开学活动
搜索
    上传资料 赚现金

    广东省汕头市科利园实验学校2024年数学九年级第一学期开学学业水平测试试题【含答案】

    广东省汕头市科利园实验学校2024年数学九年级第一学期开学学业水平测试试题【含答案】第1页
    广东省汕头市科利园实验学校2024年数学九年级第一学期开学学业水平测试试题【含答案】第2页
    广东省汕头市科利园实验学校2024年数学九年级第一学期开学学业水平测试试题【含答案】第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广东省汕头市科利园实验学校2024年数学九年级第一学期开学学业水平测试试题【含答案】

    展开

    这是一份广东省汕头市科利园实验学校2024年数学九年级第一学期开学学业水平测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,A、B是曲线上的点,经过A、B两点向x轴、y轴作垂线段,若,则S1+S2的值为( )
    A.3B.4C.5D.6
    2、(4分)下列事件中是必然事件是( )
    A.明天太阳从西边升起
    B.篮球队员在罚球线投篮一次,未投中
    C.实心铁球投入水中会沉入水底
    D.抛出一枚硬币,落地后正面向上
    3、(4分)已知点在第一象限,则下列关系式正确的是( )
    A.B.C.D.
    4、(4分)下列运算正确的是( )
    A.=B.=a+1C.+=0D.﹣=
    5、(4分)若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B的坐标为( )
    A.(﹣1,0)B.(﹣1,﹣1)C.(﹣2,0)D.(﹣2,﹣1)
    6、(4分)下列式子成立的是( )
    A.=3B.2﹣=2C.=D.()2=6
    7、(4分)如图,点A,B在反比例函数的图象上,点C,D在反比例函数的图象上,AC//BD//y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为( )
    A.4B.3C.2D.
    8、(4分)如图,在矩形中,,,分别在边上,. 将,分别沿着翻折后得到、. 若分别平分,则的长为( )

    A.3B.4C.5D.7
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)的平方根为_______
    10、(4分)如果最简二次根式与最简二次根式同类二次根式,则x=_______.
    11、(4分)如图,已知在▱ABCD中,∠B=60°,AB=4,BC=8,则▱ABCD的面积=_____.
    12、(4分)把二次函数y= -2x2-4x-1的图象向上平移3个单位长度,再向右平移4个单位长度,则两次平移后的图象的解析式是 _____________;
    13、(4分)化简:=_________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)解不等式组,并写出它的所有非负整数解.
    15、(8分)为弘扬中华传统文化,了解学生整体听写能力,某校组织全校1000名学生进行一次汉字听写大赛初赛,从中抽取部分学生的成绩进行统计分析,根据测试成绩绘制出了频数分布表和频数分布直方图:
    (1)表中的a=______,b=______,c=______;
    (2)把上面的频数分布直方图补充完整,并画出频数分布折线图;
    (3)如果成绩达到90及90分以上者为优秀,可推荐参加进入决赛,那么请你估计该校进入决赛的学生大约有多少人.
    16、(8分)甲、乙两名队员的10次射击训练,成绩分别被制成下列两个统计图.
    并整理分析数据如下表:
    (1)求,,的值;
    (2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?
    17、(10分)如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F分别是AB、AC的中点.
    (1)求证:四边形AEDF是菱形;
    (2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.
    18、(10分)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.
    (1)求饮用水和蔬菜各有多少件?
    (2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;
    (3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)分式当x __________时,分式的值为零.
    20、(4分)一次函数y=(m-3)x+5的函数值y随着x的增大而减小,则m的取值范围_______.
    21、(4分)线段AB的两端点的坐标为A(﹣1,0),B(0,﹣2).现请你在坐标轴上找一点P,使得以P、A、B为顶点的三角形是直角三角形,则满足条件的P点的坐标是______.
    22、(4分)若m=2,则的值是_________________.
    23、(4分)在四边形中,同一条边上的两个角称为邻角.如果一个四边形一条边上的邻角相等,且这条边的对边上的邻角也相等,那么这个四边形叫做C形.根据研究平行四边形及特殊四边形的方法,在下面的横线上至少写出两条关于C形的性质:_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)某公司欲招聘一名部门经理,对甲、乙、丙三名候选人进行了笔试与面试,甲、乙、丙三人的笔试成绩分别为95分、94分和94分.他们的面试成绩如表:
    (1)分别求出甲、乙、丙三人的面试成绩的平均分、、;
    (2)若按笔试成绩的40%与面试成绩的60%的和作为综合成绩,综合成绩高者将被录用,请你通过计算判断谁将被录用.
    25、(10分)闵行区政府为残疾人办实事,在道路改造工程中为盲人修建一条长3000米的盲道,根据规划设计和要求,某工程队在实际施工中增加了施工人员,每天修建的盲道比原计划多250米,结果提前2天完成工程,问实际每天修建盲道多少米.
    26、(12分)已知:如图,在中,于点,为上一点,连结交于,且,,求证:.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    首先根据反比例函数中k的几何意义,可知S矩形ACOD=S矩形BEOF=|k|=3,又S阴影=1,则S1=S矩形ACOD-S阴影=2,S2=S矩形BEOF-S阴影=2,从而求出S1+S2的值.
    【详解】
    解:∵A、B是曲线上的点,经过A、B两点向x轴、y轴作垂线段,
    ∴S矩形ACOD=S矩形BEOF=3,
    又∵S阴影=1,
    ∴S1=S2=3-1=2,
    ∴S1+S2=1.
    故选:B.
    主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.
    2、C
    【解析】
    必然事件就是一定会发生的事件,即发生的概率是1的事件,依据定义即可解决.
    【详解】
    解:A、明天太阳从西边升起,是不可能事件,故不符合题意;
    B、篮球队员在罚球线投篮一次,未投中,是随机事件,故不符合题意;
    C、实心铁球投入水中会沉入水底,是必然事件,故符合题意;
    D、抛出一枚硬币,落地后正面向上,是随机事件,故不符合题意.
    故选C.
    3、B
    【解析】
    首先根据点所在象限确定横、纵坐标的符号,进一步可得关于m的不等式组,再解所得的不等式组即可求得正确的结果.
    【详解】
    解:因为第一象限内的点的坐标特点是(+,+),所以5-m>0,m+3>0,解得.
    故选B.
    本题考查了平面直角坐标系各象限点的坐标特点和解一元一次不等式组,解决问题的关键是熟记各象限内点的坐标符号特点并列出不等式组求解,具体来说:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).
    4、C
    【解析】
    根据分式的性质进行判断,去掉带有负号的括号,每一项都应变号;分子与分母同除以一个不为0的数,分式的值不变.
    【详解】
    A. =,故错误;
    B. =a+,故错误;
    C. +=-=0,故正确;
    D. ﹣=,故错误;
    故选C
    本题考查了分式的加减法则以及分式的基本性质,正确理解分式的基本性质是关键.
    5、B
    【解析】
    已知点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,根据向左平移横坐标减,向下平移纵坐标减的平移规律可得,点B的横坐标为1﹣2=﹣1,纵坐标为3﹣4=﹣1,所以B的坐标为(﹣1,﹣1).
    故答案选C.
    考点:坐标与图形变化﹣平移.
    6、A
    【解析】
    运用二次根式的相关定义、运算、化简即可求解.
    【详解】
    解:A:是求的算术平方根,即为3,故正确;
    B:2﹣=,故B错误;
    C:上下同乘以,应为,故C错误;
    D:的平方应为3,而不是6,故D错误.
    故答案为A.
    本题主要考查二次根式的定义、运算和化简;考查知识点较多,扎实的基础是解答本题的关键.
    7、B
    【解析】
    首先根据A,B两点的横坐标,求出A,B两点的坐标,进而根据AC//BD// y 轴,及反比例函数图像上的点的坐标特点得出C,D两点的坐标,从而得出AC,BD的长,根据三角形的面积公式表示出S△OAC,S△ABD的面积,再根据△OAC与△ABD的面积之和为,列出方程,求解得出答案.
    【详解】
    把x=1代入得:y=1,
    ∴A(1,1),把x=2代入得:y=,
    ∴B(2, ),
    ∵AC//BD// y轴,
    ∴C(1,k),D(2,)
    ∴AC=k-1,BD=-,
    ∴S△OAC=(k-1)×1,
    S△ABD= (-)×1,
    又∵△OAC与△ABD的面积之和为,
    ∴(k-1)×1+ (-)×1=,解得:k=3;
    故答案为B.
    :此题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解本题的关键.
    8、B
    【解析】
    如图作GM⊥AD于M交BC于N,作HT⊥BC于T.根据题意得到∠GAM=∠BAE=∠EAG=30°,根据三角函数的计算得到CT,即可解决问题.
    【详解】
    如图作GM⊥AD于M交BC于N,作HT⊥BC于T.
    由题意:∠BAD=90°,∠BAE=∠EAG=∠GAM,
    ∴∠GAM=∠BAE=∠EAG=30°,
    ∵AB=AG=2,
    ∴AM=AG•cs30°=3,
    同法可得CT=3,
    易知四边形ABNM,四边形GHTN是矩形,
    ∴BN=AM=3,GH=TN=BC﹣BN﹣CT=10﹣6=4,
    故选:B.
    本题考查翻折变换,解直角三角形,矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    利用平方根立方根定义计算即可.
    【详解】
    ∵,
    ∴的平方根是±,
    故答案为±.
    本题考查了方根的定义,熟练掌握平方根的定义是解本题的关键.注意:区别平方根和算术平方根.一个非负数的平方根有两个,互为相反数,正值为算术平方根.
    10、1
    【解析】
    ∵最简二次根式与最简二次根式是同类二次根式,
    ∴x+3=1+1x,解得:x=1.当x=1时,6和是最简二次根式且是同类二次根式.
    11、.
    【解析】
    如图,作AH⊥BC于H.根据平行四边形ABCD的面积=BC•AH,即可解决问题.
    【详解】
    如图,作AH⊥BC于H.
    在Rt△ABH中,∵AB=4,∠B=60°,∠AHB=90°,∴AH=AB•sin60°=2,∴平行四边形ABCD的面积=BC•AH=16.
    故答案为:16.
    本题考查了平行四边形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
    12、y= -2x2+12x-2
    【解析】
    先把抛物线化为顶点式,再按照“左加右减,上加下减”的规律,即可求出平移后的函数表达式.
    【详解】
    解:把抛物线的表达式化为顶点坐标式,y=-2(x+1)2+1.
    按照“左加右减,上加下减”的规律,向上平移3个单位,再向右平移4个单位,得
    y=-2(x+1-4)2+1+3=-2(x-3)2+4=-2x2+12x-2.
    故答案为:y=-2x2+12x-2.
    本题考查二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.同时考查了学生将一般式转化顶点式的能力.
    13、
    【解析】
    根据三角形法则计算即可解决问题.
    【详解】
    解:原式=,
    = ,
    = ,
    =.
    故答案为.
    本题考查平面向量、三角形法则等知识,解题的关键是灵活运用三角形法则解决问题,属于中考基础题.
    三、解答题(本大题共5个小题,共48分)
    14、非负整数解是:0,1、1.
    【解析】
    分别解出两不等式的解集再求其公共解.
    【详解】
    解:
    解不等式 ①,得x>-1 .
    解不等式 ②,得.
    ∴原不等式组的解集是.
    ∴原不等式组的非负整数解为0,1,1.
    错因分析 较易题.失分原因:①没有掌握一元一次不等式组的解法;②取非负整数解时多取或少取导致出错.
    15、(1)14;0.08;4;(2)详见解析;(3)80.
    【解析】
    (1)根据频率分布表确定出总人数,进而求出a,b,c的值即可;
    (2)把上面的频数分布直方图补充完整,并画出频数分布折线图,如图所示;
    (3)根据样本中90分及90分以上的百分比,乘以1000即可得到结果.
    【详解】
    解:(1)根据题意得:a=6÷0.12×0.28=14,b=1﹣(0.12+0.28+0.32+0.20)=0.08,c=6÷0.12×0.08=4;
    故答案为:14;0.08;4;
    (2)频数分布直方图、折线图如图,

    (3)根据题意得:1000×(4÷50)=80(人),
    则你估计该校进入决赛的学生大约有80人.
    此题考查了频数(率)分布折线图,用样本估计总体,频数(率)分布表,以及频数(率)分布直方图,弄清题中的数据是解本题的关键.
    16、(1)a=7,b=7.5,c=4.2;(2)见解析.
    【解析】
    (1)利用平均数的计算公式直接计算平均分即可;将乙的成绩从小到大重新排列,用中位数的定义直接写出中位数即可;根据乙的平均数利用方差的公式计算即可;
    (2)结合平均数和中位数、众数、方差三方面的特点进行分析.
    【详解】
    (1)甲的平均成绩a==7(环),
    ∵乙射击的成绩从小到大重新排列为:3、4、6、7、7、8、8、8、9、10,
    ∴乙射击成绩的中位数b==7.5(环),
    其方差c=×[(3-7)2+(4-7)2+(6-7)2+2×(7-7)2+3×(8-7)2+(9-7)2+(10-7)2]
    =×(16+9+1+3+4+9)
    =4.2;
    (2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定;
    综合以上各因素,若选派一名队员参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.
    本题考查的是条形统计图和方差、平均数、中位数、众数的综合运用.熟练掌握平均数的计算,理解方差的概念,能够根据计算的数据进行综合分析.
    17、(1)证明见解析;(2).
    【解析】
    试题分析:(1)利用直角三角形斜边中线是斜边一半,求得DE=AE=AF=DF,
    所以AEDF是菱形.
    (2)由(1)得,AEDF是菱形,求得菱形对角线乘积的一半,求面积 .
    试题解析:
    (1)∵AD⊥BC,点E、F分别是AB、AC的中点,
    ∴Rt△ABD中,DE=AB=AE,
    Rt△ACD中,DF=AC=AF,
    又∵AB=AC,点E、F分别是AB、AC的中点,
    ∴AE=AF,
    ∴AE=AF=DE=DF,
    ∴四边形AEDF是菱形.
    (2)如图,∵菱形AEDF的周长为12,
    ∴AE=3,
    设EF=x,AD=y,则x+y=7,
    ∴x2+2xy+y2=49,①
    ∵AD⊥EF于O,
    ∴Rt△AOE中,AO2+EO2=AE2,
    ∴(y)2+(x)2=32,
    即x2+y2=36,②
    把②代入①,可得2xy=13,
    ∴xy=,
    ∴菱形AEDF的面积S=xy= .
    18、(1)饮用水和蔬菜分别为1件和2件
    (2)设计方案分别为:
    ①甲车2辆,乙车6辆;②甲车3辆,乙车5辆; ③甲车3辆,乙车3辆
    (3)运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元
    【解析】
    试题分析:(1)关系式为:饮用水件数+蔬菜件数=320;
    (2)关系式为:30×甲货车辆数+20×乙货车辆数≥1;10×甲货车辆数+20×乙货车辆数≥2;
    (3)分别计算出相应方案,比较即可.
    试题解析:(1)设饮用水有x件,则蔬菜有(x﹣80)件.
    x+(x﹣80)=320,
    解这个方程,得x=1.
    ∴x﹣80=2.
    答:饮用水和蔬菜分别为1件和2件;
    (2)设租用甲种货车m辆,则租用乙种货车(8﹣m)辆.得:

    解这个不等式组,得2≤m≤3.
    ∵m为正整数,
    ∴m=2或3或3,安排甲、乙两种货车时有3种方案.
    设计方案分别为:
    ①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车3辆,乙车3辆;
    (3)3种方案的运费分别为:
    ①2×300+6×360=2960(元);
    ②3×300+5×360=3000(元);
    ③3×300+3×360=3030(元);
    ∴方案①运费最少,最少运费是2960元.
    答:运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元.
    考点:1.一元一次不等式组的应用;2.二元一次方程组的应用.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、= -3
    【解析】
    根据分子为0,分母不为0时分式的值为0来解答.
    【详解】
    根据题意得:
    且x-3 0
    解得:x= -3
    故答案为:= -3.
    本题考查的是分式值为0的条件,易错点是只考虑了分子为0而没有考虑同时分母应不为0.
    20、m

    相关试卷

    广东省汕头市聿怀中学2024年九年级数学第一学期开学学业水平测试模拟试题【含答案】:

    这是一份广东省汕头市聿怀中学2024年九年级数学第一学期开学学业水平测试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    广东省广州市育才实验学校2025届数学九年级第一学期开学学业水平测试试题【含答案】:

    这是一份广东省广州市育才实验学校2025届数学九年级第一学期开学学业水平测试试题【含答案】,共22页。试卷主要包含了选择题,四象限,解答题等内容,欢迎下载使用。

    2023-2024学年广东省汕头市科利园实验学校九上数学期末考试模拟试题含答案:

    这是一份2023-2024学年广东省汕头市科利园实验学校九上数学期末考试模拟试题含答案,共8页。试卷主要包含了对于函数,下列结论错误的是等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map