福建省莆田第二十五中学2024年九年级数学第一学期开学经典模拟试题【含答案】
展开
这是一份福建省莆田第二十五中学2024年九年级数学第一学期开学经典模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知一组数据5,5,6,6,6,7,7,则这组数据的方差为( )
A.B.C.D.6
2、(4分)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是( )
A.5B.6C.7D.8
3、(4分)如图,小明同学用自制的直角三角形纸板测量树的高度,他调整自己的位置,设法使斜边保持水平,并且边与点在同一直线上.已知纸板的两条直角边,,测得边离地面的高度,,则树高是( )
A.4米B.4.5米C.5米D.5.5米
4、(4分)将直线y=kx-1向上平移2个单位长度,可得直线的解析式为( )
A.y=kx+1 B.y=kx-3 C.y=kx+3 D.y=kx-1
5、(4分)若点A(3,y1),B(﹣2,y2)都在直线y=﹣x+n上,则y1与y2的大小关系是( )
A.y1<y2B.y1>y2
C.y1=y2D.以上都有可能
6、(4分)下列等式中,计算正确的是( )
A.B.
C.D.
7、(4分)如图,在□ ABCD中,对角线AC、BD交于点O,下列式子一定成立的是( )
A.AC⊥BDB.AO=ODC.AC=BDD.OA=OC
8、(4分)下列二次根式中,是最简二次根式的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,OA1=A1A2=A2A3=A3A4=…=An-1An=1,∠OA1A2=∠OA2A3=∠OA3a4=…=∠OAn-1An=90°(n>1,且n为整数).那么OA2=_____,OA4=______,…,OAn=_____.
10、(4分)如图的直角三角形中未知边的长x=_______.
11、(4分)如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=10,BC=16,则EF的长为___________.
12、(4分)计算:=____.
13、(4分)为了改善生态环境,防止水土流失,红旗村计划在荒坡上种树960棵,由于青年志愿者支援,实际每天种树的棵数是原计划的2倍,结果提前4天完成任务,则原计划每天种树的棵数是________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,是边长为的等边三角形.
(1)求边上的高与之间的函数关系式。是的一次函数吗?如果是一次函数,请指出相应的与的值.
(2)当时,求的值.
(3)求的面积与之间的函数关系式.是的一次函数吗?
15、(8分)因式分解:
(1);
(2).
16、(8分)如图,四边形 ABCD 为平行四边形,AD=a,BE∥AC,DE 交AC的延长线于F点,交BE于E点.
(1)求证:DF=FE ;
(2)若 AC=2CF,∠ADC=60°,AC⊥DC,求BE的长;
(3)在(2)的条件下,求四边形ABED的面积.
17、(10分)如图,每个小正方形的边长都为1,四边形ABCD的顶点都在小正方形的顶点上.
(1)求四边形ABCD的面积;
(2)∠BCD是直角吗?说明理由.
18、(10分)解不等式组,并将解集在数轴上表示出来.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)将2019个边长为2的正方形,按照如图所示方式摆放,O1,O2,O3,O4,O5,…是正方形对角线的交点,那么阴影部分面积之和等于_____.
20、(4分)当x分别取值,,,,,1,2,,2007,2008,2009时,计算代数式的值,将所得的结果相加,其和等于______.
21、(4分)已知直线y=2x+4与x轴、y轴分别交于A、B两点,点P(-1,m)为平面直角坐标系内一动点,若△ABP面积为1,则m的值为______.
22、(4分)如图,在▱ABCD中,,,则______.
23、(4分)一只不透明的袋子中装有4个小球,分别标有数字2,3,4,,这些球除数字外都相同.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和.记录后都将小球放回袋中搅匀,进行重复实验.实验数据如下表:
试估计出现“和为7”的概率为________.
二、解答题(本大题共3个小题,共30分)
24、(8分)小红同学经常要测量学校旗杆的高度,她发现旗杆的绳子刚好垂到地面上,当她把绳子下端拉开5m后,发现这时绳子的下端正好距地面1m,学校旗杆的高度是( )
A.21mB.13mC.10mD.8m
25、(10分)如图,在▱ABCD中,E为边AB上一点,连结DE,将▱ABCD沿DE翻折,使点A的对称点F落在CD上,连结EF.
(1)求证:四边形ADFE是菱形.
(1)若∠A=60°,AE=1BE=1.求四边形BCDE的周长.
小强做第(1)题的步骤
解:①由翻折得,AD=FD,AE=FE.
②∵AB∥CD.
③∴∠AED=∠FDE.
④∴∠AED=∠ADE
⑤∴AD=AE
⑥∴AD=AE=EF=FD
∴四边形ADFE是菱形.
(1)小强解答第(1)题的过程不完整,请将第(1)题的解答过程补充完整(说明在哪一步骤,补充什亻么条件或结论)
(1)完成题目中的第(1)小题.
26、(12分)如图,在▱ABCD中,E,F是对角线AC上不同两点,,求证:四边形BFDE是平行四边形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
先求出这组数据的平均数,然后代入方差计算公式求出即可.
【详解】
解:∵平均数=(5+5+6+6+6+7+7)=6,
S2= [(5-6)2+(5-6)2+(6-6)2+(6-6)2+(6-6)2+(7-6)2+(7-6)2]= .
故选:A.
本题考查方差的定义,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
2、A
【解析】
试题分析:构造等腰三角形,①分别以A,B为圆心,以AB的长为半径作圆;②作AB的中垂线.如图,一共有5个C点,注意,与B重合及与AB共线的点要排除.故答案选A.
考点:等腰三角形的判定;坐标与图形性质.
3、D
【解析】
利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小明的身高即可求得树高AB.
【详解】
解:∵∠DEF=∠BCD-90° ∠D=∠D
∴△ADEF∽△DCB
∴
∴DE=40cm=0.4m,EF-20cm=0.2m,AC-1.5m,CD=8m
∴解得:BC=4
∴AB=AC+BC=1.5+4=5.5米
故答案为:5.5.
本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型。
4、A
【解析】分析:根据上下平移时,b的值上加下减的规律解答即可.
详解:由题意得,
∵将直线y=kx-1向上平移2个单位长度,
∴所得直线的解析式为:y=kx-1+2= kx+1.
故选A.
点睛: 本题考查了一次函数图象的平移,一次函数图象的平移规律是:
①y=kx+b向左平移m个单位,是y=k(x+m)+b, 向右平移m个单位是y=k(x-m)+b,即左右平移时,自变量x左加右减;
②y=kx+b向上平移n个单位,是y=kx+b+n, 向下平移n个单位是y=kx+b-n,即上下平移时,b的值上加下减.
5、A
【解析】
结合题意点A(3,y1),B(﹣1,y1)都在直线y=﹣x+n上,利用一次函数的增减性即可解决问题.
【详解】
∵直线y=﹣x+n,
﹣<0,
∴y随x的增大而减小,
∵3>﹣1,
∴y1<y1.
故选:A.
本题考查一次函数图象上的点的特征,解题的关键是学会利用一次函数的增减性解决问题,属于中考常考题型.
6、A
【解析】
根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.
【详解】
A、a10÷a9=a,正确;
B、x3•x2=x5,故错误;
C、x3-x2不是同类项不能合并,故错误;
D、(-3xy)2=9x2y2,故错误;
故选A.
本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.
7、D
【解析】
试题解析:A、菱形的对角线才相互垂直.故不对.
B、平行四边形中,AO不一定等于OD,故不对.
C、只有平行四边形为矩形时,其对角线相等,故也不对.
D、平行四边形对角线互相平分.故该选项正确.
故选D.
8、D
【解析】
根据最简二次根式的概念即可求出答案.
【详解】
解:(A)原式=2,故A不是最简二次根式;
(B)原式=4,故B不是最简二次根式;
(C)原式=,故C不是最简二次根式;
故选:D.
本题考查最简二次根式,解题的关键是正确理解最简二次根式,本题属于基础题型.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、 2
【解析】
根据勾股定理求出OA2,OA3,OA4,即可发现其内部存在一定的规律性,找出其内在规律即可解题.
【详解】
解:∵,,
∴,
则,,……
所以,
故答案为:,2,.
本题考查勾股定理、规律型:图形的变化类问题,解题的关键是学会探究规律,利用规律解决问题.
10、
【解析】
根据勾股定理求解即可.
【详解】
x=.
故答案为:.
本题考查了勾股定理,在直角三角形中,如果两条直角边分别为a和b,斜边为c,那么a2+b2=c2.也就是说,直角三角形两条直角边的平方和等于斜边的平方.
11、1
【解析】
根据直角三角形斜边上的中线等于斜边的一半求出DF的长度,根据三角形的中位线平行于第三边并且等于第三边的一半求出DE的长,然后相减即可得到EF的长.
【详解】
∵DE为△ABC的中位线,∠AFB=90°,
∴DE=BC,DF=AB,
∵BC=16,AB=10,
∴DE=×16=8,DF=×10=5,
∴EF=DE-DF=8-5=1,
故答案为:1.
本题考查了三角形的中位线定理,直角三角形斜边上的中线等于斜边的一半的性质,熟记定理与性质是解题的关键.
12、1
【解析】
根据算术平方根的定义进行化简,再根据算术平方根的定义求解即可.
【详解】
解:∵12=21,
∴=1,
故答案为:1.
本题考查了算术平方根的定义,先把化简是解题的关键.
13、120
【解析】
【分析】设原计划每天种树x棵,则实际每天种树2x棵,根据题意列出分式方程,解之即可.
【详解】设原计划每天种树x棵,则实际每天种树2x棵,
依题可得:,
解得:x=120,
经检验x=120是原分式方程的根,
故答案为:120.
【点睛】本题考查了列分式方程解应用题,弄清题意,找出等量关系是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1),是的一次函数,,b=0;(2)x=2;(3),不是的一次函数.
【解析】
(1)根据勾股定理计算h的长,可得结论;
(2)直接将h的值代入可得结论;
(3)根据三角形面积公式计算可得结论.
【详解】
解:(1)因为边上的高也是边上的中线,所以,.在中,由勾股定理得,
即,
所以是的一次函数,且,b=0;
(2)h=时,;x=2;
(3)因为,所以不是的一次函数.
本题主要考查了等边三角形的性质,三角形的面积,一次函数的性质,能灵活应用这些性质是解题的关键.
15、(1);(2)
【解析】
(1)先提取公因式-x,再用完全平方公式分解即可;
(2)先提取公因式3x,再用完全平方公式分解即可.
【详解】
解:(1)
=
=;
(2)
=
=
本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
16、(1)证明见解析(2) (3)
【解析】
(1)可过点C延长DC交BE于M,可得C,F分别为DM,DE的中点;
(2)在直角三角形ADC中利用勾股定理求解即可;
(3)求四边形ABED的面积,可分解为求梯形ABMD与三角形DME的面积,然后求两面积之和即可.
【详解】
(1)证明:延长DC交BE于点M,
∵BE∥AC,AB∥DC,
∴四边形ABMC是平行四边形,
∴CM=AB=DC,C为DM的中点,BE∥AC,
∴CF为△DME的中位线,
∴DF=FE;
(2)解:由(1)得CF是△DME的中位线,故ME=2CF,
又∵AC=2CF,四边形ABMC是平行四边形,
∴BE=2BM=2ME=2AC,
又∵AC⊥DC,
∴在Rt△ADC中,AC=AD•sin∠ADC=a,
∴BE=a.
(3)可将四边形ABED的面积分为两部分,梯形ABMD和△DME,
在Rt△ADC中:DC=,
∵CF是△DME的中位线,
∴CM=DC=,
∵四边形ABMC是平行四边形,
∴AB=MC=,BM=AC=a,
∴梯形ABMD面积为:(+a)××=;
由AC⊥DC和BE∥AC可证得△DME是直角三角形,
其面积为:××a=,
∴四边形ABED的面积为+=.
本题结合三角形的有关知识综合考查了平行四边形的性质,解题的关键是理解中位线的定义,会用勾股定理求解直角三角形,会计算一些简单的四边形的面积.
17、(1)四边形ABCD的面积=14;(2)是.理由见解析.
【解析】
(1)根据四边形ABCD的面积=S矩形AEFH﹣S△AEB﹣S△BFC﹣S△CGD﹣S梯形AHGD即可得出结论;
(2)先根据锐角三角函数的定义判断出∠FBC=∠DCG,再根据直角三角形的性质可得出∠BCF+∠DCG=90°,故可得出结论.
【详解】
(1)
∵四边形ABCD的面积=S矩形AEFH﹣S△AEB﹣S△BFC﹣S△CGD﹣S梯形AHGD
=5×51×52×41×2(1+5)×1
=25
=14;
(2)是.理由如下:
∵tan∠FBC,tan∠DCG,∴∠FBC=∠DCG.
∵∠FBC+∠BCF=∠DCG+∠CDG=90°,∴∠BCF+∠DCG=90°,∴∠BCD是直角.
本题考查了分割法求面积和锐角三角函数的定义,熟知直角三角形的性质是解答此题的关键.
18、不等式组的解集是﹣1<x≤3.
【解析】
分析:根据不等式组分别求出x的取值,然后画出数轴,在数轴上找出公共部分就是该不等式的解集.
详解:
由①得:x≤3,
由②得:x>﹣1,
∴不等式组的解集是﹣1<x≤3,
在数轴上表示不等式组的解集为:
.
点睛:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,根据口诀:大小小大中间找确定不等式组的解集,由“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2
【解析】
根据题意可得:阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则2019个这样的正方形重叠部分即为(2019﹣1)个阴影部分的和,问题得解.
【详解】
由题意可得阴影部分面积等于正方形面积的,则一个阴影部分面积为:1.
n个这样的正方形重叠部分(阴影部分)的面积和为×(n﹣1)×4=(n﹣1).
所以这个2019个正方形重叠部分的面积和=×(2019﹣1)×4=2,
故答案为:2.
本题考查了正方形的性质,解决本题的关键是得到n个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.
20、1
【解析】
先把和代入代数式,并对代数式化简,得到它们的和为1,然后把代入代数式求出代数式的值,再把所得的结果相加求出所有结果的和.
【详解】
因为,
即当x分别取值,为正整数时,计算所得的代数式的值之和为1;
而当时,.
因此,当x分别取值,,,,,1,2,,2117,2118,2119时,
计算所得各代数式的值之和为1.
故答案为:1.
本题考查的是代数式的求值,本题的x的取值较多,并且除外,其它的数都是成对的且互为倒数,把互为倒数的两个数代入代数式得到它们的和为1,这样计算起来就很方便.
21、3或1
【解析】
过点P作PE⊥x轴,交线段AB于点E,即可求点E坐标,根据题意可求点A,点B坐标,由可求m的值.
【详解】
解:∵直线y=2x+4与x轴、y轴分别交于A、B两点,
∴当x=0时,y=4
当y=0时,x=-2
∴点A(-2,0),点B(0,4)
如图:过点P作PE⊥x轴,交线段AB于点E
∴点E横坐标为-1,
∴y=-2+4=2
∴点E(-1,2)
∴|m-2|=1
∴m=3或1
故答案为:3或1
本题考查了一次函数图象上点的坐标特征,熟练运用一次函数的性质解决问题是本题的关键.
22、.
【解析】
先证明是等腰直角三角形,再由勾股定理求出AD,即可得出BC的长.
【详解】
四边形ABCD是平行四边形,
,,,
,,
即是等腰直角三角形,
,
故答案为:.
本题考查了平行四边形的性质、勾股定理、等腰直角三角形的判定与性质;熟练掌握平行四边形的性质,证明是等腰直角三角形是解决问题的关键.
23、0.33
【解析】
由于大量试验中“和为7”出现的频数稳定在0.3附近,据图表,可估计“和为7”出现的概率为3.1,3.2,3.3等均可.
【详解】
出现和为7的概率是:0.33(或0.31,0.32,0.34均正确);
故答案为:0.33
此题考查利用频率估计概率,解题关键在于看懂图中数据
二、解答题(本大题共3个小题,共30分)
24、B
【解析】
根据题意设旗杆的高AB为x米,则绳子AC的长为x米,在Rt△ACH利用勾股定理构建方程即可解决问题.
【详解】
如图,已知AB=AC,CD⊥BD,CH⊥AB,CD=BH=1米,CH=5米,设AB=AC=x米.
在Rt△ACH中,∵AC2=AH2+CH2,
∴x2=52+(x-1)2,
∴x=13,
∴AB=13(米),
故选B.
此题考查了勾股定理在实际问题中的应用,能够正确理解题意继而构造直角三角形是解决本题的关键,难度一般.
25、(1)见解析;(1)四边形BCDE的周长为8.
【解析】
(1)由题意可知,第一步补充∠ADE=∠FDE.
(1)由平行四边形的性质和菱形的性质可得,BE,BC,CD,DE的长度,即可求四边形BCDE的周长
【详解】
解:(1)①由翻折得,AD=FD,AE=FE.(补充∠ADE=∠FDE)
②∵AB∥CD
③∴∠AED=∠FDE.
④∴∠AED=∠ADE
⑤∴AD=AE
⑥∴AD=AE=EF=FD
∴四边形ADFE是菱形.
(1)∵AE=1BE=1
∴BE=1
∴AB=CD=3
∵AD=AE,∠A=60°∴△ADE是等边三角形∴AD=DE=1
∴AD=BC=1
∴四边形BCDE的周长=BE+DE+CD+BC=1+1+3+1=8.
本题考查了折叠问题,平行四边形的性质,菱形的性质,等边三角形的性质,关键是灵活运用这些性质解决问题.
26、证明见解析.
【解析】
连接BD交AC于O,根据平行四边形性质得出,,根据平行线性质得出,根据AAS证≌,推出,根据平行四边形的判定推出即可.
【详解】
连接BD交AC于O,
四边形ABCD是平行四边形,
,,
,
,
在和中,
,
≌,
,
,
四边形BFDE是平行四边形.
本题考查了平行四边形的性质和判定,平行线的性质,对顶角相等,全等三角形的性质和判定等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
题号
一
二
三
四
五
总分
得分
摸球总次数
10
20
30
60
90
120
180
240
330
450
“和为7”出现的频数
1
9
14
24
26
37
58
82
109
150
“和为7”出现的频率
0.10
0.45
0.47
0.40
0.29
0.31
0.32
0.34
0.33
0.33
相关试卷
这是一份2025届福建省莆田市荔城区擢英中学数学九年级第一学期开学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届福建省莆田市第二十五中学九上数学开学经典试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届福建省莆田第二十四中学数学九年级第一学期开学考试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。