广东省阳江市阳东区星重学校2024年数学九年级第一学期开学考试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)当k>0,b<0时,函数y=kx+b的图象大致是( )
A.B.
C.D.
2、(4分)下列各点在反比例函数图象上的是( )
A.B.C.D.
3、(4分)如图,一次函数,的图象与的图象相交于点,则方程组的解是()
A.B.C.D.
4、(4分)美是一种感觉,本应没有什么客观的标准,但在自然界里,物体形状的比例却提供了在的称与协调上的一种美感的参考,在数学上,这个比例称为黄金分割.在人体由脚底至肚脐的长度与身高的比例上,肚脐是理想的黄金分割点,也就是说,若此比值越接近就越给别人一种美的感觉. 某女士身高为,脚底至肚脐的长度与身高的比为为了追求美,地想利用高跟鞋达到这一效果 ,那么她选的高跟鞋的高度约为( )
A.B.C.D.
5、(4分)一个多边形为八边形,则它的内角和与外角和的总度数为( )
A.1080° B.1260° C.1440° D.540°
6、(4分)已知反比例函数y=,下列结论中,不正确的是( ).
A.图象必经过点(1,m).B.y随x的增大而减少.
C.当m>0时,图象在第一、三象限内.D.若y=2m,则x=.
7、(4分)已知a,b,c是△ABC的三边长,且满足关系,则△ABC的形状为( )
A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形
8、(4分)下列运算正确的是( )
A. +=B. =2C. •=D.÷=2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,若CD=BD,点D到边AB的距离为6,则BC的长是____.
10、(4分)如图(1)所示,在Rt△ABC中,∠B=90°,AB=4,BC=3,将△ABC沿着AC翻折得到△ADC,如图(2),将△ADC绕着点A旋转到△AD′C′,连接CD′,当CD′∥AB时,四边形ABCD的面积为_____.
11、(4分)对于任意不相等的两个数a,b,定义一种运算※如下:a※b=,如3※2=,那么6※3=_____.
12、(4分)如图是由6个形状大小完全相同菱形组成的网格,若菱形的边长为1,一个内角(∠O)为60°,△ABC的各顶点都在格点上,则BC边上的高为______.
13、(4分)因式分解:____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图1,,以点为顶点、为腰在第三象限作等腰.
(1)求点的坐标;
(2)如图2,在平面内是否存在一点,使得以为顶点的四边形为平行四边形?若存在,请写出点坐标;若不存在,请说明理由;
15、(8分)先化简,再求值:其中a=1.
16、(8分)如图,四边形ABCD是平行四边形,对角线AC,BD相交于点O,且∠1=∠1.求证:四边形ABCD是矩形.
17、(10分)如图,已知E、F分别是□ABCD的边BC、AD上的点,且BE=DF
⑴求证:四边形AECF是平行四边形;
⑵若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.
18、(10分)已知:如图,平行四边形ABCD中,E、F分别是边BC和AD上的点,且BE=DF,求证:AE=CF
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)某校五个绿化小组一天植树的棵树如下:10、10、12、x、1.已知这组数据的众数与平均数相等,那么这组数据的中位数是________.
20、(4分)若=3-x,则x的取值范围是__________.
21、(4分)设a是的小数部分,则根式可以用表示为______.
22、(4分)已知y与2x成正比例,且当x=1时y=4,则y关于x的函数解析式是__________.
23、(4分)菱形的两条对角线的长分别为6和8,则这个菱形的周长为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)4月23日是“世界读书日”,某校在“世界读书日”活动中,购买甲、乙两种图书共150本作为活动奖品,已知乙种图书的单价是甲种图书单价的1.5倍.若用180元购买乙种图书比要购买甲种图书少2本.
(1)求甲、乙两种图书的单价各是多少元?
(2)如果购买图书的总费用不超过5000元,那么乙种图书最多能买多少本?
25、(10分)小明是一位善于思考的学生,在一次数学活动课上,他将一副直角三角板按如图所示的位置摆放,、、三点在同一直线上,,,,,量得.
(1)试求点到的距离.(2)试求的长.
26、(12分)已知:一个正比例函数与一个一次函数的图象交于点A(1,4)且一次函数的图象与x轴交于点B(3,0),坐标原点为O.
(1)求正比例函数与一次函数的解析式;
(2)若一次函数交与y轴于点C,求△ACO的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
由一次函数图象与系数的关系可得,
当k>0,b<0时,函数y=kx+b的图象经过一三四象限.
故选D.
2、C
【解析】
由可得,xy=-5,然后进行排除即可.
【详解】
解:由,即,xy=-5,经排查只有C符合;
故答案为C.
本题考查了反比例函数的性质,即对于反比例函数,有xy=k是解答本题的关键.
3、A
【解析】
根据图象求出交点P的坐标,根据点P的坐标即可得出答案.
【详解】
解:∵由图象可知:一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2的交点P的坐标是(-2,3),
∴方程组的解是,
故选A.
本题考查了对一次函数与二元一次方程组的关系的理解和运用,主要考查学生的观察图形的能力和理解能力,题目比较典型,但是一道比较容易出错的题目.
4、C
【解析】
根据已知条件算出下半身身高,然后设选的高跟鞋的高度为xcm,根据比值是0.618列出方程,解方程即可
【详解】
根据已知条件得下半身长是160×0.6=96cm
设选的高跟鞋的高度为xcm,
有
解得x≈7.5
经检验x≈7.5是原方程的解
故选C
本题考查分式方程的应用,能够读懂题意列出方程是本题关键
5、C
【解析】
直接利用多边形的内角和与外角和定义分析得出答案.
【详解】
八边形的内角和为:(8﹣2)×180°=1080°,八边形的外角和为:360°,故八边形的内角和与外角和的总度数为:1440°.
故选C.
本题考查了多边形的内角和与外角和,正确把握相关定义是解题的关键.
6、B
【解析】
根据反比例函数的性质对各项进行判断即可.
【详解】
A. 图象必经过点(1,m),正确;
B. 当时,在每一个象限内y随x的增大而减少,错误;
C. 当m>0时,图象在第一、三象限内,正确;
D. 若y=2m,则x=,正确;
故答案为:B.
本题考查了反比例函数的问题,掌握反比例函数的性质是解题的关键.
7、C
【解析】
试题解析:∵+|a−b|=0,
∴c2-a2-b2=0,a-b=0,
解得:a2+b2=c2,a=b,
∴△ABC的形状为等腰直角三角形;
故选C.
【点睛】此题主要考查了勾股定理逆定理以及非负数的性质,关键是掌握勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
8、D
【解析】
分析:利用二次根式的加减法对A进行判断;根据二次根式的性质对B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.
详解:A、与不能合并,所以A选项错误;
B、原式=3,所以B选项错误;
C、原式==,所以C选项错误;
D、原式==2,所以D选项正确.
故选:D.
点睛:本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2
【解析】
过D作DE⊥AB于E,则DE=1,根据角平分线性质求出CD=DE=1,求出BD即可.
【详解】
过D作DE⊥AB于E.
∵点D到边AB的距离为1,∴DE=1.
∵∠C=90°,AD平分∠BAC,DE⊥AB,∴CD=DE=1.
∵CDDB,∴DB=12,∴BC=1+12=2.
故答案为2.
本题考查了角平分线性质的应用,注意:角平分线上的点到这个角的两边的距离相等.
10、
【解析】
过点A作AE⊥AB交CD′的延长线于E,构造直角三角形,利用勾股定理即可.
【详解】
解:如图(2),过点A作AE⊥AB交CD′的延长线于E,由翻折得AD=AB=4
∵CD′∥AB
∴∠BCE+∠ABC=180°,
∵∠ABC=90°
∴∠BCE=90°
∵AE⊥AB
∴∠BAE=90°
∴ABCE是矩形,AD′=AD=AB=4
∴AE=BC=3,CE=AB=4,∠AEC=90°
∴D′E==
∴CD′=CE﹣D′E=4﹣
∴S四边形ABCD′=(AB+CD′)•BC=(4+4﹣)×3=,
故答案为:.
本题考查了勾股定理,矩形性质,翻折、旋转的性质,梯形面积等,解题关键对翻折、旋转几何变换的性质要熟练掌握和运用.
11、1.
【解析】
试题解析:6※3=.
考点:算术平方根.
12、
【解析】
如图,连接EA、EC,先证明∠AEC=90°,E、C、B共线,求出AE即可.
【详解】
解:如图,连接EA,EC,
∵菱形的边长为1,由题意得∠AEF=30°,∠BEF=60°,AE=,
∴∠AEC=90°,
∵∠ACE=∠ACG=∠BCG=60°,
∴∠ECB=180°,
∴E、C、B共线,
∴AE即为△ACB的BC边上的高,
∴AE=,
故答案为.
本题考查菱形的性质,特殊三角形边角关系等知识,解题的关键是添加辅助线构造直角三角形解决问题,属于中考常考题型.
13、
【解析】
先提取4,然后利用平方差公式计算.
【详解】
原式=4(m2-9)=4(m+3)(m-3),
故答案是:4(m+3)(m-3)
考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键,一般有公因式会先提取公因式.
三、解答题(本大题共5个小题,共48分)
14、(1)点的坐标为;(2)(-4,-6)或(-8,2)或(4,-2).
【解析】
(1)由“AAS”可证△ACD≌△BAO,可得OA=CD=2,AD=OB=4,即可求点C坐标;
(2)分三种情况讨论,由平行四边形的性质和中点坐标公式可求点H坐标.
【详解】
解:(1)如图1,过作轴于M点
,则,
在和中,
,
,
,
,
点的坐标为,
(2)设点H(x,y),
∵OA=2,OB=4,
∴A(-2,0),点B(0,-4),
若四边形ABHC是平行四边形,
∴AH与BC互相平分,
∴,,
∴x=-4,y=-6,
∴点H坐标(-4,-6).
若四边形ABCH是平行四边形,
∴AC与BH互相平分,
∴,,
∴x=-8,y=2,
∴点H坐标(-8,2),
若四边形CAHB是平行四边形,
∴AB与CH互相平分
∴,,
∴x=4,y=-2,
∴点H坐标(4,-2),
综上所述:点H坐标为(-4,-6)或(-8,2)或(4,-2).
本题考查了平行四边形的判定和性质,全等三角形的判定和性质,等腰直角三角形的性质,利用分类讨论思想解决问题是本题的关键.
15、,
【解析】
先利用平方差公式化简,可得原式,再代入求解即可.
【详解】
解:原式
.
当时,原式.
本题考查了分式的化简求值问题,掌握平方差公式、分式的运算法则是解题的关键.
16、参见解析.
【解析】
试题分析:此题利用对角线相等的平行四边形是矩形的判定方法来判定四边形ABCD是矩形.
试题解析:在□ABCD中,应用平行四边形性质得到AO=CO,BO=DO,又 ∵∠2=∠2 ,∴BO=CO,∴AO=BO=CO=DO,∴AC=BD,∴□ABCD为矩形.
考点:2.矩形的判定;2.平行四边形性质.
17、⑴证明见解析
⑵5
【解析】
(1)首先由已知证明AF∥EC,BE=DF,推出四边形AECF是平行四边形.
(2)由已知先证明AE=BE,即BE=AE=CE,从而求出BE的长
【详解】
⑴证明:如图
∵四边形ABCD是平行四边形,
∴AD∥BC,且AD=BC,
∴AF∥EC,
∵BE=DF,
∴AF=EC
∴四边形AECF是平行四边形
⑵解:∵四边形AECF是菱形,
∴AE=EC
∴∠1=∠2分
∵∠3=90°-∠2,∠4=90°-∠1,
∴∠3=∠4,
∴AE=BE
∴BE=AE=CE=BC=5
18、详见解析
【解析】
根据平行四边形的性质和已知条件证明△ABE≌△CDF,再利用全等三角形的性质:即可得到AE=CF.
【详解】
证:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,又∵BE=DF,∴△ABE≌△CDF,∴AE=CF. (其他证法也可)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2
【解析】
根据题意先确定x的值,再根据中位数的定义求解.
【详解】
解:当x=1或12时,有两个众数,而平均数只有一个,不合题意舍去.
当众数为2,根据题意得:
解得x=2,
将这组数据从小到大的顺序排列1,2,2,2,12,
处于中间位置的是2,
所以这组数据的中位数是2.
故答案为2.
本题主要考查了平均数、众数与中位数的意义,解题时需要理解题意,分类讨论.
20、
【解析】
试题解析:∵=3﹣x,
∴x-3≤0,
解得:x≤3,
21、
【解析】
根据题意用表示出a,代入原式化简计算即可得到结果.
【详解】
解:根据题意得:a=,
则原式=
=
=
=
=,
故答案为:.
此题考查了估算无理数的大小,根据题意表示出a是解本题的关键.
22、y=4x
【解析】
根据y与1x成正比例,当x=1时,y=4,用待定系数法可求出函数关系式.
【详解】
解:设所求的函数解析式为:y=k•1x,
将x=1,y=4代入,得:4=k•1,
所以:k=1.
则y关于x的函数解析式是:y=4x.
故答案为:y=4x.
本题考查待定系数法求解析式,解题关键是根据已知条件,用待定系数法求得函数解析式k的值,写出y关于x的函数解析式.
23、1
【解析】
根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.
【详解】
解:如图,根据题意得AO=×8=4,BO=×6=3,
∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD.
∴△AOB是直角三角形.
∴.
∴此菱形的周长为:5×4=1
故答案为:1.
二、解答题(本大题共3个小题,共30分)
24、(1)甲种图书的单价为30元/本,乙种图书的单价为1元/本;(2)乙种图书最多能买2本.
【解析】
(1)设甲种图书的单价为x元/本,则乙种图书的单价为1.5x元/本,根据“用180元购买乙种图书比要购买甲种图书少2本”列分式方程即可求出结论;
(2)设乙种图书购买了m本,则甲种图书购买了(150-m)本,根据“购买图书的总费用不超过5000元”列出不等式即可得出结论.
【详解】
解:(1)设甲种图书的单价为x元/本,则乙种图书的单价为1.5x元/本,
依题意,得:-=2,
解得:x=30,
经检验,x=30是所列分式方程的解,且符合题意,
∴1.5x=1.
答:甲种图书的单价为30元/本,乙种图书的单价为1元/本.
(2)设乙种图书购买了m本,则甲种图书购买了(150-m)本,
依题意,得:30(150-m)+1m≤5000,
解得:m≤.
∵m为整数,
∴m的最大值为2.
答:乙种图书最多能买2本.
此题考查的是分式方程的应用和一元一次不等式的应用,掌握实际问题中的等量关系和不等关系是解决此题的关键.
25、(1)点与之间的距离为:;(2).
【解析】
(1)根据题意得出∠DFE=30°,则EF=2DE=16,进而利用勾股定理得出DF的长,进而得出答案;
(2)直接利用勾股定理得出DM的长,进而得出MB=FM,求出答案.
【详解】
解:(1)如图,
过点作于点,
在中,,,,
则,
故,
,
∵,
∴,
在中,,
即点与之间的距离为:;
(2)在中,,
∵,
∴,
又∵,
是等腰直角三角形,
∴,
∴.
此题考查勾股定理,平行线的性质,解题关键在于作辅助线
26、(1)y=﹣2x+1;(2)2.
【解析】
(1)先设正比例函数解析式为y=mx,再把(1,4)点代入可得m的值,进而得到解析式;设一次函数解析式为y=kx+b,把(1,4)(2,0)代入可得关于k、b的方程组,然后再解出k、b的值,进而得到解析式;
(2)利用一次函数解析式,求得OC的长,进而得出△ACO的面积.
【详解】
解:(1)设正比例函数解析式为y=mx,
∵图象经过点A(1,4),
∴4=m×1,即m=4,
∴正比例函数解析式为y=4x;
设一次函数解析式为y=kx+b,
∵图象经过(1,4)(2,0),
∴,
解得:,
∴一次函数解析式为y=﹣2x+1.
(2)在y=﹣2x+1中,令x=0,则y=1,
∴C(0,1),
∴OC=1,
∴S△AOC=×1×1=2.
此题主要考查了待定系数法求一次函数解析式以及三角形的面积,关键是用联立解析式的方法求出交点坐标.
题号
一
二
三
四
五
总分
得分
批阅人
2024-2025学年广东省阳江市阳东区星重学校数学九上开学监测试题【含答案】: 这是一份2024-2025学年广东省阳江市阳东区星重学校数学九上开学监测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
广东省阳江市阳东区星重学校2023-2024学年数学九年级第一学期期末监测试题含答案: 这是一份广东省阳江市阳东区星重学校2023-2024学年数学九年级第一学期期末监测试题含答案,共8页。试卷主要包含了某商务酒店客房有间供客户居住,下列事件中,属于必然事件的是,的值等于等内容,欢迎下载使用。
2023-2024学年广东省阳江市阳东区星重学校数学九年级第一学期期末综合测试模拟试题含答案: 这是一份2023-2024学年广东省阳江市阳东区星重学校数学九年级第一学期期末综合测试模拟试题含答案,共7页。试卷主要包含了如图,下列条件中,能判定的是,计算的值是,已点A等内容,欢迎下载使用。