![广东省汕头市友联中学2025届数学九年级第一学期开学检测试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16267156/0-1729299947854/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![广东省汕头市友联中学2025届数学九年级第一学期开学检测试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16267156/0-1729299947919/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![广东省汕头市友联中学2025届数学九年级第一学期开学检测试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16267156/0-1729299947973/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
广东省汕头市友联中学2025届数学九年级第一学期开学检测试题【含答案】
展开
这是一份广东省汕头市友联中学2025届数学九年级第一学期开学检测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)设a、b是直角三角形的两条直角边,若该三角形的周长为12,斜边长为5,则ab的值是( )
A.6B.8C.12D.24
2、(4分)某地区连续10天的最高气温统计如下表,则该地区这10天最高气温的中位数是( )
A.B.C.D.
3、(4分)七巧板是我国祖先的一项卓越创造.下列四幅图中有三幅是小明用如图所示的七巧板拼成的,则不是小明拼成的那副图是( )
A.B.C.D.
4、(4分)分式有意义,则的取值范围为( )
A.B.C.且D.为一切实数
5、(4分)下列方程中,是分式方程的为( )
A.B.C.D.
6、(4分)年一季度,华为某销公营收入比年同期增长,年第一季度营收入比年同期增长,年和年第一季度营收入的平均增长率为,则可列方程( )
A.B.
C.D.
7、(4分)以下列各数为边长,能构成直角三角形的是( )
A.1,,2B.,,C.5,11,12D.9,15,17
8、(4分)用配方法解方程x2-8x+9=0时,原方程可变形为( )
A.(x-4)2=9B.(x-4)2=7C.(x-4)2=-9D.(x-4)2=-7
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在英文单词 believe 中,字母“e”出现的频率是_______.
10、(4分)如图,直线与x轴、y轴分别交于A,B两点,C是OB的中点,D是AB上一点,四边形OEDC是菱形,则△OAE的面积为________.
11、(4分)在一个不透明的盒子里装有黑、白两种颜色的球共50只,这些球除颜色外其余完全相同.小颖做摸球实验,搅匀后,她从盒子里随机摸出一只球记下颜色后,再把球放回盒子中.不断重复上述过程,下表是实验中的一组统计数据:
请估计:当n很大时,摸到白球的频率将会接近_____;(精确到0.1)
12、(4分)如果等腰直角三角形的一条腰长为1,则它底边的长=________.
13、(4分)在某班的50名学生中,14岁的有2人,15岁的有36人,16岁的有12人,则这个班学生的平均年龄是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,矩形的对角线交于点,且.
(1)求证:四边形是菱形;
(2)若,求菱形的面积.
15、(8分)某批乒乓球的质量检验结果如下:
(1)填写表中的空格;
(2)画出这批乒乓球优等品频率的折线统计图;
(3)这批乒乓球优等品概率的估计值是多少?
16、(8分)如图,在平面直角坐标系中,直线交轴于点,交轴于点,正方形的点在线段上,点,在轴正半轴上,点在点的右侧,.将正方形沿轴正方向平移,得到正方形,当点与点重合时停止运动.设平移的距离为,正方形与重合部分的面积为.
(1)求直线的解析式;
(2)求点的坐标;
(3)求与的解析式,并直接写出自变量的取值范围.
17、(10分)在一个不透明的盒子里装有只有颜色不同的黑、白两种球共50个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是试验中的一组统计数据:
(1)请估计当很大时,摸到白球的频率将会接近______;(精确到0.1);
(2)假如随机摸一次,摸到白球的概率P(白球)=______;
(3)试估算盒子里白色的球有多少个?
18、(10分)为了了解某种电动汽车的性能,某机构对这种电动汽车进行抽检,获得如图中不完整的统计图,其中,,,表示 一次充电后行驶的里程数分别为,,,.
(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图;
电动汽车一次充电后行驶里程数的条形统计图
电动汽车一次充电后行驶里程数的扇形统计图
(2)求扇形统计图中表示一次充电后行驶路为的扇形圆心角的度数;
(3)估计这种电动汽车一次充电后行驶的平均里程多少?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=4cm,BD=8cm,则这个菱形的面积是_____cm1.
20、(4分)已知α、β是一元二次方程x2﹣2019x+1=0的两实根,则代数式(α﹣2019)(β﹣2019)=_____.
21、(4分)某班七个兴趣小组人数分别为4,x,5,5,4,6,7,已知这组数据的平均数是5,则x=________.
22、(4分)把直线向上平移2个单位得到的直线解析式为:_______.
23、(4分)小张和小李练习射击,两人10次射击训练成绩(环数)的统计结果如表所示,
通常新手的成绩不稳定,根据表格中的信息,估计小张和小李两人中新手是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在△ABC中,∠C=90°,∠A=30°,边AB的垂直平分线交AB于点D,交AC于点E.
求证:AE=2CE.
25、(10分)如图,在▱ABCD中,对角线AC、BD相交于点O,且OA=OB
(1)求证:四边形ABCD是矩形;
(2)若AB=5,∠AOB=60°,求BC的长.
26、(12分)如图,抛物线与轴交于, (在的左侧),与轴交于点,抛物线上的点的横坐标为3,过点作直线轴.
(1)点为抛物线上的动点,且在直线的下方,点,分别为轴,直线上的动点,且轴,当面积最大时,求的最小值;
(2)过(1)中的点作,垂足为,且直线与轴交于点,把绕顶点旋转45°,得到,再把沿直线平移至,在平面上是否存在点,使得以,,,为顶点的四边形为菱形?若存在直接写出点的坐标;若不存在,说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
由该三角形的周长为12,斜边长为5可知a+b+5=12,再根据勾股定理和完全平方公式即可求出ab的值.
【详解】
解:∵三角形的周长为12,斜边长为5,
∴a+b+5=12,
∴a+b=7,①
∵a、b是直角三角形的两条直角边,
∴a2+b2=52,②
由②得a2+b2=(a+b)2﹣2ab=52
∴72﹣2ab=52
ab=12,
故选:C.
本题考查勾股定理和三角形的周长以及完全平方公式的运用,解题的关键是熟练掌握勾股定理以及完全平方公式.
2、B
【解析】
求中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.
【详解】
把这些数从小到大为:18℃,19℃,19℃,20℃,20℃,21℃,21℃,21℃,22℃,22℃,
则中位数是: =20.5℃;
故选B.
考查中位数问题,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.
3、C
【解析】
观察可得,选项C中的图形与原图中的④、⑦图形不符,故选C.
4、B
【解析】
直接利用分式有意义则分母不等于零进而得出答案.
【详解】
分式有意义,
则x-1≠0,
解得:x≠1.
故选:B.
此题考查分式有意义的条件,正确把握分式的定义是解题关键.
5、C
【解析】
根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断.
【详解】
A. 是整式方程,故选项错误;
B. 是整式方程,故选项错误;
C. 分母中含有未知数x,所以是分式方程,故选项正确;
D. 是整式方程,故选项错误.
故选C.
此题考查分式方程的判定,掌握分式方程的定义是解题的关键.
6、D
【解析】
利用两种方法算出2019年第一季度的收入,因所得结果是一致的,进而得出等式即可.
【详解】
解:如果2017年第一季度收入为a,则根据题意2019年第一季度的收入为:a(1+22%)(1+30%),设2018年和2019年第一季度营收入的平均增长率为x,根据题意又可得2019年第一季度收入为:,此2种方式结果一样,可得:
a(1+22%)(1+30%)=,即,
故选择:D.
此题主要考查了根据实际问题抽象出一元二次方程,求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.
7、A
【解析】
根据勾股定理的逆定理可知,当三角形中三边的关系为:a2+b2=c2时,则三角形为直角三角形.
【详解】
A、12+()2=22,符合勾股定理的逆定理,能组成直角三角形,故正确;
B、()2+()2≠()2,不符合勾股定理的逆定理,不能组成直角三角形,故错误;
C、52+112≠122,不符合勾股定理的逆定理,不能组成直角三角形,故错误;
D、92+152≠172,不符合勾股定理的逆定理,不能组成直角三角形,故错误.
故选:A.
考查的是勾股定理的逆定理:已知三角形ABC的三边满足:a2+b2=c2时,则三角形ABC是直角三角形.解答时,只需看两较小数的平方和是否等于最大数的平方.
8、B
【解析】
方程常数项移到右边,两边加上一次项系数一半的平方,利用完全平方公式变形得到结果,即可做出判断.
【详解】
方程x2-8x+9=0,
变形得:x2-8x=-9,
配方得:x2-8x+16=7,即(x-4)2=7,
故选B.
本题考查了解一元二次方程-配方法,熟练掌握配方法的一般步骤以及完全平方公式的结构特征是解本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
先求出英文单词believe总的字母个数和e的个数,再根据握频率=进行计算即可.
【详解】
∵英文单词believe共有7个字母,其中有3个e,
∴字母“e”出现的频率是;
故答案为:.
此题考查频数与频率,解题关键在于掌握频率的计算公式即可.
10、
【解析】
根据直线于坐标轴交点的坐标特点得出,A,B两点的坐标,得出OB,OA的长,根据C是OB的中点,从而得出OC的长,根据菱形的性质得出DE=OC=2;DE∥OC;设出D点的坐标,进而得出E点的坐标,从而得出EF,OF的长,在Rt△OEF中利用勾股定理建立关于x的方程,求解得出x的值,然后根据三角形的面积公式得出答案.
【详解】
解: 把x=0代入 y = − x + 4 得出y=4,
∴B(0,4);
∴OB=4;
∵C是OB的中点,
∴OC=2,
∵四边形OEDC是菱形,
∴DE=OC=2;DE∥OC,
把y=0代入 y = − x + 4 得出x=,
∴A(,0);
∴OA=,
设D(x,) ,
∴E(x,- x+2),
延长DE交OA于点F,
∴EF=-x+2,OF=x,
在Rt△OEF中利用勾股定理得:,
解得 :x1=0(舍),x2=;
∴EF=1,
∴S△AOE=·OA·EF=2.
故答案为.
本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(-,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了菱形的性质.
11、0.60
【解析】
计算出平均值即可解答
【详解】
解:由表可知,当n很大时,摸到白球的频率将会接近0.60;
故答案为:0.60;
此题考查利用频率估计概率,解题关键在于求出平均值
12、
【解析】
根据等腰直角三角形两腰相等及勾股定理求解即可.
【详解】
解:∵等腰直角三角形的一腰长为1,则另一腰长也为1
∴由勾股定理知,底边的长为
故答案为:.
本题考查了等腰三角形的腰相等,勾股定理等知识点,熟练掌握基本的定理及图形的性质是解决此类题的关键.
13、15.2岁
【解析】
直接利用平均数的求法得出答案.
【详解】
解:∵在某班的50名学生中,14岁的有2人,15岁的有36人,16岁的有12人,
∴这个班学生的平均年龄是:(14×2+15×36+16×12)= (岁).
故答案为:岁.
此题主要考查了求平均数,正确掌握平均数的公式是解题关键.
三、解答题(本大题共5个小题,共48分)
14、(1)证明见解析;(2)
【解析】
(1)根据平行四边形的判定得出四边形OCED是平行四边形,根据矩形的性质求出OC=OD,根据菱形的判定得出即可.
(2)解直角三角形求出BC=3,AB=DC=,连接OE,交CD于点F,根据菱形的性质得出F为CD中点,求出OF=BC=,求出OE=2OF=3,求出菱形的面积即可.
【详解】
解:(1)∵,
∴四边形OCED是平行四边形,
∵四边形ABCD是矩形,
∴AC=BD,OC=AC,OD=BD,
∴OC=OD,
∴四边形OCED是菱形;
(2)在矩形ABCD中,∠ABC=90°,∠BAC=30°,AC=6,
∴BC=AC=3,
∴AB=DC=,
连接OE,交CD于点F,
∵四边形ABCD为菱形,
∴F为CD中点,
∵O为BD中点,
∴OF=BC=,
∴OE=2OF=3,
∴S菱形OCED=×OE×CD=×3×=.
本题考查了矩形的性质和菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:菱形的面积等于对角线积的一半.
15、(1)见解析;(2)见解析;(3)这批乒乓球优等品概率的估计值是0.90.
【解析】
(1)根据表格中数据计算填表即可;
(2)根据表格中优等品频率画折线统计图即可;
(3)利于频率估计概率求解即可.
【详解】
解:(1)176÷200=0.88,364÷400=0.91,450÷500=0.90,
填表如下:
(2)折线统计图如图:
(3)由表中数据可判断优等品频率在0.90左右摆动,于是利于频率估计概率可得这批乒乓球优等品概率的估计值是0.90.
本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.也考查了统计表和折线统计图.
16、 (1);(2) ;(3) .
【解析】
(1)将A,E的坐标代入解析式即可解答
(2)根据题意可知CD=2,将其代入解析式,即可求出点C
(3)根据题意可分情况讨论:当时,;当时,,即可解答
【详解】
(1)设直线的解析式为,因为经过点,点.
,解得:,∴.
(2)当时,,,
∴.
(3)当时,如图1.
点的横坐标为,点的横坐标为.
∴当时,,
∴,
∴当时,,
∴.
∴.
当时,如图2.
∴
综上.
此题考查一次函数与几何图形,解题关键在于将已知点代入解析式
17、(1)0.1;(2)0.1;(3)30个
【解析】
(1)根据表中的数据,估计得出摸到白球的频率.
(2)根据概率与频率的关系即可求解;
(3)根据摸到白球的频率即可得到白球数目.
【详解】
解:(1)由表中数据可知,当n很大时,摸到白球的频率将会接近0.1,
故答案为:0.1.
(2))∵摸到白球的频率为0.1,
∴假如你摸一次,你摸到白球的概率P(白球)=0.1,
故答案为0.1;
(3)盒子里白色的球有50×0.1=30(只).
本题比较容易,考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:部分的具体数目=总体数目×相应频率.
18、(1)总共有辆.类有10辆,图略;(2)72°;(3)这种电动汽车一次充电后行驶的平均里程数为千米.
【解析】
(1)根据条形统计图和扇形图可知,将一次充电后行驶的里程数分为B等级的有30辆电动汽车,所占的百分比为30%,用30÷30%即可求出这次被抽检的电动汽车总量,再分别减去B、C、D等级的辆数,得到A等级的辆数,即可补全条形图;
(2)用D等级的辆数除以汽车总量,得到其所占的百分比,再乘以360°得到扇形圆心角的度数;
(3)用总里程除以汽车总辆数,即可解答.
【详解】
解:(1)这次被抽检的电动汽车共有30÷30%=100(辆).
A等级汽车数量为:100-(30+40+20)=10(辆).
条形图补充如下:
(2)D等级对应的圆心角度数为.
(3).
答:这种电动汽车一次充电后行驶的平均里程数为千米.
本题考查条形统计图、扇形统计图和加权平均数的定义,解题的关键是明确题意,找出所求问题需要的条件.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2.
【解析】
试题分析:根据菱形的面积等于对角线乘积的一半解答.
试题解析:∵AC=4cm,BD=8cm,
∴菱形的面积=×4×8=2cm1.
考点:菱形的性质.
20、1
【解析】
根据根与系数的关系可得:α+β=2019,αβ=1,将其代入(α﹣2019)(β﹣2019)=αβ-2019(α+β)+ 中即可求出结论.
【详解】
∵α、β是一元二次方程x2﹣2019x+1=0的两实根,
∴α+β=2019,αβ=1,
∴(α﹣2019)(β﹣2019)=αβ-2019(α+β)+=1.
故答案为1.
本题考查了一元二次方程根与系数的关系,熟练运用一元二次方程根与系数的关系是解决问题的关键.
21、4
【解析】
根据平均数的定义求出x的值即可.
【详解】
根据题意得,,
解得,x=4.
故答案为:4.
要熟练掌握平均数的定义以及求法.
22、
【解析】
直接根据一次函数图象与几何变换的有关结论求解.
【详解】
直线y=2x向上平移2个单位后得到的直线解析式为y=2x+2.
故答案为y=2x+2.
此题考查一次函数图象与几何变换,解题关键在于掌握平移的性质
23、小李
【解析】
根据方差的意义知,波动越大,成绩越不稳定. 观察表格可得,小李的方差大,说明小李的成绩波动大,不稳定,
【详解】
观察表格可得,小李的方差大,意味着小李的成绩波动大,不稳定
此题考查了方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定
二、解答题(本大题共3个小题,共30分)
24、见解析
【解析】
由DE为垂直平分线可以知道,AE=BE,只要得到BE=2CE,即可,利用∠A=30°和∠C=90°,即可得到所求
【详解】
解:连接BE,
∵在△ABC中,∠C=90°,∠A=30°,
∴∠ABC=90°﹣∠A=60°,
∵DE是AB的垂直平分线,
∴AE=BE,
∴∠ABE=∠A=30°,
∴∠CBE=∠ABC﹣∠ABE=30°,
在Rt△BCE中,∵∠CBE=30°
∴BE=2CE,
∴AE=2CE.
本题主要考查垂直平分线的用法,掌握垂直平分线的性质是关键
25、(1)证明见解析;(2)
【解析】
(1)根据平行四边形的性质得到OA=OC=AC,OB=OD=BD,推出AC=BD,于是得到结论;
(2)根据已知条件得到△AOB是等边三角形,求得OA=OB=AB=5,解直角三角形即可得到结论.
【详解】
(1)∵四边形ABCD 是平行四边形,
∴OA=OC=AC,OB=OD=BD,
∵OA=OB,
∴AC=BD,
∴平行四边形ABCD是矩形;
(2)∵OA=OB,∠AOB=60°,
∴△AOB是等边三角形,
∴OA=OB=AB=5,
∵四边形ABCD是矩形,
∴AC=2OA=10,∠ABC=90°,
∴.
本题考查了矩形的判定和性质,勾股定理,平行四边形的性质,熟练掌握矩形的判定和性质定理是解题的关键.
26、(1) (2),,,
【解析】
(1)根据题意求得点、、、的坐标,进而求得直线和直线解析式.过点作轴垂线交于点,设点横坐标为,即能用表示、的坐标进而表示的长.由得到关于的二次函数,即求得为何值时面积最大,求得此时点坐标.把点向上平移的长,易证四边形是平行四边形,故有.在直线的上方以为斜边作等腰,则有.所以,其中的长为定值,易得当点、、在同一直线上时,线段和的值最小.又点是动点,,由垂线段最短可知过点作的垂线段时,最短.求直线、解析式,联立方程组即求得点坐标,进而求得的长.
(2)先求得,,的坐标,可得是等腰直角三角形,当绕逆时针旋转再沿直线平移可得△,根据以,,,为顶点的四边形为菱形,可得,,,,即可求得的坐标,当绕顺时针旋转再沿直线平移可得△,根据以,,,为顶点的四边形为菱形,可得,,即可求得的坐标.
【详解】
解:(1)如图1,过点作轴于点,交于点,在上截取,连接,
以为斜边在直线上方作等腰,过点作于点
时,
时,
解得:,
,
直线解析式为
抛物线上的点的横坐标为3
,直线
点在轴上,点在直线上,轴
设抛物线上的点,
当时,最大
,
,
,
四边形是平行四边形
等腰中,为斜边
,
当点、、在同一直线上时,最小
设直线解析式为
解得:
直线
设直线解析式为
解得:
直线
解得:
,
最小值为
(2),,
直线解析式为:,
,,
,,是等腰直角三角形,
如图2,把绕顶点逆时针旋转,得到△,,,
把△沿直线平移至△,连接,
则直线解析式为,直线解析式为,显然
以,,,为顶点的四边形为菱形,不可能为边,只能以、为邻边构成菱形
,
,
,,
如图3,把绕顶点顺时针旋转,得到△,
,,
把△沿直线平移至△,连接,,
显然,,,,
以,,,为顶点的四边形为菱形,只能为对角线,
,.
综上所述,点的坐标为:,,,.
本题考查了二次函数的图象和性质,二次函数最值应用,线段和最小值问题,待定系数法求函数解析式,平移、旋转等几何变换,等腰直角三角形性质,菱形性质等知识点,能熟练运用相关的性质定理是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
最高气温()
18
19
20
21
22
天数
1
2
2
3
2
摸球的次数n
100
200
300
500
800
1 000
3 000
摸到白球的次数m
65
124
178
302
481
620
1845
摸到白球的频率
0.65
0.62
0.593
0.604
0.601
0.620
0.615
抽取的乒乓球数n
50
100
150
200
350
400
450
500
优等品的频数m
40
96
126
176
322
364
405
450
优等品的频率
0.80
0.96
0.84
0.92
0.90
摸到球的次数
100
200
300
500
800
1000
3000
摸到白球的次数
65
124
178
302
481
599
1803
摸到白球的概率
0.65
0.62
0.593
0.604
0.601
0.599
0.601
平均数
中位数
众数
方差
小张
7.2
7.5
7
1.2
小李
7.1
7.5
8
5.4
抽取的乒乓球数n
50
100
150
200
350
400
450
500
优等品的频数m
40
96
126
176
322
364
405
450
优等品的频率
0.80
0.96
0.84
0.88
0.92
0.91
0.90
0.90
相关试卷
这是一份广东省汕头市潮南区峡山中学2025届数学九年级第一学期开学教学质量检测模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届广东省汕头市苏湾中学九年级数学第一学期开学考试试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届广东省汕头市龙湖区九年级数学第一学期开学质量检测模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)