终身会员
搜索
    上传资料 赚现金

    安徽省重点中学2024-2025学年九上数学开学教学质量检测试题【含答案】

    立即下载
    加入资料篮
    安徽省重点中学2024-2025学年九上数学开学教学质量检测试题【含答案】第1页
    安徽省重点中学2024-2025学年九上数学开学教学质量检测试题【含答案】第2页
    安徽省重点中学2024-2025学年九上数学开学教学质量检测试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    安徽省重点中学2024-2025学年九上数学开学教学质量检测试题【含答案】

    展开

    这是一份安徽省重点中学2024-2025学年九上数学开学教学质量检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,正方形ABCD与正方形EBHG的边长均为,正方形EBHG的顶点E恰好落在正方形ABCD的对角线BD上,边EG与CD相交于点O,则OD的长为
    A.
    B.
    C.
    D.
    2、(4分)函数中自变量的取值范围是( )
    A.B.C.D.全体实数
    3、(4分)在平行四边形ABCD中,,.则平行四边形ABCD的周长是( ).
    A.16B.13C.10D.8
    4、(4分)如图,△A1B1C1是由△ABC沿BC方向平移了BC长度的一半得到的,若△ABC的面积为20cm2,则四边形A1DCC1的面积为( )
    A.10 cm2B.12 cm2C.15 cm2D.17 cm2
    5、(4分)如图,是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=10,BE=24,则EF的长是( )
    A.14B.13C.14D.14
    6、(4分)下列图形中,是中心对称图形但不是轴对称图形的是( )
    A.B.C.D.
    7、(4分)一种药品原价每盒 元,经过两次降价后每盒元,两次降价的百分率相同,设每次降价的百分率为,则符合题意的方程为( )
    A.B.C.D.
    8、(4分)数据2,2,6,2,3,4,3,2,6,5,4,5,4的众数是( ).
    A.2B.3C.4D.6
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)一种圆柱形口杯(厚度忽略不计),测得内部底面半径为,高为.吸管如图放进杯里,杯口外面露出部分长为,则吸管的长度为_____.
    10、(4分)如图,ABCD的顶点在矩形的边上,点与点不重合,若的面积为4,则图中阴影部分两个三角形的面积和为_________.
    11、(4分)在中,平分交点,平分交于点,且,则的长为__________.
    12、(4分)当a__________时,分式有意义.
    13、(4分)已知如图,以的三边为斜边分别向外作等腰直角三角形,若斜边,则图中阴影部分的面积为_______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)平面直角坐标系中,点O为坐标原点,菱形OABC中的顶点B在x轴的正半轴上,点A在反比例函数y=(x>0)的图象上,点C的坐标为(3,﹣4).
    (1)点A的坐标为_____;
    (2)若将菱形OABC沿y轴正方向平移,使其某个顶点落在反比例函数y= (x>0)的图象上,则该菱形向上平移的距离为_____.
    15、(8分)化简求值: 1(+1)(-1)-(1-1),其中=1.
    16、(8分)一组数据:1,1,2,5,x的平均数是1.
    (1)求x的值;
    (2)求这组数据的方差.
    17、(10分)计算
    (1)分解因式:a2-b2+ac-bc
    (2)解不等式组,并求出不等式组的整数解之和.
    18、(10分)小强打算找印刷公司设计一款新年贺卡并印刷.如图1是甲印刷公司设计与印刷卡片计价方式的说明(包含设计费与印刷费),乙公司的收费与印刷卡片数量的关系如图2所示.
    (1)分别写出甲乙两公司的收费y(元)与印刷数量x之间的关系式.
    (2)如果你是小强,你会选择哪家公司?并说明理由.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,若△DEF是由△ABC沿BC方向平移得到的,EF=5,EC=3,则平移的距离是_____.
    20、(4分)如图,在平面直角坐标系中,已知点、、的坐标分别为,,.若点从点出发,沿轴正方向以每秒1个单位长度的速度向点移动,连接并延长到点,使,将线段绕点顺时针旋转得到线段,连接.若点在移动的过程中,使成为直角三角形,则点的坐标是__________.
    21、(4分)如图,在四边形中,点是对角线的中点,点、分别是、的中点,,且,则______.
    22、(4分)人数相同的八年级甲,乙两班同学在同一次数学单元测试中,班级平均分和方差如下:,,则成绩较为稳定的班级是_______.
    23、(4分)若代数式有意义,则实数的取值范围______________
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在矩形ABCD中,点E、F在边AD上,AF=DE,连接BF、CE.
    (1)求证:∠CBF=∠BCE;
    (2)若点G、M、N在线段BF、BC、CE上,且 FG=MN=CN.求证:MG=NF;
    (3)在(2)的条件下,当∠MNC=2∠BMG时,四边形FGMN是什么图形,证明你的结论.
    25、(10分)如图,四边形ABCD中,AB=AD,CB=CD,AB ∥ CD.
    (1)求证:四边形ABCD是菱形.
    (2)当△ABD满足什么条件时,四边形ABCD是正方形.(直接写出一个符合要求的条件).
    (3)对角线AC和BD交于点O,∠ ADC =120°,AC=8, P为对角线AC上的一个动点,连接DP,将DP绕点D逆时针方向旋转120°得到线段DP1,直接写出A P1的取值范围.
    26、(12分)小李在学校“青少年科技创新比赛”活动中,设计了一个沿直线轨道做匀速直线运动的模型.甲车从处出发向处行驶,同时乙车从处出发向处行驶.如图所示,线段、分别表示甲车、乙车离处的距离(米)与已用时间(分)之间的关系.试根据图象,解决以下问题:
    (1)填空:出发_________(分)后,甲车与乙车相遇,此时两车距离处________(米);
    (2)求乙车行驶(分)时与处的距离.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    由正方形性质可得AB=AD=CD=BE=,∠A=∠C=∠DEO=90〬,∠EDO=45〬,由勾股定理得BD=,求出DE,再根据勾股定理求OD.
    【详解】
    解:因为,正方形ABCD与正方形EBHG的边长均为,
    所以,AB=AD=CD=BE=,∠A=∠C=∠DEO=90〬,∠EDO=45〬,
    所以,BD=,
    所以,DE=BD-BE=2- ,
    所以,OD=
    故选B.
    本题考核知识点:正方形,勾股定理.解题关键点:运用勾股定理求出线段长度.
    2、A
    【解析】
    根据被开方数非负得到不等式x-2≥0,求解即可得到答案.
    【详解】
    由二次根式有意义的条件,得x-2≥0,即x≥2,故选A.
    此题考查函数自变量的取值范围,解题关键在于掌握运算法则.
    3、A
    【解析】
    根据平行四边形的性质:平行四边形的对边相等可得DC=5,AD=3,然后再求出周长即可.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∵AB=CD,AD=BC,
    ∵AB=5,BC=3,
    ∴DC=5,AD=3,
    ∴平行四边形ABCD的周长为:5+5+3+3=16,
    故选A.
    此题主要考查了平行四边形的性质,关键是掌握平行四边形的对边相等.
    4、C
    【解析】
    解:∵△A1B1C1是由ABC沿BC方向平移了BC长度的一半得到的,
    ∴AC∥AC1,B1C=B1C1,
    ∴△B1DC∽△B1A1C1,
    ∵△B1DC与△B1A1C1的面积比为1:4,
    ∴四边形A1DCC1的面积是△ABC的面积的,
    ∴四边形A1DCC1的面积是:cm2,
    故选C
    5、D
    【解析】
    24和10为两条直角边长时,求出小正方形的边长14,即可利用勾股定理得出EF的长.
    【详解】
    解:∵AE=10,BE=24,即24和10为两条直角边长时,
    小正方形的边长=24-10=14,
    ∴EF=.
    故选D.
    本题考查了勾股定理、正方形的性质;熟练掌握勾股定理是解决问题的关键.
    6、A
    【解析】
    解: B、C、D都是轴对称图形,即对称轴如下红色线;
    故选A.
    此题考查轴对称图形和中心对称图形的概念.
    7、D
    【解析】
    由题意可得出第一次降价后的价格为,第二次降价后的价格为,再根据两次降价后的价格为16元列方程即可.
    【详解】
    解:设每次降价的百分率为,由题意可得出:.
    故选:D.
    本题考查的知识点是一元二次方程的实际应用,找准题目中的等量关系是解此题的关键.
    8、A
    【解析】
    由众数的定义,求出其中出现次数最多的数即可.
    【详解】
    ∵数据1,1,6,1,3,4,3,1,6,5,4,5,4中,1出现了4次,出现的次数最多,
    ∴众数是1.
    故选:A.
    考查了众数,用到的知识点是众数的定义,关键是找出出现次数最多的数.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、17
    【解析】
    根据吸管、杯子的直径及高恰好构成直角三角形,求出的长,再由勾股定理即可得出结论.
    【详解】
    如图,连接,
    杯子底面半径为,高为,
    ,,
    吸管、圆柱形杯内部底面直径与杯壁正好构成直角三角形,

    杯口外面露出,
    吸管的长为:.
    故答案为:.
    本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时,勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图,领会数形结合的思想的应用.
    10、1
    【解析】
    根据平行四边形的性质求出AD=BC,DC=AB,证△ADC≌△CBA,推出△ABC的面积是1,求出AC×AE=8,即可求出阴影部分的面积.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AD=BC,DC=AB,
    ∵在△ADC和△CBA中

    ∴△ADC≌△CBA,
    ∵△ACD的面积为1,
    ∴△ABC的面积是1,
    即AC×AE=1,
    AC×AE=8,
    ∴阴影部分的面积是8﹣1=1,
    故答案为1.
    本题考查了矩形性质,平行四边形性质,全等三角形的性质和判定的应用,主要考查学生运用面积公式进行计算的能力,题型较好,难度适中.
    11、或
    【解析】
    根据平行线的性质得到∠ADF=∠DFC,由DF平分∠ADC,得到∠ADF=∠CDF,等量代换得到∠DFC=∠FDC,根据等腰三角形的判定得到CF=CD,同理BE=AB,根据已知条件得到四边形ABCD是平行四边形,根据平行四边形的性质得到AB=CD,AD=BC,即可得到结论.
    【详解】
    解:①如图1,在▱ABCD中,∵BC=AD=8,BC∥AD,CD=AB,CD∥AB,
    ∴∠DAE=∠AEB,∠ADF=∠DFC,
    ∵AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,
    ∴∠BAE=∠DAE,∠ADF=∠CDF,
    ∴∠BAE=∠AEB,∠CFD=∠CDF,
    ∴AB=BE,CF=CD,
    ∵EF=2,
    ∴BC=BE+CF−EF=2AB−EF=8,
    ∴AB=1;
    ②在▱ABCD中,∵BC=AD=8,BC∥AD,CD=AB,CD∥AB,
    ∴∠DAE=∠AEB,∠ADF=∠DFC,
    ∵AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,
    ∴∠BAE=∠DAE,∠ADF=∠CDF,
    ∴∠BAE=∠AEB,∠CFD=∠CDF,
    ∴AB=BE,CF=CD,
    ∵EF=2,
    ∴BC=BE+CF=2AB+EF=8,
    ∴AB=3;
    综上所述:AB的长为3或1.
    故答案为:3或1.
    本题考查了等腰三角形的判定和性质,平行线的性质,平行四边形的性质,解答本题的关键是判断出AB=BE,CF=CD.
    12、
    【解析】
    根据分式有意义的条件可得,再解不等式即可.
    【详解】
    解:分式有意义,
    则;
    解得:,
    故答案为:.
    此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.
    13、50
    【解析】
    根据勾股定理和等腰直角三角形的面积公式,可以证明:以直角三角形的两条直角边为斜边的等腰直角三角形的面积和等于以斜边为斜边的等腰直角三角形的面积.则阴影部分的面积即为以斜边为斜边的等腰直角三角形的面积的2倍.
    【详解】
    解:在Rt△ABC中,AB2=AC2+BC2,AB=5,
    S阴影=S△AHC+S△BFC+S△AEB=

    =50
    故答案为:50.
    本题考查了勾股定理的知识,要求能够运用勾股定理证明三个等腰直角三角形的面积之间的关系.
    三、解答题(本大题共5个小题,共48分)
    14、(1)(3,4)
    (2)2或8
    【解析】
    (1)根据菱形的对称性,得A(3,4)
    (2)则反比例函数为 则B(6,0),若点B向上平移到反比例函数上.则B(6,2),即向上平移2个单位;若点C在反比例函数上,则C(3,4),即向上平移8个单位.故该菱形向上平移的距离为2或8.
    15、;0
    【解析】
    先利用乘法公式和单项式乘多项式法则将原式进行化简,再将x=1代入求值即可.
    【详解】
    解:原式=1(x1-1)-1x1+x
    =
    =
    当x=1时, 原式= 0
    本题考查的是整式的化简求值,能够准确计算是解题的关键.
    16、(1)x=4;(2)2.
    【解析】
    (1)根据算术平均数定义列出关于x的方程,解之可得x的值;
    (2)根据方差计算公式计算可得.
    【详解】
    解:(1)根据题意知=1,
    解得:x=4;
    (2)方差为×[(1﹣1)2+(1﹣1)2+(2﹣1)2+(5﹣1)2+(4﹣1)2]=2.
    考查方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2= ,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    17、(1)(a-b)(a+b+c);(2)0≤x≤3,1
    【解析】
    (1)利用分组分解法先分组,再提公因式和利用平方差公式分解,最后提公因式a-b可解答;
    (2)解不等式组,并找出整数解,相加可解答.
    【详解】
    (1)a2-b2+ac-bc,
    =(a2-b2)+(ac-bc),
    =(a+b)(a-b)+c(a-b),
    =(a-b)(a+b+c);
    (2),
    解不等式①得:x≤3,
    解不等式②得:x≥0,
    ∴不等式组的解集为:0≤x≤3,
    ∴不等式组的整数解为:0、1、2、3,
    和为0+1+2+3=1.
    本题考查了提取公因式法和分组分解法因式分解、解不等式组,(1)中难点是采用两两分组还是三一分组,a2-b2正好符合平方差公式,应考虑为一组,ac-bc可提公因式为一组,(2)的关键是准确求出两个不等式的解集.
    18、 ( 1 )甲的解析式为:y=乙的解析式为:;(2)当时,选择乙公司比较合算,当时,选择两个公司一样合算,当时,选择甲公司比较合算
    【解析】
    (1)根据甲公司的方案分别求出不超过200张和超过200张的不等式即可得出甲的解析式,设乙的解析式为y=kx,根据图像,把(200,1600)代入即可得出乙的解析式;(2)先求出收费相同时的张数,根据解析式分别画出图象,根据图象即可得出结论.
    【详解】
    (1)当0≤x≤200时,甲公司的收费为y=5x+1000,
    当x>200时,甲公司的收费为y=1000+5×200+3(x-200)=3x+1400,
    ∴甲公司的收费y(元)与印刷数量x之间的关系式为y=,
    根据图像设乙公司的收费y(元)与印刷数量x之间的关系式为y=kx,
    根据图像可知函数图像经过点(200,1600),
    ∴1600=200k,
    解得k=8,
    ∴乙公司的收费y(元)与印刷数量x之间的关系式为y=8x.
    (2)当0≤x≤200时,5x+1000=8x,解得x=,(舍去)
    当x>200时,3x+1400=8x,解得x=280,
    ∴当印刷数量为280张时,甲、乙公司的收费相同,
    由(1)得到的关系式可画函数图象如下:
    根据图像可知,当0≤x≤280时,选择乙公司比较合算,当时,选择两个公司一样合算,当时,选择甲公司比较合算
    本题考查一次函数图象和应用,根据求出的关系式画出函数图象,并从图象上获取信息是解题关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    平移的距离为线段BE的长求出BE即可解决问题;
    【详解】
    ∵BC=EF=5,EC=3,
    ∴BE=1,
    ∴平移距离是1,
    故答案为:1.
    本题考查平移的性质,解题的关键是理解题意,灵活运用所学知识解决问题.
    20、(5,1),(−1)
    【解析】
    当P位于线段OA上时,显然△PFB不可能是直角三角形;由于∠BPF<∠CPF=90°,所以P不可能是直角顶点,可分两种情况进行讨论:
    ①F为直角顶点,过F作FD⊥x轴于D,BP=6-t,DP=1OC=4,在Rt△OCP中,OP=t-1,由勾股定理易求得CP=t1-1t+5,那么PF1=(1CP)1=4(t1-1t+5);在Rt△PFB中,FD⊥PB,由射影定理可求得PB=PF1÷PD=t1-1t+5,而PB的另一个表达式为:PB=6-t,联立两式可得t1-1t+5=6-t,即t= ;
    ②B为直角顶点,得到△PFB∽△CPO,且相似比为1,那么BP=1OC=4,即OP=OB-BP=1,此时t=1.
    【详解】
    解:能;
    ①若F为直角顶点,过F作FD⊥x轴于D,则BP=6-t,DP=1OC=4,
    在Rt△OCP中,OP=t-1,
    由勾股定理易求得CP1=t1-1t+5,那
    么PF1=(1CP)1=4(t1-1t+5);
    在Rt△PFB中,FD⊥PB,
    由射影定理可求得PB=PF1÷PD=t1-1t+5,
    而PB的另一个表达式为:PB=6-t,
    联立两式可得t1-1t+5=6-t,即t=,
    P点坐标为(,0),
    则F点坐标为:( −1);
    ②B为直角顶点,得到△PFB∽△CPO,且相似比为1,
    那么BP=1OC=4,即OP=OB-BP=1,此时t=1,
    P点坐标为(1,0).FD=1(t-1)=1,
    则F点坐标为(5,1).
    故答案是:(5,1),(−1).
    此题考查直角三角形的判定、相似三角形的判定和性质,解题关键在于求有关动点问题时要注意分析题意分情况讨论结果.
    21、45
    【解析】
    根据三角形中位线定理易证△FPE是等腰三角形,然后根据平行线的性质和三角形外角的性质求出∠FPE =90°即可.
    【详解】
    解:∵是的中点,、分别是、的中点,
    ∴EP∥AD,EP=AD,FP∥BC,FP=BC,
    ∵AD=BC,
    ∴EP=FP,
    ∴△FPE是等腰三角形,
    ∵,
    ∴∠PEB+∠ABD+∠DBC=90°,
    ∴∠FPE=∠DPE+∠DPF=∠PEB+∠ABD+∠DBC=90°,
    ∴,
    故答案为:45.
    本题考查了三角形中位线定理,等腰三角形的判定和性质,平行线的性质以及三角形外角的性质,根据三角形中位线定理证得△FPE是等腰三角形是解题关键.
    22、甲
    【解析】
    根据方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    【详解】
    ∵,,
    ∴s甲2<s乙2,
    ∴甲班成绩较为稳定,
    故答案为:甲.
    本题考查方差的定义与意义:它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    23、
    【解析】
    根据二次根式有意义的条件列出不等式,解不等式即可.
    【详解】
    解:由题意得,x﹣1≥0,
    解得:x≥1
    故答案为:x≥1.
    本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)见解析;(2)见解析;(3)四边形FGMN是矩形,见解析
    【解析】
    (1)由“SAS”可证△ABF≌△DCE,可得∠ABF=∠DCE,可得结论;
    (2)通过证明四边形FGMN是平行四边形,可得MG=NF;
    (3)过点N作NH⊥MC于点H,由等腰三角形的性质可证∠BMG=∠MNH,可证∠GMN=90°,即可得四边形FGMN是矩形.
    【详解】
    证明:(1)∵四边形ABCD是矩形
    ∴AB=CD,∠A=∠D=90°,且AF=DE
    ∴△ABF≌△DCE(SAS)
    ∴∠ABF=∠DCE,且∠ABC=∠DCB=90°
    ∴∠FBC=∠ECB
    (2)∵FG=MN=CN
    ∴∠NMC=∠NCM
    ∴∠NMC=∠FBC
    ∴MN∥BF,且FG=MN
    ∴四边形FGMN是平行四边形
    ∴MG=NF
    (3)四边形FGMN是矩形
    理由如下:
    如图,过点N作NH⊥MC于点H,

    ∵MN=NC,NH⊥MC
    ∴∠MNH=∠CNH=∠MNC,NH⊥MC
    ∴∠MNH+∠NMH=90°
    ∵∠MNC=2∠BMG,∠MNH=∠CNH=∠MNC
    ∴∠BMG=∠MNH,
    ∴∠BMG+∠NMH=90°
    ∴∠GMN=90°
    ∴四边形FGMN是矩形
    本题考查了矩形的性质和判定,全等三角形的判定和性质,平行四边形的判定,证明∠BMG=∠MNH是本题的关键.
    25、 (1)见解析;(2)见解析;(3) .
    【解析】
    分析:(1)先证明四边形ABCD是平行四边形,然后证明它是菱形即可.
    (2)由(1)已知四边形ABCD是菱形,所以当△ABD是直角三角形时,四边形ABCD是正方形.
    (3)将线段AC顺时针方向旋转60°得到线段CE,并连接AE,点到直线的距离垂线段最短,所以AP1垂直CE时,AP1取最小值,点P1在E点,AP1取最大值,即可求解.
    详解:证明:(1) AB=AD,CB=CD,∴∠ABD=∠ADB,∠CBD=∠CDB,
    ∵AB∥CD,∴∠ABD=∠CDB,∴∠ADB=∠CBD,
    ∴AD∥BC,∴四边形ABCD是平行四边形.
    又∵AB=AD,∴四边形ABCD是菱形.
    (2)要使四边形ABCD是正方形,则∠A=∠ABC=∠C=∠ADC=90°,
    ∴当△ABD是直角三角形时,即∠BAD=90°时,四边形ABCD是正方形;
    (3)以点C为中心,将线段AC顺时针方向旋转60°得到线段CE,由题意可知,点P1在线段CE上运动.
    连接AE,
    ∵AC=CE,∠ACE=60°,∴△ACE为等边三角形,
    ∴AC=CE=AE=8,过点A作于点F,
    ∴.当点P1在点F时,线段AP1最短,此时;.
    当点P1在点E时,线段AP1最长,此时AP1=8,
    ..
    点睛:本题主要考查了菱形的判定和正方形的判定,结合题意认真分析是解题的关键.
    26、(1)0.6,2.4;(2)4.8米
    【解析】
    (1)甲乙相遇即图象交点(0.6,2.4)
    (2)根据图象解出两条直线的解析式,再由题意得到乙车行驶1.2(分)时与B处的距离.
    【详解】
    (1)甲乙相遇即图象交点(0.6,2.4)
    ∴出发0.6(分)后,甲车与乙车相遇,此时两车距离B处2.4(米);
    故答案为0.6和2.4
    (2)假设直线l2的解析式为y=kx,将点(0.6,2.4)代入得,y=4x
    当x=1.2时,y=4.8
    ∴乙车行驶12(分)时与B处距离为4.8米.
    本题主要考查一次函数的应用,熟练掌握一次函数是解答本题的关键.
    题号





    总分
    得分

    相关试卷

    安徽省蚌埠市固镇县2024-2025学年数学九上开学教学质量检测模拟试题【含答案】:

    这是一份安徽省蚌埠市固镇县2024-2025学年数学九上开学教学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年西双版纳市重点中学九上数学开学检测模拟试题【含答案】:

    这是一份2024-2025学年西双版纳市重点中学九上数学开学检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年娄底市重点中学数学九上开学教学质量检测模拟试题【含答案】:

    这是一份2024-2025学年娄底市重点中学数学九上开学教学质量检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map