福建省福州市部分学校2024-2025学年九年级数学第一学期开学质量检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图1,在矩形ABCD中,动点E从点B出发,沿BADC方向运动至点C处停止,设点E运动的路程为x,△BCE的面积为y,如果y关于x的函数图象如图2所示,则矩形ABCD的周长为( )
A.20B.21C.14D.7
2、(4分)在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( )
A.9人B.10人C.11人D.12人
3、(4分)下列从左到右的变形,属于因式分解的是( )
A.B.
C.D.
4、(4分)某超市今年二月份的营业额为82万元,四月份的营业额比三月份的营业额多20万元,若二月份到四月份每个月的月销售额增长率都相同,若设增长率为x,根据题意可列方程( )
A.82(1+x)2=82(1+x)+20B.82(1+x)2=82(1+x)
C.82(1+x)2=82+20D.82(1+x)=82+20
5、(4分)下列各式中,能用完全平方公式分解因式的是( )
A.B.C.D.
6、(4分)如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为
A.B.3C.1D.
7、(4分)龙华区某校改造过程中,需要整修校门口一段全长2400m的道路,为了保证开学前师生进出不受影响,实际工作效率比原计划提高了,结果提前8天完成任务,若设原计划每天整个道路x米,根据题意可得方程( )
A.B.
C.D.
8、(4分)如图所示,在平行四边形中,对角线相交于点,,,,则平行四边形的周长为( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若,则的值为________.
10、(4分)如图,“今有直角三角形,勾(短直角边)长为5,股(长直角边)长为12,河该直角三角形能容纳的如图所示的正方形边长是多少?”,该问题的答案是______.
11、(4分)如图所示,在平行四边形ABCD中,DE平分∠ADC交BC于E,AF⊥DE,垂足为F,已知∠DAF=50°,则∠C的度数是____.
12、(4分)有意义,则实数a的取值范围是__________.
13、(4分)如图,在口ABCD中,E为边BC上一点,以AE为边作矩形AEFG.若∠BAE=40°,∠CEF=15°,则∠D的大小为_____度.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在中,,从点为圆心,长为半径画弧交线段于点,以点为圆心长为半径画弧交线段于点,连结.
(1)若,求的度数:
(2)设.
①请用含的代数式表示与的长;
②与的长能同时是方程的根吗?说明理由.
15、(8分)(1)计算:;
(2)已知,求代数式的值.
16、(8分)如图,在△ABC中,CA=CB=5,AB=6,AB⊥y轴,垂足为A.反比例函数y=(x>0)的图象经过点C,交AB于点D.
(1)若OA=8,求k的值;
(2)若CB=BD,求点C的坐标.
17、(10分)A粮仓和B粮仓分别库存粮食12吨和6吨,现决定支援给C市10吨和D市8吨.已知从A粮仓调运一吨粮食到C市和D市的运费分别为400元和800元;从B粮仓调运一吨粮食到C市和D市的运费分别为300元和500元.
(1)设B粮仓运往C市粮食x吨,求总运费W(元)关于x的函数关系式.(写出自变量的取值范围)
(2)若要求总运费不超过9000元,问共有几种调运方案?
(3)求出总运费最低的调运方案,最低运费是多少?
18、(10分)(1)解不等式组:3x﹣2<≤ 2x+1
(2)解分式方程:
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,已知在△ABC中,BC边上的高AD与AC边上的高BE交于点F,且∠BAC=45°,BD=6,CD=4,则△ABC的面积为_____.
20、(4分)勾股定理,是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”.中国是发现和研究勾股定理最古老的国家之一.中国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理.三国时期吴国赵爽创制了“勾股圆方图”(如图)证明了勾股定理.在这幅“勾股圆方图”中,大正方形ABCD是由4个全等的直角三角形再加上中间的那个小正方形EFGH组成的.若小正方形的边长是1,每个直角三角形的短的直角边长是3,则大正方形ABCD的面积是_____.
21、(4分)如图,以A点为圆心,以相同的长为半径作弧,分别与射线AM,AN交于B,C两点,连接BC,再分别以B,C为圆心,以相同长(大于BC)为半径作弧,两弧相交于点D,连接AD,BD,CD.若∠MBD=40°,则∠NCD的度数为_____.
22、(4分)二项方程在实数范围内的解是_______________
23、(4分)若关于x的一元二次方程有两个不相等的实数根,则非正整数k的值是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)在平面直角坐标系中,的位置如图所示(每个小方格都是边长为1个单位长度的正方形).其中、、.
(1)将沿轴方向向左平移6个单位,画出平移后得到的;
(2)将绕着点顺时针旋转90°,画出旋转后得到的,、、的对应点分别是、、;
25、(10分)已知关于x的一元二次方程3x2﹣6x+1﹣k=0有实数根,k为负整数.
(1)求k的值;
(2)如果这个方程有两个整数根,求出它的根.
26、(12分)如图,直线y=x+b分别交x轴、y轴于点A、C,点P是直线AC与双曲线y=在第一象限内的交点,PB⊥x轴,垂足为点B,且OB=2,PB=1.
(1)求反比例函数的解析式;
(2)求△APB的面积;
(3)求在第一象限内,当x取何值时一次函数的值小于反比例函数的值?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
分点E在AB段运动、点E在AD段运动时两种情况,分别求解即可.
【详解】
解:当点E在AB段运动时,
y=BC×BE=BC•x,为一次函数,由图2知,AB=3,
当点E在AD上运动时,
y=×AB×BC,为常数,由图2知,AD=4,
故矩形的周长为7×2=14,
故选:C.
本题考查的是动点图象问题,涉及到一次函数、图形面积计算等知识,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.
2、C
【解析】
设参加酒会的人数为x人,根据每两人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.
【详解】
设参加酒会的人数为x人,依题可得:
x(x-1)=55,
化简得:x2-x-110=0,
解得:x1=11,x2=-10(舍去),
故答案为C.
考查了一元二次方程的应用,解题的关键是根据题中的等量关系列出方程.
3、D
【解析】
A.从左到右的变形是整式乘法,不是因式分解;
B.右边不是整式积的形式,不是因式分解;
C.分解时右边括号中少了一项,故不正确,不符合题意;
D. 是因式分解,符合题意,
故选D.
本题考查了因式分解的意义,熟练掌握因式分解的定义是解本题的关键.
4、A
【解析】
根据题意找出等量关系:,列出方程即可.
【详解】
由二月份到四月份每个月的月营业额增长率都相同,二月份的营业额为82
万元,若设增长率为,则三月份的营业额为,四月份的营业额为, 四月份的营业额比三月份的营业额多20万元,
则,
故选A
考查一元二次方程的应用,增长率问题,明确等量关系正确列出方程是解题关键.
5、A
【解析】
分析:完全平方公式是指:,根据公式即可得出答案.
详解:.故选A.
点睛:本题主要考查的完全平方公式,属于基础题型.理解公式是解决这个问题的关键.
6、A
【解析】
首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△D′EC,设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根据勾股定理可得方程22+x2=(4﹣x)2,再解方程即可
【详解】
∵AB=3,AD=4,∴DC=3
∴根据勾股定理得AC=5
根据折叠可得:△DEC≌△D′EC,
∴D′C=DC=3,DE=D′E
设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,
在Rt△AED′中:(AD′)2+(ED′)2=AE2,即22+x2=(4﹣x)2,
解得:x=
故选A.
7、A
【解析】
直接利用施工时间提前8天完成任务进而得出等式求出答案.
【详解】
解:设原计划每天整修道路x米,根据题意可得方程:
.
故选:A.
本题考查由实际问题抽象出分式方程,正确找出等量关系是解题关键.
8、D
【解析】
由▱ABCD的对角线AC,BD相交于点O,AE=EB,易得DE是△ABC的中位线,即可求得BC的长,继而求得答案.
【详解】
∵▱ABCD的对角线AC,BD相交于点O,
∴OA=OC,AD=BC,AB=CD=5,
∵AE=EB,OE=3,
∴BC=2OE=6,
∴▱ABCD的周长=2×(AB+BC)=1.
故选:D.
此题考查了平行四边形的性质以及三角形中位线的性质.注意证得DE是△ABC的中位线是关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据比例设a=2k,b=3k,然后代入比例式进行计算即可得解.
【详解】
∵,
∴设a=2k,b=3k,
∴ .
故答案为:
此题考查比例的性质,掌握运算法则是解题关键
10、
【解析】
根据锐角三角函数的定义以及正方形的性质即可求出答案.
【详解】
解:设正方形的边长为x,
∴CE=ED=x,
∴AE=AC-CE=12-x,
在Rt△ABC中,
,
在Rt△ADE中,
,
∴,
∴解得:x=,
故答案为:.
本题考查三角形的综合问题,解题的关键是熟练运用锐角三角函数的定义以及正方形的性质,本题属于中等题型.
11、100°.
【解析】
根据直角三角形两锐角互余,平行四边形的性质即可解决问题.
【详解】
∵AF⊥DE,
∴∠AFD=90°,
∵∠DAF=50°,
∴∠ADF=90°﹣50°=40°,
∵DE平分∠ADC,
∴∠ADC=2∠ADF=80°,
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠C+∠ADC=180°,
∴∠C=100°
故答案为100°.
本题考查平行四边形的性质、直角三角形的性质、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
12、
【解析】
根据二次根式被开方数为非负数解答即可.
【详解】
依题意有,解得,
即时,二次根式有意义,
故的取值范围是.
故答案为:.
本题考查了二次根式有意义的条件,解题关键是根据题意构造不等式进行解答.
13、1
【解析】
想办法求出∠B,利用平行四边形的性质∠D=∠B即可解决问题.
【详解】
解:∵四边形AEFG是正方形,
∴∠AEF=90°,
∵∠CEF=15°,
∴∠AEB=180°-90°-15°=75°,
∵∠B=180°-∠BAE-∠AEB=180°-40°-75°=1°,
∵四边形ABCD是平行四边形,
∴∠D=∠B=1°
故答案为:1.
本题考查正方形的性质、平行四边形的性质、三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)①,;②是,理由见解析
【解析】
(1)根据直角三角形、等腰三角形的性质,判断出△DBC是等边三角形,即可得到结论;
(2)①根据线段的和差即可得到结论;
②根据方程的解得定义,判断AD是方程的解,则当AD=BE时,同时是方程的解,即可得到结论.
【详解】
解:(1)∵,
,
又,
是等边三角形.
.
(2)①∵
又,
.
②∵
∴线段的长是方程的一个根.
若与的长同时是方程的根,则,
即,
,
,
∴当时,与的长同时是方程的根.
本题考查了勾股定理,一元二次方程的解;熟练掌握直角三角形和等腰三角形的性质求边与角的方法,掌握判断一元二次方程的解得方法是解题的关键.
15、(1);(2)0.
【解析】
(1)先进行二次根式的乘除法运算,然后再进行减法运算即可;
(2)将原式利用完全平方公式进行变形,然后将x的值代入进行计算即可.
【详解】
(1)原式
;
(2)原式
=
,
将代入原式得,.
本题考查二次根式的化简求值,灵活运用二次根式的性质进行解题是关键.
16、(1)1;(2)(3,2)
【解析】
(1) 过C作CM⊥AB,CN⊥y轴,利用勾股定理求出CM的长,结合OA的长度,则C点坐标可求,因C在图象上,把C点代入反比例函数式求出k即可;
(2)已知CB=BD,则AD长可求,设OA=a, 把C、D点坐标用已知数或含a的代数式表示,因C、D都在反比例函数图象上,把C、D坐标代入函数式列式求出a值即可.
【详解】
(1)解:过C作CM⊥AB,CN⊥y轴,垂足为M、N,
∵CA=CB=5,AB=6,
∴AM=MB=3=CN,
在Rt△ACD中,CD= =4,
∴AN=4,ON=OA﹣AN=8﹣4=4,
∴C(3,4)代入y= 得:k=1,
答:k的值为1.
(2)解:∵BC=BD=5,
∴AD=6﹣5=1,
设OA=a,则ON=a﹣4,C(3,a﹣4),D(1,a)
∵点C、D在反比例函数的图象上,
∴3(a﹣4)=1×a,
解得:a=6,
∴C(3,2)
答:点C的坐标为(3,2)
本题主要考查反比例函数的几何应用,解题关键在于能够做出辅助线,利用勾股定理解题.
17、(1)w=200x+8600(0≤x≤6);(2)有3种调运方案,方案一:从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;方案二:从B市调运到C市1台,D市5台;从A市调运到C市9台,D市3台;方案三:从B市调运到C市2台,D市4台;从A市调运到C市8台,D市4台;(3)从A市调运到C市10台,D市2台;最低运费是8600元.
【解析】
(1)设出B粮仓运往C的数量为x吨,然后根据A,B两市的库存量,和C,D两市的需求量,分别表示出B运往C,D的数量,再根据总费用=A运往C的运费+A运往D的运费+B运往C的运费+B运往D的运费,列出函数关系式;
(2)由(1)中总费用不超过9000元,然后根据取值范围来得出符合条件的方案;
(3)根据(1)中的函数式以及自变量的取值范围即可得出费用最小的方案.
【详解】
解:(1)设B粮仓运往C市粮食x吨,则B粮仓运往D市粮食6﹣x吨,A粮仓运往C市粮食10﹣x吨,A粮仓运往D市粮食12﹣(10﹣x)=x+2吨,
总运费w=300x+500(6﹣x)+400(10﹣x)+800(x+2)
=200x+8600(0≤x≤6).
(2)200x+8600≤9000
解得x≤2
共有3种调运方案
方案一:从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;
方案二:从B市调运到C市1台,D市5台;从A市调运到C市9台,D市3台;
方案三:从B市调运到C市2台,D市4台;从A市调运到C市8台,D市4台;
(3)w=200x+8600
k>0,
所以当x=0时,总运费最低.
也就是从B市调运到C市0台,D市6台;
从A市调运到C市10台,D市2台;最低运费是8600元.
本题重点考查函数模型的构建,考查利用一次函数的有关知识解答实际应用题,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义.
18、(1)-2≤x<0;(2)x=-3
【解析】
(1)不等式组整理后,求出解集即可;
(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】
解:(1)不等式组整理得:,
由①得:x<0,
由②得:x≥-2,
则不等式组的解集为:-2≤x<0;
(2)去分母得:x2+x=x2-1-2,
解得:x=-3,
经检验:x=-3是分式方程的解.
此题考查了解一元一次不等式组和解分式方程,利用了转化的思想,解分式方程注意要检验.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
分析:首先证明△AEF≌△BEC,推出AF=BC=10,设DF=x.由△ADC∽△BDF,推出,构建方程求出x即可解决问题;
详解:∵AD⊥BC,BE⊥AC,
∴∠AEF=∠BEC=∠BDF=90°,
∵∠BAC=45°,
∴AE=EB,
∵∠EAF+∠C=90°,∠CBE+∠C=90°,
∴∠EAF=∠CBE,
∴△AEF≌△BEC,
∴AF=BC=10,设DF=x.
∵△ADC∽△BDF,
∴,
∴,
整理得x2+10x﹣24=0,
解得x=2或﹣12(舍弃),
∴AD=AF+DF=12,
∴S△ABC=•BC•AD=×10×12=1.
故答案为1.
点睛:本题考查勾股定理、等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会利用参数构建方程解决问题,属于中考常考题型.
20、25
【解析】
由BF=BE+EF结合“小正方形的边长是1,每个直角三角形的短的直角边长是3”即可得出直角三角形较长直角边的长度,结合三角形的面积公式以及正方形面积公式即可得出结论.
【详解】
∵EF=1,BE=3,
∴BF=BE+EF=4,
∴S正方形ABCD=4⋅S△BCF+S正方形EFGH=4× ×4×3+1×1=25.
故答案为:25.
此题考查勾股定理的证明,解题关键在于掌握勾股定理的应用
21、40°
【解析】
先根据作法证明△ABD≌△ACD,由全等三角形的性质可得∠BAD=∠CAD,∠BDA=∠CDA,然后根据三角形外角的性质可证∠NCD=∠MBD=40°.
【详解】
在△ABD和△ACD中,
∵AB=AC,
BD=CD,
AD=AD,
∴△ABD≌△ACD,
∴∠BAD=∠CAD,∠BDA=∠CDA.
∵∠MBD=∠BAD+∠BDA,∠NCD=∠CAD+∠CDA,
∴∠NCD=∠MBD=40°.
故答案为:40°.
本题考查了尺规作图,全等三角形的判定与性质,三角形外角的性质,熟练掌握三角形全等的判定与性质是解答本题的关键.
22、x=-1
【解析】
由2x1+54=0,得x1=-27,解出x值即可.
【详解】
由2x1+54=0,得x1=-27,
∴x=-1,
故答案为:x=-1.
本题考查了立方根,正确理解立方根的意义是解题的关键.
23、-1
【解析】
根据判别式的意义及一元二次方程的定义得到,且,然后解不等式即可求得k的范围,从而得出答案.
【详解】
解:根据题意知,且,
解得:且,
则非正整数k的值是,
故答案为:.
本题考查了一元二次方程的根的判别式:当,方程有两个不相等的实数根;当,方程有两个相等的实数根;当,方程没有实数根.
二、解答题(本大题共3个小题,共30分)
24、(1)的如图所示. 见解析;(2)的如图所示. 见解析.
【解析】
(1)分别画出A、B、C的对应点A1、B1、C1即可;
(2)分别画出A、B、C的对应点A2、B2、C2即可.
【详解】
(1)如图所示,即为所求;
(2)如图所示,即为所示.
考查作图-平移变换,作图-旋转变换等知识,解题的关键是熟练掌握基本知识.
25、(2)k=﹣2,﹣2.(2)方程的根为x2=x2=2.
【解析】
(2)根据方程有实数根,得到根的判别式的值大于等于0列出关于k的不等式,求出不等式的解集即可得到k的值;
(2)将k的值代入原方程,求出方程的根,经检验即可得到满足题意的k的值.
【详解】
解:(2)根据题意,得△=(﹣6)2﹣4×3(2﹣k)≥0,
解得 k≥﹣2.
∵k为负整数,
∴k=﹣2,﹣2.
(2)当k=﹣2时,不符合题意,舍去;
当k=﹣2时,符合题意,此时方程的根为x2=x2=2.
本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:(2)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.也考查了一元二次方程的解法.
26、(1);(2)16;(3)0<x<2.
【解析】
(1)由OB,PB的长,及P在第一象限,确定出P的坐标,由P在反比例函数图象上,将P的坐标代入反比例解析式中,即可求出k的值;
(2)根据待定系数法求得直线AC的解析式,令y=0求出对应x的值,即为A的横坐标,确定出A的坐标,即可求得AB,然后根据三角形的面积公式求解即可;
(3)由一次函数与反比例函数的交点P的横坐标为2,根据图象找出一次函数在反比例函数下方时x的范围即可.
【详解】
(1)∵OB=2,PB=1,且P在第一象限,
∴P(2,1),
由P在反比例函数y=上,
故将x=2,y=1代入反比例函数解析式得:1=,即k=8,
所以反比例函数解析式为:;
(2)∵P(2,1)在直线y=x+b上,
∴1=×2+b,解得b=3,
∴直线y=x+3,
令y=0,解得:x=﹣6;
∴A(﹣6,0),
∴OA=6,
∴AB=8,
∴S△APB=AB•PB=×8×1=16;
(3)由图象及P的横坐标为2,可知:
在第一象限内,一次函数的值小于反比例函数的值时x的范围为0<x<2.
本题考查了反比例函数与一次函数的交点,涉及了待定系数法,一次函数与坐标轴的交点,利用了数形结合的思想,数形结合思想是数学中重要的思想方法,做第三问时注意灵活运用.
题号
一
二
三
四
五
总分
得分
福建省福州市师范大泉州附属中学2024-2025学年九上数学开学质量检测模拟试题【含答案】: 这是一份福建省福州市师范大泉州附属中学2024-2025学年九上数学开学质量检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
安徽省合肥市部分学校2024-2025学年数学九年级第一学期开学教学质量检测试题【含答案】: 这是一份安徽省合肥市部分学校2024-2025学年数学九年级第一学期开学教学质量检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江汉区部分学校九年级数学第一学期开学检测模拟试题【含答案】: 这是一份2024-2025学年江汉区部分学校九年级数学第一学期开学检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。