福建省永春县2024-2025学年数学九上开学经典试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一次函数y=(k﹣3)x+2,若y随x的增大而增大,则k的值可以是( )
A.1B.2C.3D.4
2、(4分)如图,在中,,,,将△ABC沿直线BC向右平移得到△DEF,连接AD,若AD=2,则点C到DF的距离为( )
A.1B.2C.2.5D.4
3、(4分)点 A2, 3关于原点的对称点的坐标是( )
A. 2, 3 B.2, 3 C. 2, 3 D. 3, 2
4、(4分)要说明命题“若 > ,则 >”是假命题,能举的一个反例是( )
A.B.
C.D.
5、(4分)点P(1,a),Q(﹣2,b)是一次函数y=kx+1(k<0)图象上两点,则a与b的大小关系是( )
A.a>bB.a=bC.a<bD.不能确定
6、(4分)要得到函数y2x3的图象,只需将函数y2x的图象( )
A.向左平移3个单位B.向右平移3个单位
C.向下平移3个单位D.向上平移3个单位
7、(4分)己知一次函数,若随的增大而增大,则的取值范围是( )
A.B.C.D.
8、(4分)某市要组织一次足球邀请赛,参赛的每两个队都要比赛一场,赛程计划安排3天,每天安排2场比赛,设比赛组织者应邀请x个队参赛,则x满足的关系式为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在平面直角坐标系中,O为坐标原点,四边形OABC是长方形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC边上运动,当△ADP为等腰三角形时,点P的坐标为_______________________________.
10、(4分)如图,平行四边形ABCD中,,,AE平分交BC于点E,则CE的长为______.
11、(4分)如图,已知矩形,,,点为中点,在上取一点,使的面积等于,则的长度为_______.
12、(4分)如图,在中,D是AB上任意一点,E是BC的中点,过C作,交DE的延长线于F,连BF,CD,若,,,则_________.
13、(4分)若分式的值为,则的值为_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知是不等式的一个负整数解,请求出代数式的值.
15、(8分)某校七年级共有500名学生,团委准备调查他们对“低碳”知识的了解程度,
(1)在确定调查方式时,团委设计了以下三种方案:
方案一:调查七年级部分女生;
方案二:调查七年级部分男生;
方案三:到七年级每个班去随机调查一定数量的学生
请问其中最具有代表性的一个方案是 ;
(2)团委采用了最具有代表性的调查方案,并用收集到的数据绘制出两幅不完整的统计图(如图①、图②所示),请你根据图中信息,将其补充完整;
(3)请你估计该校七年级约有多少名学生比较了解“低碳”知识.
16、(8分)水果批发市场有一种高档水果,如果每千克盈利(毛利润)10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销量将减少20千克.
(1)若以每千克能盈利18元的单价出售,问每天的总毛利润为多少元?
(2)现市场要保证每天总毛利润6000元,同时又要使顾客得到实惠,则每千克应涨价多少元?
17、(10分)手机可以通过“个人热点”功能实现移动网络共享,小明和小亮准备到操场上测试个人热点连接的有效距离,他们从相距的,两地相向而行.图中,分别表示小明、小亮两人离地的距离与步行时间之间的函数关系,其中的关系式为.根据图象回答下列问题:
(1)请写出的关系式___________;
(2)小明和小亮出发后经过了多长时间相遇?
(3)如果手机个人热点连接的有效距离不超过,那么他们出发多长时间才能连接成功?连接持续了多长时间?
18、(10分)如图,四边形 ABCD 是矩形,把矩形沿直线 BD 拆叠,点 C 落在点 E 处,连接 DE, DE 与 AD 交于点 M.
(1)证明四边形 ABDE 是等腰梯形;
(2)写出等腰梯形 ABDE 与矩形 ABCD 的面积大小关系,并证明你的结论.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在中,,,,点、分别是、的中点,交的延长线于,则四边形的面积为______.
20、(4分)在平面直角坐标系中,抛物线y=a(x−2)经过原点O,与x轴的另一个交点为A.将抛物线在x轴下方的部分沿x轴折叠到x轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G,过点B(0,1)作直线l平行于x轴,当图象G在直线l上方的部分对应的函数y随x增大而增大时,x的取值范围是____.
21、(4分)将一根长为15cm的筷子置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露在杯子外面的长为hcm,则h的取值范围是_____.
22、(4分)如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是 .
23、(4分)如图,将一宽为1dm的矩形纸条沿BC折叠,若,则折叠后重叠部分的面积为________dm2.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在中,,,为边上的高,过点作,过点作,与交于点,与交于点,连结.
(1)求证:四边形是矩形;
(2)求四边形的周长.
25、(10分)已知T.
(1)化简T;
(2)若正方形ABCD的边长为a,且它的面积为9,求T的值.
26、(12分)由中宣部建设的“学习强国”学习平台正式上线。这是推动新时代中国特色社会主义思想、推进马克思主义学习型政党和学习型社会建设的创新举措.某基层党组织随机抽取了部分党员的某天的学习成绩并进行了整理,分成5个小组(表示成绩,单位:分,且),根据学习积分绘制出部分频数分布表和部分频数分布直方图,其中第2、第5两组测试成绩人数直方图的高度比为,请结合下列图标中相关数据回答下列问题:
(1)填空:_____,______;
(2)补全频数分布直方图;
(3)这次积分的中位数落在第______组;
(4)已知该党组织共有党员225人;请估计当天学习积分获得“优秀”等级()的党员有多少人?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
试题分析:根据一次函数的性质,当y随x的增大而增大时,求得k的范围,在选项中找到范围内的值即可.
解:根据一次函数的性质,对于y=(k﹣3)x+2,
当(k﹣3)>0时,即k>3时,y随x的增大而增大,
分析选项可得D选项正确.
答案为D.
2、A
【解析】
作CG⊥DF于点G,由平移的性质可得AD=CF=2,∠ACB=∠F=30°,再由30°直角三角形的性质即可求得CF的值.
【详解】
如图,作CG⊥DF于点G,
由平移知,AD=CF=2,∠ACB=∠F=30°,
∴CG=CF=1,
即点C到DF的距离为1.
故选A.
本题考查了平移的性质及30°直角三角形的性质,正确作出辅助线,熟练利用平移的性质及30°直角三角形的性质是解决问题的关键.
3、C
【解析】
根据直角坐标系中两个关于原点的对称点的坐标特点:“关于原点对称的点,横坐标、纵坐标都互为相反数”进行解答.
【详解】
由直角坐标系中关于原点对称的点的坐标特点:横坐标、纵坐标都互为相反数,可得点P(2,−3)关于坐标原点的对称点的坐标为(−2,3),
故答案为:C.
本题考查了直角坐标系中关于原点对称的两点的坐标特征,牢牢掌握其坐标特征是解答本题的关键点.
4、D
【解析】
作为反例,要满足条件但不能得到结论,然后根据这个要求对各选项进行判断即可.
【详解】
解:A、a=3,b=2,满足a>b,且满足|a|>|b|,不能作为反例,故错误;
B、a=4,b=-1,满足a>b,且满足|a|>|b|,不能作为反例,故错误;
C、a=1,b=0;满足a>b,且满足|a|>|b|,不能作为反例,故错误;
D、a=-1,b=-2,满足a>b,但不满足|a|>|b|,∴a=-1,b=-2能作为证明原命题是假命题的反例,
故选:D.
本题考查了命题与定理;熟记:要判断一个命题是假命题,举出一个反例就可以.
5、C
【解析】
先把点P(1,a),Q(-2,b)分别代入一次函数解析式得到k+1=a,-2k+1=b,然后根据k<0得到k<-2k,则即可得到a、b的大小关系.
【详解】
把点P(1,a),Q(-2,b)分别代入y=kx+1得k+1=a,-2k+1=b,
∵k<0,
∴a<b.
故选C.
本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b(k≠0)的图象上的点满足其解析式.
6、D
【解析】
平移后相当于x不变y增加了3个单位,由此可得出答案.
【详解】
解:由题意得x值不变y增加3个单位
应向上平移3个单位.
故选:D.
本题考查一次函数图象的几何变换,注意平移k值不变的性质.
7、A
【解析】
根据一次函数的性质分析解答即可,一次函数是函数中的一种,一般形如y=kx+b(k,b是常数,k≠0),其中x是自变量,y是因变量,当k>0时,直线必过一、三象限,y随x的增大而增大;当k<0时,直线必过二、四象限,y随x的增大而减小.
【详解】
解:∵一次函数y=(k﹣1)x+2,若y随x的增大而增大,
∴k﹣1>0,
解得k>1,
故选A.
一次函数的性质是本题的考点,熟练掌握其性质是解题的关键.
8、B
【解析】
每个队要比(x-1)场,根据题意可以列出相应的一元二次方程,本题得以解决.
【详解】
解:由题意可得,
x(x−1)=3×2,
即x(x−1)=6,
故选:B.
本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的一元二次方程,这是一道典型的单循环问题.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、 (2,4),(8,4),(7,4),(7.5,4)
【解析】
分PD=DA,AD=PA,DP=PA三种情况讨论,再根据勾股定理求P点坐标
【详解】
当PD=DA
如图:以D为圆心AD长为半径作圆,与BD交P点,P'点,过P点作PE⊥OA于E点,过P'点作P'F⊥OA于F点,
∵四边形OABC是长方形,点A、C的坐标分别为A(10,0)、C(0,4),
∴AD=PD=5,PE=P'F=4
∴根据勾股定理得:DE=DF=
∴P(2,4),P'(8,4)
若AD=AP=5,同理可得:P(7,4)
若PD=PA,则P在AD的垂直平分线上,
∴P(7.5,4)
故答案为:(2,4),(8,4),(7,4),(7.5,4)
本题考查了等腰三角形的性质,勾股定理,利用分类思想解决问题是本题的关键.
10、4
【解析】
由平行四边形的性质得出AB=CD=6,AD∥BC,得出∠DAE=∠BEA,证出∠BEA=∠BAE,得出BE=AB,即可得出CE的长.
【详解】
解:∵四边形ABCD是平行四边形,
∴AB=CD=6,AD∥BC,
∴∠DAE=∠BEA,
∵AE平分∠BAD,
∴∠BAE=∠DAE,
∴∠BEA=∠BAE,
∴BE=AB=6,
∴CE=BC−BE=10−6=4;
故答案为:4
本题考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.
11、
【解析】
设DP=x,根据,列出方程即可解决问题.
【详解】
解:设DP=x
∵, AD=BC=6,AB=CD=8,
又∵点为中点
∴BQ=CQ=3,
∴18=48− ⋅x⋅6− (8−x)⋅3−⋅8⋅3,
∴x=4,
∴DP=4
故答案为4cm
本题考查了利用矩形的性质来列方程求线段长度,正确列出方程是解题的关键.
12、1
【解析】
证明CF∥DB,CF=DB,可得四边形CDBF是平行四边形,作EM⊥DB于点M,解直角三角形即可.
【详解】
解:∵CF∥AB,
∴∠ECF=∠EBD.
∵E是BC中点,
∴CE=BE.
∵∠CEF=∠BED,
∴△CEF≌△BED(ASA).
∴CF=BD.
∴四边形CDBF是平行四边形.
作EM⊥DB于点M,
∵四边形CDBF是平行四边形,,
∴BE=,DF=2DE,
在Rt△EMB中,EM2+BM2=BE2且EM=BM
∴EM=1,
在Rt△EMD中,
∵∠EDM=30°,
∴DE=2EM=2,
∴DF=2DE=1.
故答案为:1.
本题考查平行四边形的判定和性质、全等三角形的判定和性质、勾股定理、直角三角形30度角性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,
13、
【解析】
分式的值为1的条件是:(1)分子=1;(2)分母≠1.两个条件需同时具备,缺一不可.据此可以解答本题.
【详解】
由题意可得3-2x=1,
解得x=,
又∵2+3x≠1,
解得x=.
此题考查分式的值为零的条件,解题关键在于掌握运算法则
三、解答题(本大题共5个小题,共48分)
14、,原式
【解析】
先根据分式的运算法则进行化简,再求出不等式的负整数解,最后代入求出即可.
【详解】
∵
求解不等式,解得
又当,时分式无意义 ∴
∴原式
本题考查了分式的化简求值,解一元一次不等式,不等式的整数解等知识点,能求出符合题意的m值是解此题的关键.
15、 (1) 方案三;(2)见解析;(3) 150名.
【解析】
分析:(1)由于学生总数比较多,采用抽样调查方式,方案一、方案二只涉及到男生和女生一个方面,过于片面,所以应选方案三;
(2)因为不了解为6人,所占百分比为10%,所以调查人数为60人,比较了解为18人,则所占百分比为30%,那么了解一点的所占百分比是60%,人数为36人;
(3)用总人数乘以“比较了解”所占百分比即可求解.
详解:
(1)方案一、方案二只涉及到男生和女生一个方面,过于片面,所以应选方案三;
(2)如上图;
(3)500×30%=150(名),
∴七年级约有150名学生比较了解“低碳”知识.
点睛:考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.
16、(1)6120元 (2)答应涨价为5元.
【解析】
【分析】(1)根据总毛利润=每千克能盈利18元×卖出的数量即可计算出结果;
(2)设涨价x元,则日销售量为500-20x,根据总毛利润=每千克能盈利×卖出的数量即可列方程求解.
【详解】(1)(500-8×20)×18=6120元,
答:每天的总毛利润是6120元;
(2) 设每千克涨元
,
,
,
,
(舍) ,
又由于顾客得到实惠,答应涨价为5元.
【点睛】本题考查了一元二次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
17、(1);(2)经过后二者相遇;(3)出发时才能连接,持续了
【解析】
(1) 设的解析式为y=kx,把(100,100)代入求解即可;
(2)把函数解析式联立方程组,求得方程组的解即可;
(3) 设当出发时相距,小亮速度为,得出,求解即可得出出发32s才能连接成功;再求出t=48s连接断开,即可求出持续的时间.
【详解】
解:(1)设的解析式为y=kx,
把(100,100)代入得,100=100k,
∴k=1
∴.
故答案为y=x.
(2)由题意得
解得
经过后二者相遇.
(3)解:设当出发时相距,
由题知,小亮速度为.
解得,
∴他们出发32s才能连接成功;
当
解得,即t=48s连接断开,
故连接了
出发时才能连接,持续了.
此题考查一次函数的实际运用,待定系数法求函数解析式,以及结合图象理解题意解决有关的行程问题.
18、(1)答案见解析;(2)等腰梯形ABDE小于矩形ABCD的面积
【解析】
(1)结合图形证△AMB≌△EMD,再结合图形的折叠关系可得答案.
(2) 由AE
证明:(1)∵四边形ABCD是矩形,
∴AD=BE,AB=ED,AD∥BC.
∴△ADB≌△DBC≌△EDB,∠EBD=∠DBC,∠ADB=∠EBD.
∴DM=BM,AM=EM.
∴△AMB≌△EMD.
∴AB=DE.AM=EM,
∴∠EAM=∠AEM,
∵DM=BM,
∴∠BDM=∠MBD,
又∵∠AME=∠BMD,
∴∠EAD=∠MDB,
∴AE∥BD.
∵AE≠BD,
∴四边形ABDE是等腰梯形.
(2)∵
∵
∵AE
∴
∴ 等腰梯形ABDE小于矩形ABCD的面积.
本题考查了等腰梯形的判定, 直角三角形全等的判定, 矩形的性质, 翻折变换(折叠问题),掌握等腰梯形的判定, 直角三角形全等的判定,以及矩形的性质是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、12
【解析】
由于AF∥BC,从而易证△AEF≌△DEC(AAS),所以AF=CD,从而可证四边形AFBD是平行四边形,所以,又因为BD=DC,所以,所以,从而求出答案;
【详解】
解:∵AF∥BC,
∴∠AFC=∠FCD,
在△AEF与△DEC中,
,
∴△AEF≌△DEC(AAS),
∴AF=DC,
∵BD=DC,
∴AF=BD,
∴四边形AFBD是平行四边形,
∴,
又∵BD=DC,
∴,
∴,
∵∠BAC=90°,AB=4,AC=6,
∴S△ABC=AB×AC=×4×6=12,
∴四边形AFBD的面积为:12;
故答案为:12.
本题主要考查了平行四边形的判定与性质,全等三角形的判定与性质,掌握平行四边形的判定与性质,全等三角形的判定与性质是解题的关键.
20、1
【解析】
先写出沿x轴折叠后所得抛物线的解析式,根据图象计算可得对应取值范围.
【详解】
由题意可得抛物线:y=(x−2),
对称轴是:直线x=2,由对称性得:A(4,0),
沿x轴折叠后所得抛物线为:y=−(x−2);
如图,由题意得:
当y=1时, (x−2)=1,
解得:x=2+ ,x =2−,
∴C(2−,1),F(2+,1),
当y=1时,−(x−2)=1,
解得:x=3,x=1,
∴D(1,1),E(3,1),
由图象得:图象G在直线l上方的部分,当1
故答案为1
此题考查二次函数的性质,二次函数图象与几何变换,抛物线与坐标轴的交点,解题关键在于结合函数图象进行解答.
21、2cm≤h≤3cm
【解析】
解:根据直角三角形的勾股定理可知筷子最长在水里面的长度为13cm,最短为12cm,
则筷子露在外面部分的取值范围为:.
故答案为:2cm≤h≤3cm
本题主要考查的就是直角三角形的勾股定理的实际应用问题.在解决“竹竿过门”、立体图形中最大值的问题时,我们一般都会采用勾股定理来进行说明,从而得出答案.我们在解决在几何体中求最短距离的时候,我们一般也是将立体图形转化为平面图形,然后利用勾股定理来进行求解.
22、1.
【解析】
根据三角形的中位线平行于第三边并且等于第三边的一半求出BC,再根据菱形的周长公式列式计算即可得解.
【详解】
∵E、F分别是AB、AC的中点,
∴EF是△ABC的中位线,
∴BC=2EF=2×3=6,
∴菱形ABCD的周长=4BC=4×6=1.
故答案为1.
本题主要考查了菱形的四条边都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.
23、1
【解析】
作出AB边上的高,求出AC的长;根据翻折不变性及平行线的性质,求出AC=AB,再利用三角形的面积公式解答即可
【详解】
作CD⊥AB,
∵CG∥AB,
∴∠1=∠2,
根据翻折不变性,∠1=∠BCA,
故∠2=∠BCA.
∴AB=AC.
又∵∠CAB=30∘,
∴在Rt△ADC中,AC=2CD=2dm,
∴AB=2dm,
S△ABC=AB×CD=1dm2.
故答案为:1.
本题考查翻折变换,熟练掌握翻折不变性及平行线的性质是解题关键.
二、解答题(本大题共3个小题,共30分)
24、(1)见详解;(2)
【解析】
(1)利用平行四边形的性质和矩形的判定定理推知平行四边形AEBD是矩形.
(2)在Rt△ADC中,由勾股定理可以求得AD的长度,由等腰三角形的性质求得BD的长度,即可得出结果.
【详解】
(1)证明:∵AE∥BC,DE∥AC,
∴四边形AEDC是平行四边形.
∴AE=CD.
在△ABC中,AB=AC,AD为BC边上的高,
∴∠ADB=90°,BD=CD.
∴BD=AE.
∴四边形AEBD是矩形.
(2)解:在Rt△ADC中,∠ADB=90°,AC=9,BD=CD=BC=3,
∴AD=.
∴四边形AEBD的周长=.
本题考查了矩形的判定与性质和勾股定理,根据“等腰三角形的性质和有一内角为直角的平行四边形为矩形”推知平行四边形AEBD是矩形是解题的难点.
25、(1);(2).
【解析】
(1)原式通分并利用同分母分式的加法法则计算即可求出值;
(2)由正方形的面积求出边长a的值,代入计算即可求出T的值.
【详解】
(1)T;
(2)由正方形的面积为9,得到a=3,则T.
此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
26、(1)故答案为4,32%;(2)图形见解析;(3)第三组;(4)18 (人)
【解析】
(1)根据3组的人数除以3组所占的百分比,可得总人数,进而可求出1组,4组的所占百分比,则a,b的值可求;
(2)由(1)中的数据即可补全频数分布直方图;
(3)50个人的数据中,中位数是第25和26两人的平均数,
(4)用225乘以“优秀”等级()的所占比重即可求解.
【详解】
(1)由题意可知总人数=15÷30%=50(人),
所以4组所占百分比=10÷50×100%=20%,1组所占百分比=5÷50×100%=10%,
因为2组、5组两组测试成绩人数直方图的高度比为4:1,
所以5a=50−5−15−10,
解得a=4,
所以b=16÷50×100%=32%,
故答案为4,32%;
(2)由(1)可知补全频数分布直方图如图所示:
(3) 50个人的数据中,中位数是第25和26两人的平均数,而第25和26两人都出现在第三组,
(4)(人)
此题考查了频数分布表和条形统计图.认真审题找到两个图表中的关联信息,通过明确的信息推出未知的变量是解题关键.
题号
一
二
三
四
五
总分
得分
学习积分频数分布表
组别
成绩分
频数
频率
第1组
5
第2组
第3组
15
30%
第4组
10
第5组
福建省泉州市永春县2025届数学九上开学调研试题【含答案】: 这是一份福建省泉州市永春县2025届数学九上开学调研试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
福建省泉州市泉港区2024-2025学年九上数学开学经典试题【含答案】: 这是一份福建省泉州市泉港区2024-2025学年九上数学开学经典试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年菏泽市九上数学开学经典模拟试题【含答案】: 这是一份2024-2025学年菏泽市九上数学开学经典模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

