=2,BC=6,
∴AB=EM=CD=2,AD=BC=6,∠A=90°,OB=OD,
在Rt△ABD中,BD==2,
又∵点G、H分别是OB、OD的中点,
∴GH=BD=,
当四边形EGFH为矩形时,GH=EF=,
在Rt△EMF中,FM==,
易证△BOF≌△DOE (AAS),
∴BF=DE,
∴AE=FC,
设BF=x,则FC=6-x,由题意得:x-(6-x)=,或(6-x)-x=,,
∴x=或x=,
故答案为:或.
考查矩形的性质、直角三角形的性质,勾股定理等知识,合理的作辅助线,将问题转化显得尤为重要,但是,分情况讨论容易受图形的影响而被忽略,应切实注意.
23、1
【解析】
设方程另一根为t,根据根与系数的关系得到2+t=6,然后解一次方程即可.
【详解】
设方程另一根为t,
根据题意得2+t=6,
解得t=1.
故答案为1.
此题考查一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系,解题关键在于掌握方程的两根为x1,x2,则x1+x2=-.
二、解答题(本大题共3个小题,共30分)
24、 (1)-1;(2) x1=2+,x2=2﹣.
【解析】
(1)先根据关于x的一元二次方程ax2+4x﹣2=0有两个不相等的实数根求出a的取值范围,再由反比例函数的图象在二、四象限得出a的取值范围,由a为整数即可得出a的值;
(2)根据a的值得出方程,解方程即可得出结论.
【详解】
解:(1)∵方程有两个不相等的实数根,
∴△=16+8a>0,得a>﹣2且a≠0;
∵反比例函数图象在二,四象限,
∴2a+1<0,得a<﹣,
∴﹣2<a<﹣.
∵a是整数且a≠0,
∴a=﹣1;
(2)∵a=﹣1,
∴一元二次方程为﹣x2+4x﹣2=0,即:x2﹣4x+2=0,
解得:x1=2+,x2=2﹣.
此题主要考查一元二次方程根的判别式、反比例函数的性质和一元二次方程的解法.
25、AC与EF互相平分,见解析.
【解析】
由题意可证△ABE≌△DCF,可得∠BAE=∠DCF,即可得∠CAE=∠ACF,可证AE∥CF即可证AECF是平行四边形,可得AC与EF的关系.
【详解】
AC与EF互相平分
∵▱ABCD
∴AB∥CD,AB=CD
∴∠BAC=∠ACD
∵AB=CD,AE=CF,BE=DF
∴△ABE≌△CDF
∴∠BAE=∠FCD且∠BAC=∠ACD
∴∠EAC=∠FCA
∴CF∥AE且AE=CF
∴四边形AECF是平行四边形
∴AC与EF互相平分
本题考查了平行四边形的性质,全等三角形的判定和性质,证AECF是平行四边形是本题的关键.
26、(1)大货车用8辆,小货车用7辆;(2)y=100x+1.(3)见解析.
【解析】
(1)设大货车用x辆,小货车用y辆,根据大、小两种货车共15辆,运输152箱鱼苗,列方程组求解;
(2)设前往A村的大货车为x辆,则前往B村的大货车为(8-x)辆,前往A村的小货车为(10-x)辆,前往B村的小货车为[7-(10-x)]辆,根据表格所给运费,求出y与x的函数关系式;
(3)结合已知条件,求x的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.
【详解】
(1)设大货车用x辆,小货车用y辆,根据题意得:
解得:.∴大货车用8辆,小货车用7辆.
(2)y=800x+900(8-x)+400(10-x)+600[7-(10-x)]=100x+1.(3≤x≤8,且x为整数).
(3)由题意得:12x+8(10-x)≥100,解得:x≥5,又∵3≤x≤8,∴5≤x≤8且为整数,
∵y=100x+1,k=100>0,y随x的增大而增大,∴当x=5时,y最小,
最小值为y=100×5+1=9900(元).
答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往B村.最少运费为9900元.
题号
一
二
三
四
五
总分
得分
车型
目的地
A村(元/辆)
B村(元/辆)
大货车
800
900
小货车
400
600
相关试卷
这是一份广西贵港市2025届数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份甘肃省会宁县2025届数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届山东滨州阳信县数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。