广西钦州市2024年九上数学开学考试试题【含答案】
展开
这是一份广西钦州市2024年九上数学开学考试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一元二次方程的解为( )
A.B.B.C.,D.,
2、(4分)如图,将△OAB绕O点逆时针旋转60°得到△OCD,若OA=4,∠AOB=35°,则下列结论错误的是( )
A.∠BDO=60°B.∠BOC=25°C.OC=4D.BD=4
3、(4分)下列说法正确的是( )
A.某种彩票的中奖机会是1%,则买100张这种彩票一定会中奖.
B.为了解全国中学生的睡眠情况,应该采用普查的方式.
C.若甲数据的方差s 甲 2 =0.01,乙数据的方差s 乙 2 =0.1,则乙数据比甲数据稳定.
D.一组数据3,1,4,1,1,6,10的众数和中位数都是1.
4、(4分)比较A组、B组中两组数据的平均数及方差,一下说法正确的是( )
A.A组,B组平均数及方差分别相等B.A组,B组平均数相等,B组方差大
C.A组比B组的平均数、方差都大D.A组,B组平均数相等,A组方差大
5、(4分)如图,在正方形外取一点,连接、、,过点作的垂线交于点.若,,下列结论:①;②;③点到直线的距离为;④;⑤正方形.其中正确的是( )
A.①②③④B.①②④⑤C.①③④D.①②⑤
6、(4分)对于函数y=﹣2x+2,下列结论:①当x>1时,y<0;②它的图象经过第一、二、四象限;③它的图象必经过点(﹣1,2);④y的值随x的增大而增大,其中正确结论的个数是( )
A.1 B.2 C.3 D.4
7、(4分)若一次函数y=kx+17的图象经过点(-3,2),则k的值为( )
A.-6 B.6 C.-5 D.5
8、(4分)在式子,,,,,中,分式的个数有( )
A.2B.3C.4D.5
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,菱形ABCD的面积为24cm2,正方形ABCF的面积为18cm2,则菱形的边长为_____.
10、(4分)顺次连结任意四边形各边中点所得到的四边形一定是 .
11、(4分)如图,在平行四边形ABCD中,CE⊥AB且E为垂足,如果∠A=125°,则∠BCE=____.
12、(4分)如图,直线y=kx+b(k≠0)与x轴交于点(﹣4,0),则关于x的方程kx+b=0的解为x=_____.
13、(4分)根据如图所示的计算程序计算变量y的对应值,若输入变量x的值为﹣,则输出的结果为_____
三、解答题(本大题共5个小题,共48分)
14、(12分)甲、乙两名同学在练习打字时发现,甲打1800字的时间与乙打2400字的时间相同.已知乙每分钟比甲多打20个字,求甲每分钟打多少个字
15、(8分)对于平面直角坐标系xOy中的点P和正方形给出如下定义:若正方形的对角线交于点O,四条边分别和坐标轴平行,我们称该正方形为原点正方形,当原点正方形上存在点Q,满足PQ≤1时,称点P为原点正方形的友好点.
(1)当原点正方形边长为4时,
①在点P1(0,0),P2(-1,1),P3(3,2)中,原点正方形的友好点是__________;
②点P在直线y=x的图象上,若点P为原点正方形的友好点,求点P横坐标的取值范围;
(2)乙次函数y=-x+2的图象分别与x轴,y轴交于点A,B,若线段AB上存在原点正方形的友好点,直接写出原点正方形边长a的取值范围.
16、(8分)如图,直线过点,且与,轴的正半轴分別交于点、两点,为坐标原点.
(1)当时,求直线的方程;
(2)当点恰好为线段的中点时,求直线的方程.
17、(10分)(1) (2)
18、(10分)已知一次函数的图像经过点(2,1)和(0,-2).
(1)求该函数的解析式;
(2)判断点(-4,6)是否在该函数图像上.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在四边形中,点是对角线的中点,点、分别是、的中点,,且,则______.
20、(4分)计算:______.
21、(4分)使代数式有意义的x的取值范围是_______.
22、(4分)若将直线y=﹣2x向上平移3个单位后得到直线AB,那么直线AB的解析式是_____.
23、(4分)(2016浙江省衢州市)已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C(x,1),若以O,A,B,C为顶点的四边形是平行四边形,则x=____________.
二、解答题(本大题共3个小题,共30分)
24、(8分)平面直角坐标系xOy中,对于点M和图形W,若图形W上存在一点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称点M与图形W是“中心轴对称”的
对于图形和图形,若图形和图形分别存在点M和点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称图形和图形是“中心轴对称”的.
特别地,对于点M和点N,若存在一条经过原点的直线l,使得点M与点N关于直线l对称,则称点M和点N是“中心轴对称”的.
(1)如图1,在正方形ABCD中,点,点,
①下列四个点,,,中,与点A是“中心轴对称”的是________;
②点E在射线OB上,若点E与正方形ABCD是“中心轴对称”的,求点E的横坐标的取值范围;
(2)四边形GHJK的四个顶点的坐标分别为,,,,一次函数图象与x轴交于点M,与y轴交于点N,若线段与四边形GHJK是“中心轴对称”的,直接写出b的取值范围.
25、(10分)如图,在△ABC中,AB=AC,点,在边上,.求证:.
26、(12分)如图,已知点A(﹣2,0),点B(6,0),点C在第一象限内,且△OBC为等边三角形,直线BC交y轴于点D,过点A作直线AE⊥BD于点E,交OC于点E
(1)求直线BD的解析式;(2)求线段OF的长;(3)求证:BF=OE.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
把方程整理成,然后因式分解求解即可.
【详解】
解:把方程整理成即
∴或
解得:,
故选:D.
此题考查了一元二次方程的解法,一元二次方程的解法有:直接开平方法;分解因式法;公式法;配方法,本题涉及的解法有分解因式法,此方法的步骤为:把方程右边通过移项化为0,方程左边利用提公因式法,式子相乘法,公式法以及分组分解法分解因式,然后根据两数积为0,两数中至少有一个为0,转化为两个一元一次方程,进而得到原方程的解.
2、D
【解析】
由△OAB绕O点逆时针旋转60°得到△OCD知∠AOC=∠BOD=60°,AO=CO=4、BO=DO,据此可判断C;由△AOC、△BOD是等边三角形可判断A选项;由∠AOB=35°,∠AOC=60°可判断B选项,据此可得答案.
【详解】
解:∵△OAB绕O点逆时针旋转60°得到△OCD,
∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO,故C选项正确;
则△AOC、△BOD是等边三角形,∴∠BDO=60°,故A选项正确;
∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC-∠AOB=60°-35°=25°,故B选项正确.
故选D.
本题考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等及等边三角形的判定和性质.
3、D
【解析】
A选项:某种彩票的中奖机会是1%,则买100张这种彩票中奖的可能性很大,但不是一定中奖,故本选项错误;
B选项:为了解全国中学生的睡眠情况,应该采用抽样调查的方式,故本选项错误;
C选项:方差反映了一组数据的波动情况,方差越小数据越稳定,故本选项错误;
D选项:一组数据3,1,4,1,1,6,10的众数和中位数都是1,故本选项正确;
故选D.
4、D
【解析】
由图象可看出A组的数据为:3,3,3,3,3,-1,-1,-1,-1,B组的数据为:2,2,2,2,3,0,0,0,0,则分别计算出平均数及方差即可.
【详解】
解:由图象可看出A组的数据为:3,3,3,3,3,-1,-1,-1,-1,B组的数据为:2,2,2,2,3,0,0,0,0
则A组的平均数为:,
B组的平均数为:,
A组的方差为:,
B组的方差为:,
∴,
综上,A组、B组的平均数相等,A组的方差大于B组的方差
故选D.
本题考查了平均数,方差的求法.平均数表示一组数据的平均程度;方差是用来衡量一组数据波动大小的量.
5、D
【解析】
①利用同角的余角相等,易得∠EDC=∠PDA,再结合已知条件利用SAS可证两三角形全等;②利用①中的全等,可得∠APD=∠CED,结合三角形的外角的性质,易得∠CEP=90°,即可证;③过C作CF⊥DE,交DE的延长线于F,利用②中的∠BEP=90°,利用勾股定理可求CE,结合△DEP是等腰直角三角形,可证△CEF是等腰直角三角形,再利用勾股定理可求EF、CF;⑤在Rt△CDF中,利用勾股定理可求CD2,即是正方形的面积;④连接AC,求出△ACD的面积,然后减去△ACP的面积即可.
【详解】
解:①∵DP⊥DE,
∴∠PDE=90°,
∴∠PDC+∠EDC=90°,
∵在正方形ABCD中,∠ADC=90°,AD=CD,
∴∠PDC+∠PDA=90°,
∴∠EDC=∠PDA,
在△APD和△CED中
∴(SAS)(故①正确);
②∵,
∴∠APD=∠CED,
又∵∠CED=∠CEA+∠DEP,∠APD=∠PDE+∠DEP,
∴∠CEA=∠PDE=90°,(故②正确);
③过C作CF⊥DE,交DE的延长线于F,
∵DE=DP,∠EDP=90°,
∴∠DEP=∠DPE=45°,
又∵②中∠CEA=90°,CF⊥DF,
∴∠FEC=∠FCE=45°,
∵,∠EDP=90°,
∴
∴,
∴CF=EF=,
∴点C到直线DE的距离为(故③不正确);
⑤∵CF=EF=,DE=1,
∴在Rt△CDF中,CD2=(DE+EF)2+CF2=,
∴S正方形ABCD=CD2=(故⑤正确);
④如图,连接AC,
∵△APD≌△CED,
∴AP=CE=,
∴=S△ACD﹣S△ACP=S正方形ABCD﹣×AP×CE=×()﹣××=.(故④不正确).
故选:D.
本题利用了全等三角形的判定和性质、正方形的性质、正方形和三角形的面积公式、勾股定理等知识,综合性比较强,得出,进而结合全等三角形的性质分析是解题关键.
6、B
【解析】
根据一次函数的系数,结合一次函数的性质,逐个分析即可得.
【详解】
①∵k=﹣2<0,
∴一次函数中y随x的增大而减小.
∵令y=﹣2x+2中x=1,则y=0,
∴当x>1时,y<0成立,即①正确;
②∵k=﹣2<0,b=2>0,
∴一次函数的图象经过第一、二、四象限,即②正确;
③令y=﹣2x+2中x=﹣1,则y=4,
∴一次函数的图象不过点(﹣1,2),即③不正确;
④∵k=﹣2<0,
∴一次函数中y随x的增大而减小,④不正确.
故选:B
本题考核知识点:一次函数性质. 解题关键点:熟记一次函数基本性质.
7、D
【解析】
由一次函数经过(-3,2),故将x=-3,y=2代入一次函数解析式中,得到关于k的方程,求出方程的解即可得到k的值.
【详解】
由一次函数y=kx+17的图象经过点(-3,2),
故将x=-3,y=2代入一次函数解析式得:2=-3k+17,
解得:k=1,
则k的值为1.
故选D.
此题考查了待定系数法求一次函数解析式,灵活运用待定系数法是解本题的关键.
8、B
【解析】
判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.
【详解】
解:分式有:,,共3个.
故选B.
本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、5cm
【解析】
根据正方形的面积可用对角线进行计算解答即可.
【详解】
解:因为正方形AECF的面积为18cm2,
所以AC==6cm,
因为菱形ABCD的面积为24cm2,
所以BD==8cm,
所以菱形的边长==5cm.
故答案为:5cm.
此题考查正方形的性质,关键是根据正方形和菱形的面积进行解答.
10、平行四边形
【解析】
试题分析:由三角形的中位线的性质,平行与第三边且等于第三边的一半,根据一组对边平行且相等的四边形是平行四边形.
考点:平行四边形的判定
11、1
【解析】
分析:根据平行四边形的性质和已知,可求出∠B,再进一步利用直角三角形的性质求解即可.
详解:∵AD∥BC,
∴∠A+∠B=180°,
∴∠B=180°-125°=55°,
∵CE⊥AB,
∴在Rt△BCE中,∠BCE=90°-∠B=90°-55°=1°.
故答案为1.
点睛:本题主要考查了平行四边形的性质,运用平行四边形对边平行的性质,得到邻角互补的结论,这是运用定义求四边形内角度数的常用方法.
12、-1
【解析】
方程kx+b=0的解其实就是当y=0时一次函数y=kx+b与x轴的交点横坐标.
【详解】
由图知:直线y=kx+b与x轴交于点(-1,0),
即当x=-1时,y=kx+b=0;
因此关于x的方程kx+b=0的解为:x=-1.
故答案为:-1
本题主要考查了一次函数与一次方程的关系,关键是根据方程kx+b=0的解其实就是当y=0时一次函数y=kx+b与x轴的交点横坐标解答.
13、-1.5
【解析】
∵-2
相关试卷
这是一份广西钦州市钦州港经济技术开发区2024-2025学年数学九上开学考试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份广西钦州市第二中学2024年数学九上开学监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届广西钦州市东场中学九上数学开学联考试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。