终身会员
搜索
    上传资料 赚现金

    甘肃省酒泉市名校2024年数学九年级第一学期开学综合测试模拟试题【含答案】

    立即下载
    加入资料篮
    甘肃省酒泉市名校2024年数学九年级第一学期开学综合测试模拟试题【含答案】第1页
    甘肃省酒泉市名校2024年数学九年级第一学期开学综合测试模拟试题【含答案】第2页
    甘肃省酒泉市名校2024年数学九年级第一学期开学综合测试模拟试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    甘肃省酒泉市名校2024年数学九年级第一学期开学综合测试模拟试题【含答案】

    展开

    这是一份甘肃省酒泉市名校2024年数学九年级第一学期开学综合测试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)《九章算术》是我国古代的数学名著,书中的“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺.问折者高几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部3尺远,问折断处离地面的高度是多少?设折断后离地面的高度为x尺,则可列方程为( )
    A.x2–3=(10–x)2B.x2–32=(10–x)2C.x2+3=(10–x)2D.x2+32=(10–x)2
    2、(4分)如图,在任意四边形ABCD中,M,N,P,Q分别是AB,BC,CD,DA上的点,对于四边形MNPQ的形状,以下结论中,错误的是
    A.当M,N,P,Q是各边中点,四边MNPQ一定为平行四边形
    B.当M,N,P,Q是各边中点,且时,四边形MNPQ为正方形
    C.当M,N、P,Q是各边中点,且时,四边形MNPQ为菱形
    D.当M,N、P、Q是各边中点,且时,四边形MNPQ为矩形
    3、(4分)如图,已知Rt△ABC中,∠ACB=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC.若点F是DE的中点,连接AF,则AF=( )
    A.4B.5C.D.6
    4、(4分)下列调查中,适合普查的事件是( )
    A.调查华为手机的使用寿命v
    B.调查市九年级学生的心理健康情况
    C.调查你班学生打网络游戏的情况
    D.调查中央电视台《中国舆论场》的节目收视率
    5、(4分)已知一组数据:1,2,8,,7,它们的平均数是1.则这组数据的中位数是( )
    A.7B.1C.5D.4
    6、(4分)的取值范围如数轴所示,化简的结果是( )
    A.B.C.D.
    7、(4分)函数y=中,自变量x的取值范围是( )
    A.x>-3B.x≠0C.x>-3且x≠0D.x≠-3
    8、(4分)小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意,得
    A.B.
    C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)小玲要求△ABC最长边上的高,测得AB=8cm,AC=6cm,BC=10cm,则最长边上的高为_____cm.
    10、(4分)抛物线,当随的增大而减小时的取值范围为______.
    11、(4分)已知,,,则的值是_______.
    12、(4分)如图,在平行四边形中,AD=2AB,平分交于点E,且,则平行四边形的周长是____.
    13、(4分)如图是一次函数的y=kx+b图象,则关于x的不等式kx+b>0的解集为 .
    三、解答题(本大题共5个小题,共48分)
    14、(12分)某校为了了解八年级学生的身体素质情况,该校体育老师从八年级学生中随机抽取了50名进行一分钟跳绳次数测试,以测试数据为样本,绘制了如下的统计图表:
    请结合图表完成下列问题:
    (1)表中的______ ;
    (2)请把频数分布直方图补充完整;
    (3)所抽取的50名学生跳绳成绩的中位数落在哪一组?
    (4)该校八年级学生共有500人,若规定一分钟跳绳次数()在时为达标,请估计该校八年级学生一分钟跳绳有多少人达标?
    15、(8分)已知是不等式的一个负整数解,请求出代数式的值.
    16、(8分)某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择,为了估计全校学生对这四个活动项日的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:
    (1)求参加这次调查的学生人数,并补全条形统计图;
    (2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;
    (3)若该校共有1600名学生,试估计该校选择“足球”项目的学生有多少人?
    17、(10分)计算:(2+3)2﹣2×÷5.
    18、(10分)如图,一次函数y=k1x﹣1的图象经过A(0,﹣1)、B(1,0)两点,与反比例函数y=的图象在第一象限内的交点为M,若△OBM的面积为1.
    (1)求一次函数和反比例函数的表达式;
    (2)在x轴上是否存在点P,使AM⊥PM?若存在,求出点P的坐标;若不存在,说明理由;
    (3)x轴上是否存在点Q,使△QBM∽△OAM?若存在,求出点Q的坐标;若不存在,说明理由.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若关于x的分式方程=2a无解,则a的值为_____.
    20、(4分)如图,△ABC,△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,将△ADE绕点A在平面内自由旋转,连接DC,点M,P,N分别为DE,DC,BC的中点,若AD=3,AB=7,则线段MN的取值范围是______.
    21、(4分)如图,在平行四边形ABCD中,AB=2AD,BE平分∠ABC交CD于点E,作BF⊥AD,垂足为F,连接EF,小明得到三个结论:①∠FBC=90°;②ED=EB;③.则三个结论中一定成立的是____________.
    22、(4分)若分式的值为0,则x =_________________.
    23、(4分)直线 y=2x+3 与 x 轴相交于点 A,则点 A 的坐标为_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在正方形ABCD中,E、F是对角线BD上两点,将绕点A顺时针旋转 后,得到,连接EM,AE,且使得.
    (1)求证:;(2)求证:.
    25、(10分)如图(1),为等腰三角形,,点是底边上的一个动点,,.
    (1)用表示四边形的周长为 ;
    (2)点运动到什么位置时,四边形是菱形,请说明理由;
    (3)如果不是等腰三角形图(2),其他条件不变,点运动到什么位置时,四边形是菱形(不必说明理由).
    26、(12分)(1)因式分解:
    (2)计算:
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    竹子折断后刚好构成一直角三角形,设竹子折断处离地面x尺,则斜边为(10-x)尺,利用勾股定理解题即可.
    【详解】
    设竹子折断处离地面x尺,则斜边为(10-x)尺,
    根据勾股定理得:x1+31=(10-x)1.
    故选D.
    此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.
    2、B
    【解析】
    连接AC、BD,根据三角形中位线定理得到,,,,根据平行四边形、矩形、菱形、正方形的判定定理判断即可.
    【详解】
    解:连接AC、BD交于点O,
    ,N,P,Q是各边中点,
    ,,,,
    ,,
    四边MNPQ一定为平行四边形,A说法正确,不符合题意;
    时,四边形MNPQ不一定为正方形,B说法错误,符合题意;
    时,,
    四边形MNPQ为菱形,C说法正确,不符合题意;
    时,,
    四边形MNPQ为矩形,D说法正确,不符合题意.
    故选B.
    本题考查的是中点四边形,掌握平行四边形、矩形、菱形、正方形的判定定理、三角形中位线定理是解题的关键.
    3、B
    【解析】
    取CE的中点G,连接FG.依据旋转的性质CE=BC=4,CD=AC=6,则AE=2,由G是CE的中点可求得AG=4,然后利用三角形的中位线定理可得到FG=3,最后在Rt△AFG中依据勾股定理求解即可.
    【详解】
    过点作于点.由图形旋转的性质可知,,,所以.因为,且,所以.又因为点为中点,所以为的中位线,点为中点,则,,故.在中,.
    故选B.
    4、C
    【解析】试题解析:A、调查华为手机的使用寿命适合抽样调查;
    B、调查市九年级学生的心理健康情况适合抽样调查;
    C、调查你班学生打网络游戏的情况适合普查;
    D、调查中央电视台《中国舆论场》的节目收视率适合抽样调查,
    故选C.
    5、A
    【解析】
    分析:首先根据平均数为1求出x的值,然后根据中位数的概念求解.
    详解:由题意得:1+2+8+x+2=1×5,解得:x=2,这组数据按照从小到大的顺序排列为:2,1,2,2,8,则中位数为2.
    故选A.
    点睛:本题考查了中位数和平均数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.
    6、D
    【解析】
    先由数轴判断出,再根据绝对值的性质、二次根式的性质化简即可.
    【详解】
    解:由数轴可知,,

    原式,
    故选:.
    本题考查的是二次根式的化简,掌握二次根式的性质、数轴的概念是解题的关键.
    7、D
    【解析】
    试题分析:根据分式的意义,可知其分母不为0,可得x+3≠0,解得x≠-3.
    故选D
    8、A
    【解析】
    若设走路线一时的平均速度为x千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程.
    解:设走路线一时的平均速度为x千米/小时,
    故选A.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、4.1
    【解析】
    先根据勾股定理的逆定理判断出三角形是直角三角形,然后根据面积法求解.
    【详解】
    解:∵,
    ∴该三角形是直角三角形.
    根据面积法求解:
    S△ABC=AB•AC=BC•AD(AD为斜边BC上的高),
    即AD= =(cm).
    故答案为4.1.
    本题主要考查了勾股定理的逆定理,解题的关键是利用两种求三角形面积的方法列等式求解.
    10、(也可以)
    【解析】
    先确定抛物线的开口方向和对称轴,即可确定答案.
    【详解】
    解:∵的对称轴为x=1且开口向上
    ∴随的增大而减小时的取值范围为(也可以)
    本题主要考查了二次函数增减性中的自变量的取值范围,其中确定抛物线的开口方向和对称轴是解答本题的关键.
    11、
    【解析】
    首先根据a+b=−8,和ab=10确定a和b的符号,然后对根式进行化简,然后代入求解即可.
    【详解】
    解:

    原式=
    则原式=
    故答案为:.
    本题考查了根式的化简求值,正确确定a和b的符号是解决本题的关键.
    12、18
    【解析】
    利用平行四边形的对边相等且互相平行,进而得出AE=DE=AB,再求出ABCD的周长
    【详解】
    ∵CE平分∠BCD交AD边于点E,
    ∴.∠ECD=∠ECB
    ∵在平行四边形ABCD中、AD∥BC,AB=CD,AD=BC
    ∴∠DEC=∠ECB,
    ∴∠DEC=∠DCE
    ∴DE=DC
    ∵AD=2AB
    ∴AD=2CD
    ∴AE=DE=AB=3
    ∴AD=6
    ∴四边形ABCD的周长为:2×(3+6)=18.
    故答案为:18.
    此题考查平行四边形的性质,解题关键在于利用平行四边形的对边相等且互相平行
    13、x>﹣1.
    【解析】
    试题分析:根据一次函数的图像可知y随x增大而增大,因此可知不等式的解集为x>-1.
    考点:一次函数与一元一次不等式
    三、解答题(本大题共5个小题,共48分)
    14、(1)12;(2)见解析;(3)第3组;(4)360人;
    【解析】
    (1)用调查总人数减去其他小组的频数即可求得a值;
    (2)根据调查的总人数和每一小组的频数即可确定中位数落在那个范围内;
    (3)用总人数乘以达标率即可.
    【详解】
    (1)a=50-6-8-18-6=12;
    统计图为:
    (2)∵共50人,
    ∴中位数为第25人和第26人的平均数,
    ∵第25人和第26人均落在第3小组内,
    ∴中位数落在第3小组内;
    (3)达优人数为:500×=360人;
    估计该校八年级学生一分钟跳绳有360人达标?
    此题主要考查读频数分布直方图的能力和利用统计图获取信息的能力.解题的关键是根据直方图得到进一步解题的有关信息.
    15、,原式
    【解析】
    先根据分式的运算法则进行化简,再求出不等式的负整数解,最后代入求出即可.
    【详解】

    求解不等式,解得
    又当,时分式无意义 ∴
    ∴原式
    本题考查了分式的化简求值,解一元一次不等式,不等式的整数解等知识点,能求出符合题意的m值是解此题的关键.
    16、(1)补图详见解析,50;(2)72°;(3)1
    【解析】
    (1)由“乒乓球”人数及其百分比可得总人数,根据各项目人数之和等于总人数求出“羽毛球”的人数,补全图形即可;
    (2)用“篮球”人数占被调查人数的比例乘以360°即可;
    (3)用总人数乘以样本中足球所占百分比即可得.
    【详解】
    (1)=50,
    答:参加这次调查的学生人数为50人,
    羽毛球的人数=50-14-10-8=8人
    补全条形统计图如图所示:
    (2)×360°=72°.
    答:扇形统计图中“篮球”项目所对应扇形的圆心角度数为72°.
    (3)1600×=1.
    答:估计该校选择“足球”项目的学生有1人.
    本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    17、35+12﹣.
    【解析】
    根据完全平方公式、二次根式的乘除法和减法可以解答本题.
    【详解】
    (2+3)2﹣2×÷5.

    =35+12﹣.
    本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.
    18、(1)反比例函数解析式为:y=;(2)P(5,0);(3)Q点坐标为:(,0).
    【解析】
    试题分析:(1)利用已知点B坐标代入一次函数解析式得出答案,再利用△OBM的面积得出M点纵坐标,再利用相似三角形的判定与性质得出M点坐标即可得出反比例函数解析式;
    (2)过点M作PM⊥AM,垂足为M,得出△AOB∽△PMB,进而得出BP的长即可得出答案;
    (3)利用△QBM∽△OAM,得出=,进而得出OQ的长,即可得出答案.
    解:(1)如图1,过点M作MN⊥x轴于点N,
    ∵一次函数y=k1x﹣1的图象经过A(0,﹣1)、B(1,0)两点,
    ∴0=k1﹣1,AO=BO=1,
    解得:k1=1,
    故一次函数解析式为:y=x﹣1,
    ∵△OBM的面积为1,BO=1,
    ∴M点纵坐标为:2,
    ∵∠OAB=∠MNB,∠OBA=∠NBM,
    ∴△AOB∽△MNB,
    ∴==,
    则BN=2,
    故M(3,2),
    则xy=k2=6,
    故反比例函数解析式为:y=;
    (2)如图2,过点M作PM⊥AM,垂足为M,
    ∵∠AOB=∠PMB,∠OBA=∠MBP,
    ∴△AOB∽△PMB,
    ∴=,
    由(1)得:AB==,BM==2,
    故=,
    解得:BP=4,
    故P(5,0);
    (3)如图3,∵△QBM∽△OAM,
    ∴=,
    由(2)可得AM=3,
    故=,
    解得:QB=,
    则OQ=,
    故Q点坐标为:(,0).
    考点:反比例函数综合题.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1或
    【解析】
    分析:直接解分式方程,再利用当1-2a=0时,当1-2a≠0时,分别得出答案.
    详解:去分母得:
    x-3a=2a(x-3),
    整理得:(1-2a)x=-3a,
    当1-2a=0时,方程无解,故a=;
    当1-2a≠0时,x==3时,分式方程无解,
    则a=1,
    故关于x的分式方程=2a无解,则a的值为:1或.
    故答案为1或.
    点睛:此题主要考查了分式方程的解,正确分类讨论是解题关键.
    20、2≤MN≤5
    【解析】
    根据中位线定理和等腰直角三角形的判定证明△PMN是等腰直角三角形,求出MN=BD,然后根据点D在AB上时,BD最小和点D在BA延长线上时,BD最大进行分析解答即可.
    【详解】
    ∵点P,M分别是CD,DE的中点,
    ∴PM=CE,PM∥CE,
    ∵点P,N分别是DC,BC的中点,
    ∴PN=BD,PN∥BD,
    ∵△ABC,△ADE均为等腰直角三角形,
    ∴AB=AC,AD=AE,∠BAC=∠DAE=90°,
    ∴∠BAD=∠CAE,
    ∴△ABD≌△ACE(SAS),
    ∴BD=CE,
    ∴PM=PN,
    ∴△PMN是等腰三角形,
    ∵PM∥CE,
    ∴∠DPM=∠DCE,
    ∵PN∥BD,
    ∴∠PNC=∠DBC,
    ∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,
    ∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,
    ∵∠BAC=90°,
    ∴∠ACB+∠ABC=90°,
    ∴∠MPN=90°,
    ∴△PMN是等腰直角三角形,
    ∴PM=PN=BD,
    ∴MN=BD,
    ∴点D在AB上时,BD最小,
    ∴BD=AB-AD=4,MN的最小值2;
    点D在BA延长线上时,BD最大,
    ∴BD=AB+AD=10,MN的最大值为5,
    ∴线段MN的取值范围是2≤MN≤5.
    故答案为:2≤MN≤5.
    此题考查了旋转的性质,三角形中位线定理,全等三角形的判定和性质,等腰直角三角形的判定和性质等,关键是根据全等三角形的判定和等腰直角三角形的判定证明△PMN是等腰三角形.
    21、①③
    【解析】
    由垂直的定义得到∠AFB=90°,根据平行线的性质即可得到∠AFB=∠CBF=90°,故①正确;延长FE交BC的延长线与M,根据全等三角形的性质得到EF=EM=FM,根据直角三角形的性质得到BE=FM,等量代换的EF=BE,故②错误;由于,,于是得到,故③正确.
    【详解】
    解:∵BF⊥AD,
    ∴∠AFB=90°,
    ∵在平行四边形ABCD中,AD∥BC,平行线之间内错角相等,
    ∴∠AFB=∠FBC=90°,故①正确;
    如下图所示,延长FE交BC的延长线于M,
    又∵在平行四边形ABCD中,AD∥BC,平行线之间内错角相等,∴∠DFE=∠M,
    且CD与MF交于点E,两相交直线对顶角相等,∴∠DEF=∠CEM,
    又∵BE平分∠ABC,∴∠ABE=∠EBC,
    而平行四边形ABCD中,AB∥CD,平行线之间内错角相等,∴∠CEB=∠ABE,
    ∴∠ABE=∠EBC=∠CEB,故BCE为等腰三角形,其中BC=CE,
    又∵AB=2AD,故CD=2BC=2CE,∴CE=DE,
    在DFE与CME中,

    ∴DFE≌CME(AAS),
    ∴EF=EM=FM,
    又∵∠FBM=90°,∴BE=FM,
    ∴EF=BE,
    ∵EF≠DE,故②错误;
    又∵EF=EM,∴,
    ∵△DFE≌△CME,∴,
    ∴,故③正确,
    故答案为:①③.
    此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,本题需要添加辅助线,构造出全等三角形DFE≌CME,这是解题的关键.
    22、2
    【解析】
    根据分式值为0的条件进行求解即可.
    【详解】
    由题意,得x-2=0,
    解得:x=2,
    故答案为:2.
    本题考查了分式值为0的条件,熟练掌握“分式值为0时,分子为0用分母不为0”是解题的关键.
    23、(−,0)
    【解析】
    根据一次函数与x轴的交点,y=0;即可求出A点的坐标.
    【详解】
    解:∵当y=0时,有
    ,解得:,
    ∴A点的坐标为(−,0);
    故答案为:(−,0).
    本题考查了一次函数与x轴的交点坐标,解答此题的关键是熟知一次函数与坐标轴的交点,与x轴有交点,则y=0.
    二、解答题(本大题共3个小题,共30分)
    24、(1)见解析;(2)见解析.
    【解析】
    (1)直接利用旋转的性质证明△AME≌△AFE(SAS),即可得出答案;
    (2)利用(1)中所证,再结合勾股定理即可得出答案.
    【详解】
    证明:(1)∵将绕点A顺时针旋转90°后,得到,
    ,,,




    在△AME和中



    (2)由(1)得:,
    在中,,
    又∵,

    此题主要考查了旋转的性质、全等三角形的判定和性质以及勾股定理等知识,正确得出△AME≌△AFE是解题关键.
    25、(1);(2)当为中点时,四边形是菱形,见解析;(3)P运动到∠A的平分线上时,四边形ADPE是菱形,理由见解析.
    【解析】
    (1)根据平行线的性质和等腰三角形的性质证明∠B=∠DPB,∠C=∠EPC,进而可得DB=DP,PE=EC,从而可得四边形ADPE的周长=AD+DP+PE+AE=AB+AC;
    (2)当P运动到BC中点时,四边形ADPE是菱形;首先证明四边形ADPE是平行四边形,再证明DP=PE即可得到四边形ADPE是菱形;
    (3)P运动到∠A的平分线上时,四边形ADPE是菱形,首先证明四边形ADPE是平行四边形,再根据平行线的性质可得∠1=∠3,从而可证出∠2=∠3,进而可得AE=EP,然后可得四边形ADPE是菱形.
    【详解】
    (1)∵PD∥AC,PE∥AB,
    ∴∠DPB=∠C,∠EPC=∠B,
    ∵AB=AC,
    ∴∠B=∠C,
    ∴∠B=∠DPB,∠C=∠EPC,
    ∴DB=DP,PE=EC,
    ∴四边形ADPE的周长是:AD+DP+PE+AE=AB+AC=2a;
    (2)当P运动到BC中点时,四边形ADPE是菱形;
    ∵PD∥AC,PE∥AB,
    ∴四边形ADPE是平行四边形,
    ∴PD=AE,PE=AD,
    ∵PD∥AC,PE∥AB,
    ∴∠DPB=∠C,∠EPC=∠B,
    ∵P是BC中点,
    ∴PB=PC,
    在△DBP和△EPC中,

    ∴△DBP≌△EPC(ASA),
    ∴DP=EC,
    ∵EC=PE,
    ∴DP=EP,
    ∴四边形ADPE是菱形;
    (3)P运动到∠A的平分线上时,四边形ADPE是菱形,
    ∵PD∥AC,PE∥AB,
    ∴四边形ADPE是平行四边形,
    ∵AP平分∠BAC,
    ∴∠1=∠2,
    ∵AB∥EP,
    ∴∠1=∠3,
    ∴∠2=∠3,
    ∴AE=EP,
    ∴四边形ADPE是菱形.
    此题考查菱形的判定,等腰三角形的性质,解题关键在于证明∠B=∠DPB,∠C=∠EPC.
    26、(1)(xy-2)2;(2).
    【解析】
    (1)利用完全平方公式因式分解;
    (2)根据分式的减法运算法则计算.
    【详解】
    解:(1)
    =(xy)2-4xy+22
    =(xy-2)2
    (2)
    =
    =
    =.
    本题考查的是因式分解、分式的加减运算,掌握完全平方公式因式分解、分式的加减法法则是解题的关键.
    题号





    总分
    得分
    批阅人
    组别
    次数
    频数(人数)
    第1组
    6
    第2组
    8
    第3组
    第4组
    18
    第5组
    6

    相关试卷

    2025届河北省承德市名校数学九年级第一学期开学综合测试模拟试题【含答案】:

    这是一份2025届河北省承德市名校数学九年级第一学期开学综合测试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届甘肃省酒泉市瓜州县数学九年级第一学期开学教学质量检测模拟试题【含答案】:

    这是一份2025届甘肃省酒泉市瓜州县数学九年级第一学期开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年湖北省十堰市名校九年级数学第一学期开学综合测试模拟试题【含答案】:

    这是一份2024年湖北省十堰市名校九年级数学第一学期开学综合测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map