北京市西城区第十三中学2024-2025学年数学九年级第一学期开学教学质量检测试题【含答案】
展开
这是一份北京市西城区第十三中学2024-2025学年数学九年级第一学期开学教学质量检测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)小强骑自行车去郊游,9时出发,15时返回.如图表示他离家的路程y(千米)与相应的时刻x(时)之间的函数关系的图像.根据图像可知小强14时离家的路程是( )
A.13千米B.14千米C.15千米D.16千米
2、(4分)如图,在中,,,点D是AB的中点,则
A.4B.5C.6D.8
3、(4分)三角形的三边长分别为①5,12,13;②9,40,41;③8,15,17;④13,84,85,其中能够构成直角三角形的有( )
A.1个B.2个C.3个D.4个
4、(4分)在一个不透明的布袋中,有红色、黑色、白色球共40个,它们除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在和,则布袋中白色球的个数可能是( )
A.24B.18C.16D.6
5、(4分)测得某人一根头发的直径约为0.000 071 5米,该数用科学记数法可表示为( )
A.0.715×104B.0.715×10﹣4C.7.15×105D.7.15×10﹣5
6、(4分)将某个图形的各个顶点的横坐标都减去2,纵坐标保持不变,可将该图形( )
A.向左平移2个单位B.向右平移2个单位
C.向上平移2个单位D.向下平移2个单位
7、(4分)已知a是方程的一个根,则代数式的值是( )
A.6B.5C.D.
8、(4分)若二次函数的图象经过点P(-2,4),则该图象必经过点( )
A.(2,4)B.(-2,-4)C.(-4,2)D.(4,-2)
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若分式 的值为零,则 _____.
10、(4分)如图,P是矩形ABCD内一点,,,,则当线段DP最短时, ________.
11、(4分)在平面直角坐标系中,已知点E(-4,2),F(-2,-2),以原点O为位似中心,相似比为2,把△EFO放大,则点E的对应点E′的坐标是_____.
12、(4分)八年级(3班)同学要在广场上布置一个矩形花坛,计划用鲜花摆成两条对角线.如果一条对角线用了20盆红花,还需要从花房运来_______盆红花.如果一条对角线用了25盆红花,还需要从花房运来_______盆红花.
13、(4分)某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办了“玩转数学”比赛.评委从研究报告、小组展示、答辩三个方面为每个参赛小组打分,按照研究报告占40%,小组展示占30%,答辩占30%计算各小组的成绩,各项成绩均按百分制记录.甲小组的研究报告得85分,小组展示得90分,答辩得80分,则甲小组的参赛成绩为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看次的人数没有标出).
根据上述信息,解答下列各题:
×
(1)该班级女生人数是__________,女生收看“两会”新闻次数的中位数是________;
(2)对于某个群体,我们把一周内收看某热点新闻次数不低于次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低,试求该班级男生人数;
(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表).
根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.
15、(8分)图①、图②、图③均是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.
(1)在图①、图②中,以格点为顶点,线段AB为一边,分别画一个平行四边形和菱形,并直接写出它们的面积.(要求两个四边形不全等)
(2)在图③中,以点A为顶点,另外三个顶点也在格点上,画一个面积最大的正方形,并直接写出它的面积。
16、(8分)甲、乙两车间同时从A地出发前往B地,沿着相同的路线匀速驶向B地,甲车中途由于某种原因休息了1小时,然后按原速继续前往B地,两车离A地的距离y(km)与行驶的时间x(h)之间的函数关系如图所示:
(1)A、B两地的距离是__________km;
(2)求甲车休息后离A地的距离y(km)与x(h)之间的函数关系;
(3)请直接写出甲、乙两车何时相聚15km。
17、(10分)作图:如图,平面内有 A,B,C,D 四点 按下列语句画图:
(1)画射线 AB,直线 BC,线段 AC
(2)连接 AD 与 BC 相交于点 E.
18、(10分)数学活动课上,老师提出了一个问题:如图1,A、B两点被池塘隔开,在AB外选一点,连接AC和BC,怎样测出A、B两点的距离?
(活动探究)学生以小组展开讨论,总结出以下方法:
⑴如图2,选取点C,使AC=BC=a,∠C=60°;
⑵如图3,选取点C,使AC=BC=b,∠C=90°;
⑶如图4,选取点C,连接AC,BC,然后取AC、BC的中点D、E,量得DE=c…
(活动总结)
(1)请根据上述三种方法,依次写出A、B两点的距离.(用含字母的代数式表示)并写出方法⑶所根据的定理.AB=________,AB=________,AB=________.定理:________.
(2)请你再设计一种测量方法,(图5)画出图形,简要说明过程及结果即可.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在平面直角坐标xOy中,点O是坐标原点,点B的坐标是(m,m-4),则OB的最小值是__________.
20、(4分)在菱形ABCD中,,,则对角线AC的长为________.
21、(4分)不等式-->-1的正整数解是_____.
22、(4分)已知,则的值是_______.
23、(4分)计算:________.
二、解答题(本大题共3个小题,共30分)
24、(8分)毎年6月,学校门口的文具店都会购进毕业季畅销商品进行销售.已知校门口“小光文具店“在5月份就售出每本8元的A种品牌同学录90本,每本10元的B种品牌同学录175本.
(1)某班班长帮班上同学代买A种品牌和B种品牌同学录共27本,共花费246元,请问班长代买A种品牌和B种品牌同学录各多少本?
(2)该文具店在6月份决定将A种品牌同学录每本降价3元后销售,B种品牌同学录每本降价a%(a>0)后销售.于是,6月份该文具店A种品牌同学录的销量比5月份多了a%,B种品牌同学录的销量比5月份多了(a+20)%,且6月份A、B两种品牌的同学录的销售总额达到了2550元,求a的值.
25、(10分)(1)解方程:x2+3x-4=0 (2) 计算:
26、(12分)解方程与不等式组
(1)解方程:
(2)解不等式组
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
由纵坐标看出,返回时离家的距离是30千米,
由横坐标看出,返回时所用的时间是15−13=2小时,
由路程与时间的关系,得
返回时的速度是30÷2=15千米,
由时间、速度的关系得15×1=15千米,
故选:C.
2、B
【解析】
根据直角三角形中,斜边上的中线等于斜边的一半解答即可.
【详解】
,点D为AB的中点,
.
故选:B.
本题考查直角三角形的性质,掌握在直角三角形中斜边上的中线等于斜边的一半是解题的关键.
3、D
【解析】
试题解析:①、∵52+122=169=132,∴能构成直角三角形,故本小题正确;
②、92+402=1681=412=169,∴能构成直角三角形,故本小题正确;
③、82+152=289=172,∴能构成直角三角形,故本小题正确;
④、∵132+842=852,∴能构成直角三角形,故本小题正确.
故选D.
4、C
【解析】
先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数.
【详解】
∵摸到红色球、黑色球的频率稳定在15%和45%,
∴摸到白球的频率为1−15%−45%=40%,
故口袋中白色球的个数可能是40×40%=16个.
故选:C.
大量反复试验下频率稳定值即概率.关键是算出摸到白球的频率.
5、D
【解析】
0.000 071 5= ,故选D.
6、A
【解析】
纵坐标不变则图形不会上下移动,横坐标减2,则说明图形向左移动2个单位.
【详解】
由于图形各顶点的横坐标都减去2,
故图形只向左移动2个单位,
故选A.
本题考查了坐标与图形的变化---平移,要知道,上下移动,横坐标不变,左右移动,纵坐标不变.
7、B
【解析】
根据方程的根的定义,把x=a代入方程求出a2-3a的值,然后整体代入代数式进行计算即可得解.
【详解】
解:∵a是方程x2-3x-1=0的一个根,
∴a2-3a-1=0,
整理得,a2-3a=1,
∴2a2-6a+3=2(a2-3a)+3
=2×1+3
=5,
故选:B.
本题考查了一元二次方程的解,利用整体思想求出a2-3a的值,然后整体代入是解题的关键.
8、A
【解析】
根据点在曲线上,点的坐标满足方程的关系,将P(-2,4)代入,得,
∴二次函数解析式为.
∴所给四点中,只有(2,4)满足.故选A.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、-1
【解析】
直接利用分式的值为 0,则分子为 0,分母不为 0,进而得出答案.
【详解】
解:∵分式的值为零,
∴
解得:.
故答案为:﹣1.
本题考查分式的值为零的条件,正确把握定义是解题的关键.
10、
【解析】
因为AP⊥BP,则P点在AB为直径的半圆上,当P点为AB的中点E与D点连线与半圆AB的交点时,DP最短,求出此时PC的长度便可.
【详解】
解:以AB为直径作半圆O,连接OD,与半圆O交于点P′,当点P与P′重合时,DP最短,
则AO=OP′=OB=AB=2,
∵AD=2,∠BAD=90°,
∴OD=2,∠ADC=∠AOD=∠ODC=45°,
∴DP′=OD-OP′=2-2,
过P′作P′E⊥CD于点E,则
P′E=DE=DP′=2-,
∴CE=CD-DE=+2,
∴CP′==.
故答案为.
本题是一个矩形的综合题,主要考查了矩形的性质,勾股定理,圆的性质,关键是作辅助圆和构造直角三角形.
11、(-8,4)或(8,-4)
【解析】
由在平面直角坐标系中,已知点E(-4,2),F(-2,-2),以原点O为位似中心,相似比为2,把△EFO放大,根据位似图形的性质,即可求得点E的对应点E′的坐标.
【详解】
∵点E(-4,2),以原点O为位似中心,相似比为2,把△EFO放大,
∴点E的对应点E′的坐标是:(-8,4)或(8,-4).
故答案为:(-8,4)或(8,-4).
此题考查了位似图形的性质.此题比较简单,注意位似图形有两个.
12、20 1
【解析】
根据矩形的对角线相等且互相平分,即可得出结果.
【详解】
解:如果一条对角线用了20盆红花,还需要从花房运来20盆红花;理由如下:
∵矩形的对角线互相平分且相等,
∴一条对角线用了20盆红花,
∴还需要从花房运来红花20盆;
如果一条对角线用了25盆红花,还需要从花房运来1盆红花;理由如下:
一条对角线用了25盆红花,中间一盆为对角线交点,25-1=1,
∴还需要从花房运来红花1盆,
故答案为:20,1.
本题考查矩形的性质,解题关键是熟练掌握矩形的对角线互相平分且相等的性质.
13、85分
【解析】
根据加权平均数的定义计算可得.
【详解】
根据题意知,甲小组的参赛成绩为85×40%+90×30%+80×30%=85(分),
故答案为:85分.
本题考查的是加权平均数的求法,根据某方面的需要选拔时往往利用加权平均数更合适.
三、解答题(本大题共5个小题,共48分)
14、(1)20,1;(2)2人;(1)男生比女生的波动幅度大.
【解析】
(1)将柱状图中的女生人数相加即可求得总人数,中位数为第10与11名同学的次数的平均数.
(2)先求出该班女生对“两会”新闻的“关注指数”,即可得出该班男生对“两会”新闻的“关注指数”,再列方程解答即可.
(1)比较该班级男、女生收看“两会”新闻次数的波动大小,需要求出女生的方差.
【详解】
(1)该班级女生人数是2+5+6+5+2=20,女生收看“两会”新闻次数的中位数是1.
故答案为20,1.
(2)由题意:该班女生对“两会”新闻的“关注指数”为=65%,所以,男生对“两会”新闻的“关注指数”为60%.设该班的男生有x人,则=60%,解得:x=2.
答:该班级男生有2人.
(1)该班级女生收看“两会”新闻次数的平均数为=1,女生收看“两会”新闻次数的方差为:=.
∵2>,∴男生比女生的波动幅度大.
本题考查了平均数,中位数,方差的意义.解题的关键是明确平均数表示一组数据的平均程度,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.
15、(1)菱形的面积=4;平行四边形的面积=4;作图见解析(2)正方形的面积=10,作图见解析.
【解析】
(1)根据菱形和平行四边形的画法解答即可;
(2)根据勾股定理逆定理,结合网格结构,作出最长的线段作为正方形的边长即可.
【详解】
(1)如图①②所示:
菱形的面积=4;平行四边形的面积=4;
(2)如图③所示:
正方形的面积=10
此题考查基本作图,解题关键在于掌握作图法则
16、(1)180;(2);(3)甲乙两车出发0.5h或1.25h或1.75h或2.5h时两车距离15km
【解析】
(1)根据图象解答即可;(2) 根据函数图象中的数据可以求得甲车再次行驶过程中y与x之间的函数关系式;(3) 根据题意,利用分类讨论的数学思想可以求得x的值.
【详解】
解:
(1)观察图象可得:A、B两地的距离是180km;
(2)由题意得,甲车的平均速度为:180÷(3-1)=90
所以当x=1时,y=90
当x=2时,y=90
当2≤x≤3时,设(k≠0)
点(2,90),(3,180)在直线上
因此有
解得:
∴
∴甲车休息后离A地的距离为y(km)与x(h)之间的函数关系为:
(3) 设乙车行驶过程中y与x之间的函数关系式是y=ax,
180=3a,得a=60,
∴乙车行驶过程中y与x之间的函数关系式是y=60x,
∴60x=90,得x=1.5,即两车1.5小时相遇,
当0≤x≤1.5时,甲车行驶过程中y与x之间的函数关系式是y=90x,90=x,
∴90x-60x=15,得x=,
90-60x=15时,x=1.25,
当1.5≤x≤3时,甲车行驶过程中y与x之间的函数关系式是y=9x-90,
90=x,
∴60x-90=1.5,得x=1.75;
60x-(90x-90)=15,得x=2.5
由上可得,甲乙两车出发0.5h或1.25h或1.75h或2.5h时两车距离15km。
本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.
17、答案见解析
【解析】
利用作射线,直线和线段的方法作图.
【详解】
如图:
本题考查了作图﹣复杂作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图.
18、见解析
【解析】
试题分析:(1)分别利用等边三角形的判定方法以及直角三角形的性质和三角形中位线定理得出答案;
(2)直接利用利用勾股定理得出答案.
解:(1)∵AC=BC=a,∠C=60°,
∴△ABC是等边三角形,
∴AB=a;
∵AC=BC=b,∠C=90°,
∴AB=b,
∵取AC、BC的中点D、E,
∴DE∥AB,DE=AB,
量得DE=c,则AB=2c(三角形中位线定理);
故答案为a,b,2c,三角形中位线定理;
(2)方法不唯一,如:图5,选取点C,
使∠CAB=90°,AC=b,BC=a,
则AB=.
【点评】此题主要考查了应用设计与作图,正确应用勾股定理是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
利用勾股定理可用m表示出OB的长,根据平方的非负数性质即可得答案.
【详解】
∵点B的坐标是(m,m-4),
∴OB==,
∵(m-2)2≥0,
∴2(m-2)2+8≥8,
∴的最小值为=,即OB的最小值为,
故答案为:
本题考查勾股定理的应用及平方的非负数性质,熟练掌握平方的非负数性质是解题关键.
20、1
【解析】
由菱形的性质可得AB=BC=1,∠DAB+∠ABC=180°,可得∠ABC=10°,可证△ABC是等边三角形,可得AC=1.
【详解】
如图,
∵四边形ABCD是菱形
∴AB=BC=1,∠DAB+∠ABC=180°
∴∠ABC=10°,且AB=BC
∴△ABC是等边三角形
∴AC=AB=1
故答案为:1
本题考查了菱形的性质,等边三角形的判定和性质,熟练运用菱形的性质是本题的关键.
21、1,1
【解析】
首先确定不等式的解集,然后再找出不等式的特殊解.
【详解】
解:解不等式得:x<3,
故不等式的正整数解为:1,1.
故答案为1,1.
本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键,解不等式应根据不等式的基本性质.
22、
【解析】
先对原式进行化简,然后代入a,b的值计算即可.
【详解】
,
.
,
,
∴原式= ,
故答案为:.
本题主要考查二次根式的运算,掌握完全平方公式和平方差是解题的关键.
23、2
【解析】
分别先计算绝对值,算术平方根,零次幂后计算得结果.
【详解】
解:原式.
故答案为:.
本题考查的是绝对值,算术平方根,零次幂的运算,掌握运算法则是解题关键.
二、解答题(本大题共3个小题,共30分)
24、(1)班长代买A种品牌同学录12本,B种品牌同学录15本;(2)a的值为1.
【解析】
(1)设班长代买A种品牌同学录x本,B种品牌同学录y本,根据总价=单价×数量结合购买A、B两种品牌同学录27本共花费246元,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)根据总价=单价×数量,即可得出关于a的一元二次方程,解之取其正值即可得出结论.
【详解】
解:(1)设班长代买A种品牌同学录x本,B种品牌同学录y本,
依题意,得:,
解得:.
答:班长代买A种品牌同学录12本,B种品牌同学录15本.
(2)依题意,得:(8﹣3)×90(1+a%)+10(1﹣a%)×175[1+(a+1)%]=2550,
整理,得:a2﹣1a=0,
解得:a1=1,a2=0(舍去).
答:a的值为1.
本题考查了二元一次方程组和一元二次方程的实际应用,根据实际问题找出等量关系,列出方程是解题的关键.
25、(1) (2)
【解析】
(1)解一元二次方程,将等式左边因式分解,转化成两个一元一次方程,求解即可. (2) 首先把特殊角的三角函数值代入,然后进行二次根式的运算即可.
【详解】
解:(1)原方程变形得(x-1)(x+4)=0
解得x1=1,x2=-4
经验:x1=1,x2=-4是原方程的解.
(2)原式=×××=
本题是计算题第(1)考查解二元一次方程-因式分解.(2)特殊三角函数的值.本题较基础,熟练掌握运算的方法即可求解.
26、(1);(2)
【解析】
(1)先把分母化为相同的式子,再进行去分母求解;
(2)依次解出各不等式的解集,再求出其公共解集.
【详解】
解:(1)原分式方程可化为,
方程两边同乘以得:
解这个整式方程得:
检验:当,
所以,是原方程的根
(2)解不等式①得:
解不等式②得:
不等式①、②的解集表示在同一数轴上:
所以原不等式组的解集为:
此题主要考查分式方程、不等式组的求解,解题的关键是熟知分式方程的解法及不等式的性质.
题号
一
二
三
四
五
总分
得分
统计量
平均数(次)
中位数(次)
众数(次)
方差
…
该班级男生
…
相关试卷
这是一份北京市师范大附属中学2024-2025学年数学九年级第一学期开学教学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份北京市第十三中学2024-2025学年九年级数学第一学期开学联考模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届北京市西城区月坛中学九年级数学第一学期开学复习检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。