2024年福建省莆田中学山中学九年级数学第一学期开学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列性质中,矩形具有而一般平行四边形不具有的是( )。
A.对边相等B.对角相等C.对角线相等D.对边平行
2、(4分)如图,在中,,分别以、为圆心,以大于的长为半径画弧,两弧相交于、两点,直线交于点,若的周长是12,则的长为( )
A.6B.7C.8D.11
3、(4分)若代数式有意义,则实数x的取值范围是
A.B.且C.且D.
4、(4分)已知正比例函数的图象经过点(1,-2),则正比例函数的解析式为( )
A.B.C.D.
5、(4分)下列因式分解正确的是( )
A.B.
C.D.
6、(4分)如图,在矩形纸片ABCD中,AB=4,AD=3,折叠纸片使DA与对角线DB重合,点A落在点A′处,折痕为DG,则A′G的长是()
A.1B.C.D.2
7、(4分)以下列各组数据中,能构成直角三角形的是( )
A.2,3,4B.3,4,7C.5,12,13D.1,2,3
8、(4分)下列计算不正确的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)二次根式在实数范围内有意义,x的取值范围是_____.
10、(4分)已知一个多边形的每一个外角都等于,则这个多边形的边数是 .
11、(4分)函数自变量的取值范围是______.
12、(4分)式子在实数范围内有意义,则 x 的取值范围是_______ .
13、(4分)如图,在平面直角坐标系中,△ABC的顶点都在方格纸的格点上,如果将△ABC先向右平移4个单位长度,再向下平移1个单位长度,得到△A1B1C1,那么点A的对应点A1的坐标为________.
三、解答题(本大题共5个小题,共48分)
14、(12分)射击队为从甲、乙两名运动员选拔一人参加运动会,对他们进行了六次测试,测试成绩如下表(单位:环)
(1)由表格中的数据,计算出甲的平均成绩是 环,乙的成绩是 环.
(2)结合平均水平与发挥稳定性你认为推荐谁参加比赛更适合,请说明理由.
15、(8分)如图,已知平面直角坐标系中,直线与x轴交于点A,与y轴交于B,与直线y=x交于点C.
(1)求A、B、C三点的坐标;
(2)求△AOC的面积;
(3)已知点P是x轴正半轴上的一点,若△COP是等腰三角形,直接写点P的坐标.
16、(8分)在△ABC中,
(1)作线段AC的垂直平分线1,交AC于点O:(保留作图痕迹,请标明字母)
(2)连接BO并延长至D,使得,连接DA、DC,证明四边形ABCD是矩形.
17、(10分)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.
(1)求证:四边形ACDF是平行四边形;
(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.
18、(10分)我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等.
(1)文学书和科普书的单价各多少钱?
(2)今年文学书和科普书的单价和去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A,B的坐标分别为(1,0),(4,0),将△ABC沿x轴向右平移,当C点落在直线y=2x-6上时,线段BC扫过的区域面积为________.
20、(4分)如图,一艘渔船以30海里/h的速度由西向东追赶鱼群.在A处测得小岛C在船的北偏东60°方向;40min后渔船行至B处,此时测得小岛C在船的北偏东方向.问:小岛C于渔船的航行方向的距离是________________海里(结果可用带根号的数表示).
21、(4分)如图,在四边形ABCD中,AD∥BC,且AD=12cm.点P从点A出发,以3cm/s的速度在射线AD上运动;同时,点Q从点C出发,以1cm/s的速度在射线CB上运动.运动时间为t,当t=______秒(s)时,点P、Q、C、D构成平行四边形.
22、(4分)若等腰三角形的两条边长分别为8cm和16cm,则它的周长为_____cm.
23、(4分)甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.5环,方差分别是:S甲2=2,S乙2=1.5,则射击成绩较稳定的是_____________(填“甲”或“乙“).
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在矩形中,对角线、相交于点.若,,求的长.
25、(10分)某中学由6名师生组成一个排球队.他们的年龄(单位:岁)如下:15 16 17 17 17 40
(1)这组数据的平均数为 ,中位数为 ,众数为 .
(2)用哪个值作为他们年龄的代表值较好?
26、(12分)为了庆祝新中国成立70周年,某校组织八年级全体学生参加“恰同学少年,忆峥嵘岁月”新中国成立70周年知识竞赛活动.将随机抽取的部分学生成绩进行整理后分成5组,50~60分()的小组称为“学童”组,60~70分()的小组称为“秀才”组,70~80分()的小组称为“举人”组,80~90分()的小组称为“进士”组,90~100分()的小组称为“翰林”组,并绘制了不完整的频数分布直方图如下,请结合提供的信息解答下列问题:
(1)若“翰林”组成绩的频率是12.5%,请补全频数分布直方图;
(2)在此次比赛中,抽取学生的成绩的中位数在 组;
(3)学校决定对成绩在70~100分()的学生进行奖励,若八年级共有336名学生,请通过计算说明,大约有多少名学生获奖?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
由矩形的性质和平行四边形的性质即可得出结论.
【详解】
解:∵矩形的对边相等,对角相等,对角线互相平分且相等;
平行四边形的对边相等,对角相等,对角线互相平分;
∴矩形具有而平行四边形不具有的性质是对角线相等;
故选:C.
本题考查了矩形的性质、平行四边形的性质;熟练掌握矩形和平行四边形的性质是解决问题的关键.
2、B
【解析】
利用垂直平分线的作法得MN垂直平分AC,则,利用等线段代换得到△CDE的周长,即可解答.
【详解】
由作图方法可知,直线是的垂直平分线,
所以,
的周长,
所以,,所以,选项B正确.
此题考查平行四边形的性质,作图—基本作图,解题关键在于得到△CDE的周长.
3、B
【解析】
直接利用二次根式的定义结合分式有意义的条件得出答案.
【详解】
∵代数式有意义,∴x﹣1≥0,且x﹣1≠0,
解得:x≥1且x≠1.
故选B.
本题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题的关键.
4、B
【解析】
利用待定系数法把(1,-2)代入正比例函数y=kx中计算出k即可得到解析式.
【详解】
根据点在直线上,点的坐标满足方程的关系,将(1,-2)代入,得:,
∴正比例函数的解析式为.
故选B.
5、C
【解析】
根据因式分解的定义及方法逐项分析即可.
【详解】
A. ,故不正确;
B. 在实数范围内不能因式分解,故不正确;
C. ,正确;
D. 的右边不是积的形式,故不正确;
故选C.
本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
6、C
【解析】
由在矩形纸片ABCD中,AB=4,AD=3,可求得BD的长,由折叠的性质,即可求得A′B的长,然后设A′G=x,由勾股定理即可得:x2+4=(4-x)2,解此方程即可求得答案.
【详解】
∵四边形ABCD是矩形,
∴
∴
由折叠的性质,可得:A′D=AD=3,A′G=AG,
∴A′B=BD−A′D=5−3=2,
设A′G=x,
则AG=x,BG=AB−AG=4−x,
在Rt△A′BG中,
∴
解得:
∴
故选:C.
考查折叠的性质,矩形的性质,勾股定理等知识点,熟练掌握折叠的性质是解题的关键.
7、C
【解析】
根据勾股定理逆定理逐项计算判断即可.
【详解】
详解: A. ∵22+32=13≠42,∴ 2,3,4不能构成直角三角形;
B. ∵32+42=25≠72,∴ 3,4,7不能构成直角三角形;
C. ∵52+122=169=132,∴ 5,12,13能构成直角三角形;
D. ∵12+22=5≠32,∴ 1,2,3不能构成直角三角形;
故选C.
本题考查了勾股定理逆定理,如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,在一个三角形中,即如果用a,b,c表示三角形的三条边,如果a2+b2=c2,那么这个三角形是直角三角形.
8、B
【解析】
根据二次根式的加减法对A、C进行判断;根据二次根式的除法法则对D进行判断;根据二次根式的乘法法则对B进行判断.
【详解】
解:A、原式==所以A选项正确;
B、原式=2,所以B选项正确;
C、原式=+,所以C选项错误;
D、原式=2,所以D选项正确.
故选C.
本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x≤1
【解析】
根据二次根式有意义的条件列出不等式,解不等式即可.
【详解】
解:由题意得,1﹣x≥0,
解得,x≤1,
故答案为x≤1.
本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.
10、5
【解析】
∵多边形的每个外角都等于72°,
∵多边形的外角和为360°,
∴360°÷72°=5,
∴这个多边形的边数为5.
故答案为5.
11、
【解析】
根据分式与二次根式的性质即可求解.
【详解】
依题意得x-9>0,
解得
故填:.
此题主要考查函数的自变量取值,解题的关键是熟知分式与二次根式的性质.
12、x≥1
【解析】
直接利用二次根式的有意义的条件得到关于x的不等式,解不等式即可得答案.
【详解】
由题意可得:x﹣1≥0,
解得:x≥1,
故答案为:x≥1.
本题考查了二次根式有意义的条件,熟练掌握二次根式的被开方数是非负数是解题的关键.
13、(2,5)
【解析】
∵将△ABC先向右平移4个单位长度,再向下平移1个单位长度,
∵图形可知点A的坐标为(-2,6),
∴则平移后的点A1坐标为(2,5).
三、解答题(本大题共5个小题,共48分)
14、(1)9,9;(2)甲.
【解析】
分析:1、首先根据图表得出甲、乙每一次的测试成绩,再利用平均数的计算公式分别求出甲、乙的平均成绩;
2、得到甲、乙的平均成绩后,再结合方差的计算公式即可求出甲、乙的方差;接下来结合方差的意义,从稳定性方面进行分析,即可得出结果.
详解:(1)甲的平均成绩是:(10+8+9+8+10+9)÷6=9,
乙的平均成绩是:(10+7+10+10+9+8)÷6=9;
(2)甲的方差=[(10-9)2+(8-9)2+(9-9)2+(8-9)2+(10-9)2+(9-9)2]=.
乙的方差=[(10-9)2+(7-9)2+(10-9)2+(10-9)2+(9-9)2+(8-9)2]= .
推荐甲参加全国比赛更合适,理由如下:
两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.
点睛:本题考查了平均数以及方差的求法及意义,正确掌握方差的计算公式是解答本题的关键. 方差的计算公式为:.
15、(1)A(-4,0);B(0,2);C(4,4);(2)1;(3)(4,0)或(1,0)或(,0).
【解析】
试题分析:(1)分别根据一次函数x=0或y=0分别得出点A和点B的坐标,将两个方程列成方程组,从而得出点C的坐标;(2)过点C作CD⊥x轴,从而得出AO和CD的长度,从而得出三角形的面积;(3)根据等腰三角形的性质得出点P的坐标.
试题解析:(1)当x=0得y=2,则B(0,2),当y=0得x=-4,则A(-4,0),
由于C是两直线交点,联立直线解析式为
解得:
则点C的坐标为(4,4)
(2)过点C作CD⊥x轴与点D
∴AO=4,CD=4
∴=AO·CD=×4×4=1.
(3)点P的坐标为(4,0)或(1,0)或(,0).
考点:(1)一次函数;(2)等腰三角形的性质
16、 (1)详见解析;(2)详见解析
【解析】
(1)利用基本作图作AC的垂直平分线得到AC的中点O;
(2)利用直角三角形斜边上的中线得到,然后根据对角线互相平分且相等的四边形为矩形可证明四边形ABCD是矩形.
【详解】
(1)解:如图,点O为所作:
(2)证明:∵线段AC的垂直平分线,
,
,
,
,
∴四边形ABCD为矩形.
本题考查了作图—基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线),也考查了矩形的判定.
17、(1)证明见解析;(2)BC=2CD,理由见解析.
【解析】
分析:(1)利用矩形的性质,即可判定△FAE≌△CDE,即可得到CD=FA,再根据CD∥AF,即可得出四边形ACDF是平行四边形;
(2)先判定△CDE是等腰直角三角形,可得CD=DE,再根据E是AD的中点,可得AD=2CD,依据AD=BC,即可得到BC=2CD.
详解:(1)∵四边形ABCD是矩形,
∴AB∥CD,
∴∠FAE=∠CDE,
∵E是AD的中点,
∴AE=DE,
又∵∠FEA=∠CED,
∴△FAE≌△CDE,
∴CD=FA,
又∵CD∥AF,
∴四边形ACDF是平行四边形;
(2)BC=2CD.
证明:∵CF平分∠BCD,
∴∠DCE=45°,
∵∠CDE=90°,
∴△CDE是等腰直角三角形,
∴CD=DE,
∵E是AD的中点,
∴AD=2CD,
∵AD=BC,
∴BC=2CD.
点睛:本题主要考查了矩形的性质以及平行四边形的判定与性质,要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.
18、(1)文学书和科普书的单价分别是8元和1元.(2)至多还能购进466本科普书.
【解析】
(1)设文学书的单价为每本x元,则科普书的单价为每本(x+4)元,依题意得:
,
解得:x=8,
经检验x=8是方程的解,并且符合题意.
∴x+4=1.
∴购进的文学书和科普书的单价分别是8元和1元.
②设购进文学书550本后至多还能购进y本科普书.依题意得
550×8+1y≤10000,
解得,
∵y为整数,
∴y的最大值为466
∴至多还能购进466本科普书.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、5
【解析】
解:如图所示.∵点A、B的坐标分别为(1,0)、(4,0),∴AB=1.
∵∠CAB=90°,BC=3,∴AC=4,∴A′C′=4.
∵点C′在直线y=4x﹣6上,∴4x﹣6=4,解得 x=3.
即OA′=3,∴CC′=3﹣1=4,∴S▱BCC′B′=4×4=5 (cm4).
即线段BC扫过的面积为5cm4.故答案为5.
20、
【解析】
过C作CD⊥AB,易得∠BAC=∠BCA=30°,进而得到BC=BA=20,在Rt△BCD中,利用30°角所对的直角边是斜边的一半与勾股定理即可求出CD.
【详解】
如图,过C作CD⊥AB,
∵渔船速度为30海里/h,40min后渔船行至B处
∴AB=海里
由图可知,∠BAC=90°-60°=30°,∠ABC=90°+30°=120°,
∴∠BCA=180°-120°-30°=30°
∴∠BAC=∠BCA
∴BC=BA=20海里
在Rt△BCD中,∠BCD=30°,
∴BD=BC=10海里
∴CD=海里
故答案为:.
本题考考查了等腰三角形的性质,含30°角的直角三角形的性质与勾股定理,熟练掌握30°角所对的直角边是斜边的一半是解题的关键.
21、3或6
【解析】
根据点P的位置分类讨论,分别画出对应的图形,根据平行四边形的对边相等列出方程即可求出结论.
【详解】
解:当P运动在线段AD上运动时, AP=3t,CQ=t,
∴DP=AD-AP=12-3t,
∵四边形PDCQ是平行四边形,
∴PD=CQ,
∴12-3t=t,
∴t=3秒;
当P运动到AD线段以外时,AP=3t,CQ=t,
∴DP=3t-12,
∵四边形PDCQ是平行四边形,
∴PD=CQ,
∴3t-12=t,
∴t=6秒,
故答案为:3或6
此题考查的是平行四边形与动点问题,掌握平行四边形的对应边相等和分类讨论的数学思想是解决此题的关键.
22、1;
【解析】
根据已知条件和三角形三边关系可知;等腰三角形的腰长不可能为3cm,只能为8cm,依此即可求得等腰三角形的周长.
【详解】
解:∵等腰三角形的两条边长分别为3cm,8cm,
∴由三角形三边关系可知;等腰三角形的腰长不可能为8cm,只能为16cm,
∴等腰三角形的周长=16+16+8=1cm.
故答案为1.
本题考查了三角形三边关系及等腰三角形的性质,关键是要分两种情况解答.
23、乙
【解析】
直接根据方差的意义求解.方差通常用s2来表示,计算公式是:s2= [(x1-x¯)2+(x2-x¯)2+…+(xn-x¯)2];方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
【详解】
解:∵S甲2=2,S乙2=1.5,
∴S甲2>S乙2,
∴乙的射击成绩较稳定.
故答案为:乙.
本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.
二、解答题(本大题共3个小题,共30分)
24、
【解析】
首先根据矩形的性质可得,易证是等边三角形,即可得OA的长度,可得AC的长度.
【详解】
在矩形中,
.
,
.
是等边三角形.
,
.
本题考查了矩形的性质以及等边三角形的判定,掌握矩形的性质是解题的关键.
25、(1),17,17;(2)众数.
【解析】
(1)根据平均数、中位数和众数的求法,进行计算,即可得到答案;
(2)因为众数最具有代表性,所以选择众数.
【详解】
解:(1)这组数据的平均数为=,
中位数为=17,
众数为17;
故答案为:,17,17;
(2)用众数作为他们年龄的代表值较好.
本题考查平均数、中位数和众数,解题的关键是掌握平均数、中位数和众数的求法.
26、(1)详见解析;(2)70~80或“举人”;(3)231.
【解析】
(1)先根据90~100分的人数及其所占百分比求得总人数,再由各组人数之和等于总人数求得60~70分的人数.从而补全图形;
(2)根据中位数的定义求解可得;
(3)利用样本估计总体的思想求解可得.
【详解】
解:(1)∵被调查的总人数为6÷12.5%=48(人),
∴60~70分的人数为48-(3+18+9+6)=12(人),
补全频数分布直方图如下:
(2)因为中位数是第24、25个数据的平均数,而第24、25个数据都落在70~80分这一组,
所以在此次比赛中,抽取学生的成绩的中位数在70~80或“举人”组,
故答案为70~80或“举人”;
(3).
答:大约有231名学生获奖.
故答案为(1)详见解析;(2)70~80或“举人”;(3)231.
本题考查频数分布表、频数分布直方图,解题的关键是明确题意,找出所求问题需要的条件,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
题号
一
二
三
四
五
总分
得分
批阅人
第一次
第二次
第三次
第四次
第五次
第六次
甲
10
8
9
8
10
9
乙
10
7
10
10
9
8
2024年福建省漳州市平和第一中学数学九年级第一学期开学教学质量检测模拟试题【含答案】: 这是一份2024年福建省漳州市平和第一中学数学九年级第一学期开学教学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年福建省莆田市名校数学九年级第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份2024年福建省莆田市名校数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年福建省莆田市第二十五中学九年级数学第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份2024年福建省莆田市第二十五中学九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。