年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    福建省部分市县2024年数学九年级第一学期开学达标检测模拟试题【含答案】

    福建省部分市县2024年数学九年级第一学期开学达标检测模拟试题【含答案】第1页
    福建省部分市县2024年数学九年级第一学期开学达标检测模拟试题【含答案】第2页
    福建省部分市县2024年数学九年级第一学期开学达标检测模拟试题【含答案】第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    福建省部分市县2024年数学九年级第一学期开学达标检测模拟试题【含答案】

    展开

    这是一份福建省部分市县2024年数学九年级第一学期开学达标检测模拟试题【含答案】,共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)以下说法正确的是( )
    A.在同一年出生的400人中至少有两人的生日相同
    B.一个游戏的中奖率是1%,买100张奖券,一定会中奖
    C.一副扑克牌中,随意抽取一张是红桃K,这是必然事件
    D.一个袋中装有3个红球、5个白球,任意摸出一个球是红球的概率是
    2、(4分)下列长度的三条线段能组成三角形的是( )
    A.1,2,3B.2,2,4C.3,4,5D.3,4,8
    3、(4分)如图,在矩形中,,,点同时从点出发,分别沿及方向匀速运动,速度均为每秒1个单位长度,当一个点到达终点时另一个点也停止运动,连接.设运动时间为秒,的长为,则下列图象能大致反映与的函数关系的是( )
    A.B.
    C.D.
    4、(4分)已知是整数,则正整数n的最小值是( )
    A.4B.6C.8D.12
    5、(4分)如图,被笑脸盖住的点的坐标可能是( )
    A.(3,2)B.(-3,2)C.(-3,-2)D.(3,-2)
    6、(4分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E在线段AD上,EF⊥AC于点F,EG⊥EF交AB于点G,若EF=EG,则CD的长为( )
    A.3.6B.4C.4.8D.5
    7、(4分)如图,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数是( )
    A.6B.5C.4D.3
    8、(4分)某县第一中学学校管理严格、教师教学严谨、学生求学谦虚,三年来中考数学A等级共728人.其中2016年中考的数学A等级人数是200人,2017年、2018年两年中考数学A等级人数的增长率恰好相同,设这个增长率为x,根据题意列方程,得( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)一次函数y=kx-2的函数值y随自变量x的增大而减小,则k的取值范围是__.
    10、(4分)张老师对同学们的打字能力进行测试,他将全班同学分成五组.经统计,这五个小组平均每分钟打字个数如下:100,80,x,90,90,已知这组数据的众数与平均数相等,那么这组数据的中位数是 .
    11、(4分)一元二次方程 的一次项系数为_________.
    12、(4分)若是的小数部分,则的值是__________.
    13、(4分)如图,在平面直角坐标系xOy中,菱形AOBC的边长为8,∠AOB=60°. 点D是边OB上一动点,点E在BC上,且∠DAE=60°.
    有下列结论:
    ①点C的坐标为(12,);②BD=CE;
    ③四边形ADBE的面积为定值;
    ④当D为OB的中点时,△DBE的面积最小.
    其中正确的有_______.(把你认为正确结论的序号都填上)
    三、解答题(本大题共5个小题,共48分)
    14、(12分)在中,,,是的角平分线,过点作于点,将绕点旋转,使的两边交直线于点,交直线于点,请解答下列问题:
    (1)当绕点旋转到如图1的位置,点在线段上,点在线段上时,且满足.
    ①请判断线段、、之间的数量关系,并加以证明
    ②求出的度数.
    (2)当保持等于(1)中度数且绕点旋转到图2的位置时,若,,求的面积.
    15、(8分)如图,直线与直线交于点A,点A的横坐标为,且直线与x轴交于点B,与y轴交于点D,直线与y轴交于点C.
    (1)求点A的坐标及直线的函数表达式;
    (2)连接,求的面积.
    16、(8分)如图,在△ABC中,AB=10,BC=8,AC=1.点D在AB边上(不包括端点),DE⊥AC,DF⊥BC,垂足分别为点E和点F,连结EF.
    (1)判断四边形DECF的形状,并证明;
    (2)线段EF是否存在最小值?如果存在,请求出最小值;如果不存在,请说明理由.
    17、(10分)如图,在平行四边形ABCD中,E、F分别是BC、AD上的点,且AE∥CF,求证:AE=CF
    18、(10分)如图,在平行四边形ABCD中,DE,BF分别是∠ADC,∠ABC的角平分线.
    求证:四边形DEBF是平行四边形.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,正方形ABCD的边长为2,点E、F分别是CD、BC的中点,AE与DF交于点P,连接CP,则CP=_____.
    20、(4分)菱形ABCD的两条对角线长分别为6和4,则菱形ABCD的面积是_____.
    21、(4分)如图,把菱形ABCD沿AH折叠,使B点落在BC上的E点处,若∠B=70°,则∠EDC的大小为______.
    22、(4分)在平面直角坐标系内,直线l⊥y轴于点C(C在y轴的正半轴上),与直线y=相交于点A,和双曲线y=交于点B,且AB=6,则点B的坐标是______.
    23、(4分)一个班有48名学生,在期末体育考核中,优秀的人数有16人,在扇形统计图中,代表体育考核成绩优秀的扇形的圆心角是__________度.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F分别是AB、AC的中点.
    (1)求证:四边形AEDF是菱形;
    (2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.
    25、(10分)如图所示,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处.
    (1)求证B′E=BF;
    (2)设AE=a,AB=b,BF=c,试猜想a,b,c之间的一种关系,并给出证明.
    26、(12分)已知直线:与函数.
    (1)直线经过定点,直接写出点的坐标:_______;
    (2)当时,直线与函数的图象存在唯一的公共点,在图中画出的函数图象并直接写出满足的条件;
    (3)如图,在平面直角坐标系中存在正方形,已知、.请认真思考函数的图象的特征,解决下列问题:
    ①当时,请直接写出函数的图象与正方形的边的交点坐标:_______;
    ②设正方形在函数的图象上方的部分的面积为,求出与的函数关系式.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    A.一年有365天或366天,所以400人中一定有两人同一天出现,为必然事件.故正确
    B.买了100张奖券可能中奖且中奖的可能性很小,故错误
    C.一副扑克牌中,随意抽取一张是红桃K,这是不确定事件,故错误
    D.一个袋中装有3个红球、5个白球,任意摸出一个球是红球的概率是;故错误
    故选A
    2、C
    【解析】
    A、1+2=3,不能构成三角形,故A错误;
    B、2+2=4,不能构成三角形,故B错误;
    C、3+4>5,能构成三角形,故C正确;
    D、3+4<8,不能构成三角形,故D错误.
    故选C.
    3、A
    【解析】
    分三种情况讨论即可求解.
    【详解】
    解:当点A在AD上,点M在AB上,则d=t,(0≤t≤4);
    当点A在CD上,点M在AB上,则d=4,(4<t≤6);
    当点A在CD上,点M在BC上,则d=(10-t)=-t+10(6<t≤10);
    故选:A.
    本题考查了动点问题的函数图象,根据点P的位置的不同,分三段讨论求解是解题的关键.
    4、B
    【解析】
    因为是整数,且,则1n是完全平方数,满足条件的最小正整数n为1.
    【详解】
    ∵且,且是整数,
    ∴是整数,即1n是完全平方数,
    ∴n的最小正整数值为1.
    故选B.
    主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.
    5、C
    【解析】
    判断出笑脸盖住的点在第三象限,再根据第三象限内点的坐标特征解答.
    【详解】
    由图可知,被笑脸盖住的点在第三象限,
    (3,2),(-3,2),(-3,-2),(3,-2)四个点只有(-3,-2)在第三象限.
    故选C.
    本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    6、B
    【解析】
    过点D作DH⊥BC交AB于点H,根据△AFE∽△ACD和△AEG∽△ADH可得DC=DH,再由△BDH∽△BCA,根据相似三角形的性质列出方程即可求出CD.
    【详解】
    解:过点D作DH⊥BC交AB于点H,
    ∵EF⊥AC,∴EF∥BC,
    ∴△AFE∽△ACD,∴,
    ∵DH⊥BC,EG⊥EF,∴DH∥EG,
    ∴△AEG∽△ADH,∴,

    ∵EF=EG,
    ∴DC=DH,
    设DH=DC=x,则BD=12-x,
    又∵△BDH∽△BCA,
    ∴,即,
    解得:x=4,即CD=4,
    故选B.
    本题考查了相似三角形的判定和性质,根据相似的性质得到DC=DH是解题关键.
    7、D
    【解析】
    根据线段垂直平分线上的点到线段两端点的距离相等可得AB的垂直平分线与直线y=x的交点为点C1,即可求得C的坐标,再求出AB的长,以点A为圆心,以AB的长为半径画弧,与直线y=x的交点为C2,C3,过点B作BD⊥直线y=x,垂足为D,则△OBD是等腰直角三角形,根据勾股定理求出点B到直线y=x的距离为,由>4,可知以点B为圆心,以AB的长为半径画弧,与直线y=x没有交点,据此即可求得答案.
    【详解】
    如图,AB的垂直平分线与直线y=x相交于点C1,
    ∵A(0,2),B(0,6),∴AB=6﹣2=4,
    以点A为圆心,以AB的长为半径画弧,与直线y=x的交点为C2,C3,
    过点B作BD⊥直线y=x,垂足为D,则△OBD是等腰直角三角形,
    ∴BD=OD,
    ∵OB=6,BD2+OD2=OB2,
    ∴BD=,
    即点B到直线y=x的距离为,
    ∵>4,
    ∴以点B为圆心,以AB的长为半径画弧,与直线y=x没有交点,
    综上所述,点C的个数是1+2=3,
    故选D.
    本题考查了等腰三角形的判定,坐标与图形性质,勾股定理的应用,作出图形,利用数形结合的思想求解更形象直观.
    8、B
    【解析】
    用增长率x分别表示出2017年和2018年中考数学A等级的人数,再根据三年来中考数学A等级共728人即可列出方程.
    【详解】
    解:2017年和2018年中考数学A等级的人数分别为:、,根据题意,得:.
    故选:B.
    本题考查了一元二次方程的应用之增长率问题,属于常考题型,正确理解题意、找准相等关系是解题关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、k<1
    【解析】
    根据一次函数图象的增减性来确定k的符号即可.
    【详解】
    解:∵一次函数y=kx-2的函数值y随自变量x的增大而减小,
    ∴k<1,
    故答案为k<1.
    本题考查了一次函数图象与系数的关系.在直线y=kx+b(k≠1)中,当k>1时,y随x的增大而增大;当k<1时,y随x的增大而减小.
    10、1.
    【解析】
    ∵100,80,x,1,1,这组数据的众数与平均数相等,
    ∴这组数据的众数只能是1,否则,x=80或x=100时,出现两个众数,无法与平均数相等.
    ∴(100+80+x+1+1)÷5=1,解得,x=1.
    ∵当x=1时,数据为80,1,1,1,100,
    ∴中位数是1.
    11、
    【解析】
    一元二次方程经过整理都可化成一般形式ax²+bx+c=0(a≠0).其中ax²叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项.
    【详解】
    解:一元二次方程 的一次项系数为-1.
    故答案为:.
    本题考查的知识点是一元二次方程的一般形式,是基础题目,易于理解掌握.
    12、1
    【解析】
    先估计的近似值,再求得m,代入计算即可.
    【详解】
    ∵是的小数部分
    ∴m=-1
    把m代入得
    故答案为1.
    此题主要考查了代数式,熟练掌握无理数是解题的关键.
    13、①②③
    【解析】
    ①过点C作CF⊥OB,垂足为点F,求出BF=4,CF=,即可求出点C坐标;②连结AB,证明△ADB≌△AEC,则BD=CE;③由S△ADB=S△AEC,可得S△ABC=S△四边形ADBE=×8×=;④可证△ADE为等边三角形,当D为OB的中点时,AD⊥OB,此时AD最小,则S△ADE最小,由③知S四边形ADBE为定值,可得S△DBE最大.
    【详解】
    解:①过点C作CF⊥OB,垂足为点F,
    ∵四边形AOBC为菱形,
    ∴OB=BC=8,∠AOB=∠CBF=60°,
    ∴BF=4,CF=,
    ∴OF=8+4=12,
    ∴点C的坐标为(12,),故①正确;
    ②连结AB,
    ∵BC=AC=AO=OB,∠AOB=∠ACB=60°,
    ∴△ABC是等边三角形,△AOB是等边三角形,
    ∴AB=AC,∠BAC=60°,
    ∵∠DAE=60°,
    ∴∠DAB=∠EAC,
    ∵∠ABD=∠ACE=60°,
    ∴△ADB≌△AEC(ASA),
    ∴BD=CE,故②正确;
    ③∵△ADB≌△AEC.
    ∴S△ADB=S△AEC,
    ∴S△ABC=S△四边形ADBE=×8×=,故③正确;
    ④∵△ADB≌△AEC,
    ∴AD=AE,
    ∵∠DAE=60°,
    ∴△ADE为等边三角形,
    当D为OB的中点时,AD⊥OB,
    此时AD最小,则S△ADE最小,
    由③知S四边形ADBE为定值,可得S△DBE最大.
    故④不正确;
    故答案为:①②③.
    本题考查了菱形的性质,全等三角形的判定与性质,等边三角形的判定与性质等,正确作出辅助线是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、 (1)①,理由见解析;②;(2) .
    【解析】
    (1)①根据角平分线的性质得到根据全等三角形的性质和判定即可得到答案;
    ②根据全等三角形的性质即可得到答案;
    (2) 根据全等三角形的性质和判定即可得到答案;
    【详解】
    (1)①

    ∴,
    ∵平分

    又∵


    ∵中,






    ②∵





    (2)∵

    又∵





    设,则
    ∵,∴
    ∴,






    本题考查角平分线的性质、全等三角形的性质和判定,解题的关键是掌握角平分线的性质、全等三角形的性质和判定.
    15、 (1) ;(2)1.
    【解析】
    (1)将x=-1代入得出纵坐标,从而得到点A的坐标;再用待定系数法求得直线的函数表达式;
    (2)连接,先根据解析式求得B,C,D的坐标,得出BO,CD的长,然后利用割补法求的面积,.
    【详解】
    解:(1)因为点A在直线上,且横坐标为,所以点A的纵坐标为,所以点A的坐标为.
    因为直线过点A,所以将代入,得,解得,所以直线的函数表达式为.
    (2)如图,连接BC,
    由直线,的函数表达式,易得点B的坐标为,点D的坐标为,点C的坐标为,所以.
    所以.
    本题主要考查了两直线相交问题,要注意利用一次函数的特点,列出方程,求出未知数再求得解析式;求三角形的面积时找出高和底边长,对不规则的三角形面积可以使用割补法等方法.
    16、(1)四边形DECF是矩形,理由见解析;(2)存在,EF=4.2.
    【解析】
    (1)根据勾股定理的逆定理得到△ABC是直角三角形,∠C=90°,由垂直的定义得到∠DEC=DFC=90°,于是得到四边形DECF是矩形;
    (2)连结CD,由矩形的性质得到CD=EF,当CD⊥AB时,CD取得最小值,即EF为最小值,根据三角形的面积即可得到结论.
    【详解】
    解:(1)四边形DECF是矩形,
    理由:∵在△ABC中,AB=10,BC=2,AC=1,
    ∴BC2+AC2=22+12=102=AB2,
    ∴△ABC是直角三角形,∠C=90°,
    ∵DE⊥AC,DF⊥BC,
    ∴∠DEC=DFC=90°,
    ∴四边形DECF是矩形;
    (2)存在,连结CD,
    ∵四边形DECF是矩形,
    ∴CD=EF,
    当CD⊥AB时,CD取得最小值,即EF为最小值,
    ∵S△ABC=AB•CD=AC•BC,
    ∴10×CD=1×2,
    ∴EF=CD=.
    本题考查了矩形的判定和性质,垂线段最短,勾股定理的逆定理,三角形的面积,熟练掌握矩形的判定定理是解题的关键.
    17、见解析
    【解析】
    根据一组对边平行且相等的四边形是平行四边形,证明AF=EC,AF∥EC即可.
    【详解】
    证明:∵四边形ABCD是平行四边形,
    且E、F分别是BC、AD上的点,
    ∴AF=EC,
    又∵四边形ABCD是平行四边形,
    ∴AD∥BC,即AF∥EC.
    ∴四边形AFCE是平行四边形,
    ∴AE=CF.
    本题考查了平行四边形的判断方法,平行四边形可以从边、角、对角线三方面进行判定,在选择判断方法时,要根据题目现有的条件,选择合理的判断方法.
    18、见解析.
    【解析】
    根据题意利用平行四边形的性质求出∠ABF=∠AED,即DE∥BF,即可解答
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴∠ADC=∠ABC.
    又∵DE,BF分别是∠ADC,∠ABC的平分线,
    ∴∠ABF=∠CDE.
    又∵∠CDE=∠AED,
    ∴∠ABF=∠AED,
    ∴DE∥BF,
    ∵DE∥BF,DF∥BE,
    ∴四边形DEBF是平行四边形.
    此题考查平行四边形的性质和判定,利用好角平分线的性质是解题关键
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    由△ADE≌△DCF可导出四边形CEPF对角互补,而CE=CF,于是将△CEP绕C点逆时针旋转90°至△CFG,可得△CPG是等腰直角三角形,从而PG=PF+FG=PF+PE=CP,求出PE和PF的长度即可求出PC的长度.
    【详解】
    解:如图,作CG⊥CP交DF的延长线于G.
    则∠PCF+∠GCF=∠PCG=90°,
    ∵四边形ABCD是边长为2的正方形,
    ∴AD=CD=BC=AB=2,∠ADC=∠DCB=90°,
    ∵E、F分别为CD、BC中点,
    ∴DE=CE=CF=BF=1,
    ∴AE=DF=,
    ∴DP==,
    ∴PE=,PF=,
    在△ADE和△DCF中:
    ∴△ADE≌△DCF(SAS),
    ∴∠AED=∠DFC,
    ∴∠CEP=∠CFG,
    ∵∠ECP+∠PCF=∠DCB=90°,
    ∴∠ECP=∠FCG,
    在△ECP和△FCG中:
    ∴△ECP≌△FCG(ASA),
    ∴CP=CG,EP=FG,
    ∴△PCG为等腰直角三角形,
    ∴PG=PF+FG=PF+PE==CP,
    ∴CP=.
    故答案为:.
    本题考查了正方形的性质,全等三角形的判定与性质等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.
    20、1
    【解析】
    根据菱形的面积等于对角线积的一半,即可求得其面积.
    【详解】
    ∵菱形ABCD的两条对角线长分别为6和4,
    ∴其面积为4×6=1.
    故答案为:1.
    此题考查了菱形的性质.注意熟记①利用平行四边形的面积公式.②菱形面积=ab.(a、b是两条对角线的长度).
    21、15°
    【解析】
    根据菱形的性质,可得∠ADC=∠B=70°,从而得出∠AED=∠ADE.又因为AD∥BC,故∠DAE=∠AEB=70°,∠ADE=∠AED=55°,即可求解.
    【详解】
    解:根据菱形的对角相等得∠ADC=∠B=70°.
    ∵AD=AB=AE,
    ∴∠AED=∠ADE.
    根据折叠得∠AEB=∠B=70°.
    ∵AD∥BC,
    ∴∠DAE=∠AEB=70°,
    ∴∠ADE=∠AED=(180°-∠DAE)÷2=55°.
    ∴∠EDC=70°-55°=15°.
    故答案为:15°.
    本题考查了翻折变换,菱形的性质,三角形的内角和定理以及平行线的性质,熟练运用折叠的性质是本题的关键.
    22、(3+,)或(-3+,)
    【解析】
    根据直线l⊥y轴,可知AB∥x轴,则A、B的纵坐标相等,设A(m,m)(m>0),列方程 ,可得点B的坐标,根据AB=6,列关于m的方程可得结论.
    【详解】
    如图,
    设A(m,m)(m>0),如图所示,
    ∴点B的纵坐标为m,
    ∵点B在双曲线y=上,
    ∴,
    ∴x=,
    ∵AB=6,
    即|m-|=6,
    ∴m-=6或-m=6,
    ∴m1=3+或m2=3-<0(舍),m3=-3-(舍),m4=-3+,
    ∴B(3+,)或(-3+,),
    故答案为:(3+,)或(-3+,).
    本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.
    23、1
    【解析】
    先求出体育优秀的占总体的百分比,再乘以360°即可.
    【详解】
    解:圆心角的度数是:
    故答案为:1.
    本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.
    二、解答题(本大题共3个小题,共30分)
    24、(1)证明见解析;(2).
    【解析】
    试题分析:(1)利用直角三角形斜边中线是斜边一半,求得DE=AE=AF=DF,
    所以AEDF是菱形.
    (2)由(1)得,AEDF是菱形,求得菱形对角线乘积的一半,求面积 .
    试题解析:
    (1)∵AD⊥BC,点E、F分别是AB、AC的中点,
    ∴Rt△ABD中,DE=AB=AE,
    Rt△ACD中,DF=AC=AF,
    又∵AB=AC,点E、F分别是AB、AC的中点,
    ∴AE=AF,
    ∴AE=AF=DE=DF,
    ∴四边形AEDF是菱形.
    (2)如图,∵菱形AEDF的周长为12,
    ∴AE=3,
    设EF=x,AD=y,则x+y=7,
    ∴x2+2xy+y2=49,①
    ∵AD⊥EF于O,
    ∴Rt△AOE中,AO2+EO2=AE2,
    ∴(y)2+(x)2=32,
    即x2+y2=36,②
    把②代入①,可得2xy=13,
    ∴xy=,
    ∴菱形AEDF的面积S=xy= .
    25、(1)证明见解析;
    (1)a,b,c三者存在的关系是a+b>c,理由见解析.
    【解析】
    (1)首先根据题意得B′F=BF,∠B′FE=∠BFE,接着根据平行线的性质和等腰三角形的判定即可证明B′E=BF;
    (1)解答此类题目时要仔细读题,根据三角形三边关系求解分类讨论解答,要提高全等三角形的判定结合勾股定理解答.
    证明:(1)由题意得B′F=BF,∠B′FE=∠BFE,
    在矩形ABCD中,AD∥BC,
    ∴∠B′EF=∠BFE,
    ∴∠B′FE=∠B'EF,
    ∴B′F=BE,
    ∴B′E=BF;
    解:(1)答:a,b,c三者关系不唯一,有两种可能情况:
    (ⅰ)a,b,c三者存在的关系是a1+b1=c1.
    证明:连接BE,则BE=B′E,
    由(1)知B′E=BF=c,
    ∴BE=c.
    在△ABE中,∠A=90°,
    ∴AE1+AB1=BE1,
    ∵AE=a,AB=b,
    ∴a1+b1=c1;
    (ⅱ)a,b,c三者存在的关系是a+b>c.
    证明:连接BE,则BE=B′E.
    由(1)知B′E=BF=c,
    ∴BE=c,
    在△ABE中,AE+AB>BE,
    ∴a+b>c.
    “点睛”此题以证明和探究结论形式来考查矩形的翻折、等角对等边、三角形全等、勾股定理等知识.第一,较好考查学生表述数学推理和论证能力,第(1)问重点考查了学生逻辑推理的能力,主要利用等角对等边、翻折等知识来证明;第二,试题呈现显示了浓郁的探索过程,试题设计的起点低,图形也很直观,也可通过自已动手操作,寻找几何元素之间的对应关系,形成较为常规的方法解决问题,第(1)问既考查了学生对勾股定理掌握的程度又考查学生的数学猜想和探索能力,这对于培养学生创新意识和创新精神十分有益;第三,解题策略多样化在本题中得到了充分的体现.
    26、(1);(2)或或;(3)①交点坐标为,②.
    【解析】
    (1)观察可知当x=-2时y=0,所以经过定点
    (2)先分类和讨论,分别得y=x,y=2-x,据此画出函数图象,再观察得出k的取值范围.
    (3)①当时,,画出图象观察即可得出答案.
    ②分四种情况讨论.设与正方形交于、两点.与正方形无交点;点位于边上;点位于上时;点与点重合.根据四种情况分别画出图形,进行计算.
    【详解】
    (1)观察可知当x=-2时y=0,所以经过定点
    (2)解:时,图象如图
    当或或,直线与函数的图象存在唯一的公共点,
    (3)①当时,,图象如图.
    观察可知交点坐标为
    ②解:由图象可知令顶点为
    与正方形交于、两点
    1)当时,与正方形无交点,如下图所示,此时.
    2)当时,点位于边上
    3)当时,点位于上时
    4)当时,点与点重合
    ∴综上所述
    本题考查了一次函数的性质和分类讨论的思想,正确分类画出图象是解决问题的关键.
    题号





    总分
    得分

    相关试卷

    2024年黄冈中学九年级数学第一学期开学达标检测模拟试题【含答案】:

    这是一份2024年黄冈中学九年级数学第一学期开学达标检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年福建省平和第一中学数学九年级第一学期开学达标检测模拟试题【含答案】:

    这是一份2024年福建省平和第一中学数学九年级第一学期开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年福建省晋江市养正中学数学九年级第一学期开学达标检测模拟试题【含答案】:

    这是一份2024年福建省晋江市养正中学数学九年级第一学期开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map