安徽省合肥庐江县联考2025届九上数学开学教学质量检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)根据图1所示的程序,得到了如图y与x的函数图像,若点M是y轴正半轴上任意一点,过点M作PQ∥x轴交图像于点P、Q,连接OP、OQ.则以下结论:①x<0 时,y=;②△OPQ的面积为定值;③x>0时,y随x的增大而增大;④MQ=2PM⑤∠POQ可以等于90°.其中正确结论序号是( )
A.①②③B.②③④C.③④⑤D.②④⑤
2、(4分)将五个边长都为 2 的正方形按如图所示摆放,点 分别是四个正方形的中心,则图中四块阴影面积的和为( )
A.2B.4C.6D.8
3、(4分)边长为a,b的长方形,它的周长为14,面积为10,则ab+ab的值为( )
A.35B.70C.140D.280
4、(4分)如图,已知△ABC为直角三角形,∠B=90°,若沿图中虚线剪去∠B,则∠1+∠2=( )
A.90°B.135°C.270°D.315°
5、(4分)如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,……,照这样走下去,他第一次回到出发地A点时,一共走的路程是( )
A.140米B.150米C.160米D.240米
6、(4分)已知点都在反比例函数图象上,则的大小关系( )
A..B.
C.D.
7、(4分)某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:
那么20名学生决赛成绩的众数和中位数分别是( )
A.85,90B.85,87.5C.90,85D.95,90
8、(4分)如图所示,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子顶端B到地面距离为7m,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于4m,同时梯子的顶端B下降至B′,那么BB′的长为( )
A.等于1mB.大于1mC.小于1mD.以上答案都不对
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)化简:_______.
10、(4分)函数自变量的取值范围是 _______________ .
11、(4分)在Rt△ABC中,∠C=90°,AC=3,BC=1.作一边的垂直平分线交另一边于点D,则CD的长是______.
12、(4分)若,则的取值范围是_________.
13、(4分)如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图1是一个长时间没有使用的弹簧测力计,经刻度盘,指针,吊环,挂钩等个部件都齐全,但小明还是对其准确程度表示怀疑,于是他利用数学知识对这个弹簧测力计进行检验。下表是他记录的数据的一部分:
在整理数据的过程中,他发现在所挂物体的质量不超过1㎏时,弹簧的长度与弹簧所挂物体的质量之间存在着函数关系,于是弹簧所挂物体的质量x㎏,弹簧的长度为ycm。
(1)请你利用如图2的坐标系,描点并画出函数的大致图象。
(2)根据函数图象,猜想y与x之间是怎样的函数,求出对应的函数解析式。
(3)你认为该测力计是否可以正常使用,如果可以,请你求出所挂物体的质量为1㎏时,弹簧的长度;如果不可以,请说明理由。
15、(8分)某商场欲购进果汁饮料和碳酸饮料共60箱,两种饮料每箱的进价和售价如下表所示。设购进果汁饮料x箱(x为正整数),且所购进的两种饮料能全部卖出,获得的总利润为W元(注:总利润=总售价-总进价)。
(1)设商场购进碳酸饮料y箱,直接写出y与x的函数解析式;
(2)求总利润w关于x的函数解析式;
(3)如果购进两种饮料的总费用不超过2100元,那么该商场如何进货才能获利最多?并求出最大利润。
16、(8分)甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过1元后,超出1元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x元,其中x>1.
(1)根据题题意,填写下表(单位:元)
(2)当x取何值时,小红在甲、乙两商场的实际花费相同?
(3)当小红在同一商场累计购物超过1元时,在哪家商场的实际花费少?
17、(10分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.
(1)求每台A型电脑和B型电脑的销售利润;
(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.
①求y关于x的函数关系式;
②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?最大利润是多少?
18、(10分)如图,正方形ABCD中,点E在BC边上,AF平分∠DAE,DF//AE,AF与CD相交于点G.
(1)如图1,当∠AEC = ,AE=4时,求FG的长;
(2)如图2,在AB边上截取点H,使得DH=AE,DH与AF、AE分别交于点M、N,求证:AE=AH+DG
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)______.
20、(4分)若关于的方程的解为正数,则的取值范围是__________.
21、(4分)如图,函数()和()的图象相交于点,则不等式的解集为_________.
22、(4分)要使二次根式有意义,则的取值范围是________.
23、(4分)因式分解:= .
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,△ABC中,AB=10,BC=6,AC=8.
(1)求证:△ABC是直角三角形;
(2)若D是AC的中点,求BD的长.(结果保留根号)
25、(10分)如图,直线l的解析式为y=-x+,与x轴,y轴分别交于A,B两点,双曲线与直线l交于E,F两点,点E的横坐标为1.
(1)求k的值及F点的坐标;
(2)连接OE,OF,求△EOF的面积;
(3)若点P是EF下方双曲线上的动点(不与E,F重合),过点P作x轴,y轴的垂线,分别交直线l于点M,N,求的值.
26、(12分)如图,在直角坐标系中,已知直线与轴相交于点,与轴交于点.
(1)求的值及的面积;
(2)点在轴上,若是以为腰的等腰三角形,直接写出点的坐标;
(3)点在轴上,若点是直线上的一个动点,当的面积与的面积相等时,求点的坐标.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据题意得到当x<0时,y=- ,当x>0时,y=,设P(a,b),Q(c,d),求出ab=-2,cd=4,求出△OPQ的面积是3;x>0时,y随x的增大而减小;由ab=-2,cd=4得到MQ=2PM;因为∠POQ=90°也行,根据结论即可判断答案.
【详解】
解:①x<0,y=-,∴①错误;
②当x<0时,y=-,当x>0时,y=,
设P(a,b),Q(c,d),
则ab=-2,cd=4,
∴△OPQ的面积是(-a)b+cd=3,∴②正确;
③x>0时,y随x的增大而减小,∴③错误;
④∵ab=-2,cd=4,即MQ=2PM,∴④正确;
⑤设PM=a,则OM=-.则PO2=PM2+OM2=a2+(-)2=a2+,
QO2=MQ2+OM2=(2a)2+(-)2=4a2+,
PQ2=PO2+QO2=a2++4a2+=(3a)2=9a2,
整理得a4=2,
∵a有解,∴∠POQ=90°可能存在,故⑤正确;
正确的有②④⑤,
故选D.
本题主要考查对反比例函数的性质,反比例函数图象上点的坐标特征,三角形的面积等知识点的理解和掌握,能根据这些性质进行说理是解此题的关键.
2、B
【解析】
连接AP、AN,点A是正方形的对角线的交点,则AP=AN,∠APF=∠ANE=45°,易得PAF≌△NAE,进而可得四边形AENF的面积等于△NAP的面积,同理可得答案.
【详解】
解:如图,连接AP,AN,点A是正方形的对角线的交
则AP=AN,∠APF=∠ANE=45°,
∵∠PAF+∠FAN=∠FAN+∠NAE=90°,
∴∠PAF=∠NAE,
∴△PAF≌△NAE,
∴四边形AENF的面积等于△NAP的面积,
而△NAP的面积是正方形的面积的,而正方形的面积为4,
∴四边形AENF的面积为1cm1,四块阴影面积的和为4cm1.
故选B.
【点评】
本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.
3、B
【解析】
∵长方形的面积为10,
∴ab=10,
∵长方形的周长为14,
∴2(a+b)=14,
∴a+b=7.
对待求值的整式进行因式分解,得
a2b+ab2=ab(a+b),
代入相应的数值,得
.
故本题应选B.
4、C
【解析】
如图,根据题意可知∠1=90°+∠BNM,∠2=90°+∠BMN,然后结合三角形内角和定理即可推出∠1+∠2的度数.
【详解】
解:∵△ABC为直角三角形,∠B=90°
∴∠1=90°+∠BNM,∠2=90°+∠BMN,∠BMN +∠BNM=90°,
∴∠1+∠2=270°.
故选C.
本题考查三角形的外角性质、三角形内角和定理,直角三角形的性质,解题的关键在于求证∠1=90°+∠BNM,∠2=90°+∠BMN.
5、B
【解析】
由题意可知小华走出了一个正多边形,根据正多边形的外角和公式可求解.
【详解】
已知多边形的外角和为360°,而每一个外角为24°,可得多边形的边数为360°÷24°=15,所以小明一共走了:15×10=150米.故答案选B.
本题考查多边形内角与外角,熟记公式是关键.
6、B
【解析】
根据反比例函数图象的性质:当k>0时,图象分别位于第一、三象限,每一个象限内,从左往右,y随x的增大而减小判断求解即可.
【详解】
解:∵中,,
∴图象分别位于第一、三象限,每一个象限内,从左往右,y随x的增大而减小,
∵点A、B位于第一象限,且,
∴,
∵点C位于第三象限,
∴
∴的大小关系是:
故选:B.
本题考查的知识点是反比例函数的性质,掌握反比例函数的图象和性质是解此题的关键.
7、B
【解析】
试题解析:85分的有8人,人数最多,故众数为85分;
处于中间位置的数为第10、11两个数,
为85分,90分,中位数为87.5分.
故选B.
考点:1.众数;2.中位数
8、C
【解析】
由题意可知OA=2,OB=7,先利用勾股定理求出AB,梯子移动过程中长短不变,所以AB=A′B′,又由题意可知OA′=3,利用勾股定理分别求OB′长,把其相减得解.
【详解】
在直角三角形AOB中,
∵OA=2,OB=7
∴AB=(m),
由题意可知AB=A′B′=(m),
又∵OA′=4,根据勾股定理得:OB′=(m),
∴BB′=7﹣<1.
故选C.
本题考查了勾股定理的应用,属于基础题,解答本题的关键是掌握勾股定理的表达式.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
将原式通分,再加减即可
【详解】
= =
故答案为:
此题考查分式的化简求值,解题关键在于掌握运算法则
10、x>-3
【解析】
根据题意得:x+3>0,即x>-3.
11、或
【解析】
分两种情况:①当作斜边AB的垂直平分线PQ,与BC交于点D时,连接AD由PQ垂直平分线段AB,推出DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,根据AD2=AC2+CD2构建方程即可解决问题;②当作直角边的垂直平分线PQ,与斜边AB交于点D时,连接CD,根据直角三角形斜边上的中线性质求得CD.
【详解】
解:当作斜边AB的垂直平分线PQ,与BC交于点D时,连接AD.
∵PQ垂直平分线段AB,
∴DA=DB,设DA=DB=x,
在Rt△ACD中,∠C=90°,AD2=AC2+CD2,
∴x2=32+(1-x)2,
解得x=,
∴CD=BC-DB=1-=;
当作直角边的垂直平分线PQ或P′Q′,都与斜边AB交于点D时,连接CD,
则D是AB的中点,
∴CD=AB=,
综上可知,CD=或.
故答案为:或.
本题考查基本作图,线段的垂直平分线的性质,勾股定理等知识,直角三角形斜边上的中线等于斜边的一半,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.
12、a≤3
【解析】
根据算术平方根的非负性,可以得到3-a≥0,即可求得a得取值范围.
【详解】
解:由表示算术平方根具有非负性,则3-a≥0,即a≤3.
本题考查算平方根的性质,正确、灵活运用算术平方根的非负性是解答本题的关键.
13、x>1.
【解析】
∵直线y=x+b与直线y=kx+6交于点P(1,5),
∴由图象可得,当x>1时,x+b>kx+6,
即不等式x+b>kx+6的解集为x>1.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
三、解答题(本大题共5个小题,共48分)
14、 (1)见解析;(2);(3)弹簧所挂物体的质量为1㎏时,弹簧的长度为17cm,理由见解析
【解析】
(1)根据表格中的数据即可画出图象;(2)先设出一次函数关系式,再由表格中任取两对数代入即可;(3)计算后只要不超过弹簧的最大限度1㎏就可以.
【详解】
(1)如图所示
(2)y与x之间是一次函数关系
对应的解析式为(k≠0)
由于点(0,12),(0.1,12.5)都在函数的图象上
解得:
∴
经检验(0.2,12),(0.3,13.5),(0.4,14)均满足
(3)可以正常使用,但不能超过弹簧的最大限度(不超过1㎏)
当x=1时,y=17
∴弹簧所挂物体的质量为1㎏时,弹簧的长度为17cm。
本题考查了一元函数的应用,解题时从实际问题中整理出函数模型并利用函数的知识解决实际问题.
15、(1)y=60-x;(2)w=5x+420;(3)该商场购进两种饮料分别为40箱和20箱时,能获得最大利润620元.
【解析】
(1)根据购进果汁饮料和碳酸饮料共60箱即可求解;
(2)根据总利润=每个的利润数量就可以表示出w与x之间的关系式;
(3)由题意得40x+25(60-x)≤2100,解得x的值,然后可求y值,根据一次函数的性质可以求出进货方案及最大利润.
【详解】
(1)y与x的函数解析式为y=60-x.
(2)总利润w关于x的函数解析式为
w=(52-40)x+(32-25)(60-x)=5x+420.
(3)由题意得40x+25(60-x)≤2100,解得x≤40,
∵y=5x+420,y随x的增大而增大,
∴当x=40时,y最大值=5×40+420=620(元),
此时购进碳酸饮料60-40=20(箱).
∴该商场购进两种饮料分别为40箱和20箱时,能获得最大利润620元.
本题考查了一次函数的实际运用,由销售问题的数量关系求出函数的解析式,列一元一次不等式解实际问题的运用,一次函数的性质的运用,解答时求出函数的解析式是关键.
16、(1)表格见解析;(2)120;(3)当小红累计购物大于120时上没封顶,选择甲商场实际花费少;当小红累计购物超过1元而不到120元时,在乙商场实际花费少.
【解析】
(1)根据已知得出:
在甲商场:1+(290-1)×0.9=271,1+(290-1)×0.9x=0.9x+10;
在乙商场:20+(290-20)×0.92=278,20+(290-20)×0.92x=0.92x+2.2.
(2)根据题中已知条件,求出0.92x+2.2,0.9x+10相等,从而得出正确结论.
(3)根据0.92x+2.2与0.9x+10相比较,从而得出正确结论.
【详解】
解:(1)填表如下:
(2)根据题意得:0.9x+10=0.92x+2.2,
解得:x=120.
答:当x=120时,小红在甲、乙两商场的实际花费相同.
(3)由0.9x+10<0.92x+2.2解得:x>120,
由0.9x+10>0.92x+2.2,解得:x<120,
∴当小红累计购物大于120时上没封顶,选择甲商场实际花费少;
当小红累计购物超过1元而不到120元时,在乙商场实际花费少.
17、(1)A型:100元,B型:150元;(2)①y=-50x+15000;②34台A型电脑和66台B型,利润最大,最大利润是1元
【解析】
(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;然后根据销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元列出方程组,然后求解即可;
(2)①根据总利润等于两种电脑的利润之和列式整理即可得解;
②根据B型电脑的进货量不超过A型电脑的2倍列不等式求出x的取值范围,然后根据一次函数的增减性求出利润的最大值即可.
【详解】
解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;
根据题意得,
解得.
答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元;
(2)①根据题意得,y=100x+150(100-x),
即y=-50x+15000;
②据题意得,100-x≤2x,
解得x≥33,
∵y=-50x+15000,
∴y随x的增大而减小,
∵x为正整数,
∴当x=34时,y取最大值,则100-x=66,
此时最大利润是y=-50×34+15000=1.
即商店购进34台A型电脑和66台B型电脑的销售利润最大,最大利润是1元.
本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,读懂题目信息,准确找出等量关系列出方程组是解题的关键,利用一次函数的增减性求最值是常用的方法,需熟练掌握.
18、(1)FG=2;(2)见解析.
【解析】
(1)根据正方形的性质,平行线的性质,角平分线的性质可得出∠DAF=∠F=30°,进一步可求得∠GDF=∠F=30°,从而得出FG=DG,利用勾股定理可求出DG=2,故FG=2.
(2)根据已知条件可证得AE=DH且AE⊥DH,从而证得∠MAH=∠AMH,∠DMG=∠DGM,从而证得AH=MH,DM=DG,而AE=DH=DM+MH即AE=AH+DG.
【详解】
(1)当∠AEC=120°,即∠DAE=60°,
即∠BAE=∠EAG=∠DAG=30°,
在三角形ABE中,
AE=4,
所以,BE=2,AB=2,
所以,AD=AB=2,
又DF∥AE,所以,∠F=∠EAG=30°,
所以,∠F=∠DAG=30°,
又所以,∠AGD=60°,所以,∠CDG=30°,
所以 FG=DG
在△ADG中,AD=2,所以,DG=2,FG=2
(2)证明:∵四边形ABCD为正方形,
∴∠DAH=∠ABE=90°,AD=AB,
在Rt△ADH和Rt△BAE中
∴Rt△ADH≌Rt△BAE,
∴∠ADH=∠BAE,
∵∠BAE+∠DAE=90°,
∴∠ADH+∠DAE=90°,
∴∠AND=90°.
∵AF平分∠DAE,
∴∠DAG=∠EAG,
∵∠ADH=∠BAE,
∴∠DAG+∠ADH=∠EAG+∠BAE.
即∠MAH=∠AMH.
∴AH=MH.
∵AE∥DF,
∴∠MDF=∠AND=90°,∠DAF=∠F
∴∠GDF=∠ADM,
∴∠ADM+∠DAF=∠GDF+∠F,
即∠DMG=∠DGM.
∴DM=DG.
∵DH=DM+HM,
∴AE=AH+DG.
本题考查正方形的性质、全等三角形的判定和性质、角平分线的性质、平行线的性质、三角形的外角的性质等腰三角形的判定,线段的各差关系。正确理解和运用相关知识是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
利用平方差公式即可计算.
【详解】
原式.
故答案为:1.
本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.
20、且
【解析】
首先去分母化成整式方程,求得x的值,然后根据方程的解大于0,且x-1≠0即可求得m的范围.
【详解】
解:去分母,得1x+m=3(x-1),
去括号,得1x+m=3x-3,
解得:x=m+3,
根据题意得:m+3-1≠0且m+3>0,
解得:m>-3且m≠-1.
故答案是:m>-3且m≠-1.
本题考查了分式方程的解,注意:忽视x-1≠0是本题的易错点.
21、
【解析】
写出直线在直线下方部分的的取值范围即可.
【详解】
解:由图可知,不等式的解集为;
故答案为:.
本题考查了一次函数与一元一次不等式,此类题目,利用数形结合的思想求解是解题的关键.
22、x≥1
【解析】
根据二次根式被开方数为非负数进行求解.
【详解】
由题意知,,
解得,x≥1,
故答案为:x≥1.
本题考查二次根式有意义的条件,二次根式中的被开方数是非负数.
23、
【解析】
直接应用平方差公式即可求解..
【详解】
.
本题考查因式分解,熟记平方差公式是关键.
二、解答题(本大题共3个小题,共30分)
24、 (1)见解析;(2)2.
【解析】
分析:(1)直接根据勾股定理逆定理判断即可;
(2)先由D是AC的中点求出CD的长,然后利用勾股定理求BD的长即可.
详解:(1)∵AB2=100, BC2=36, AC2=64,
∴AB2=BC2+AC2,
∴△ABC是直角三角形.
(2)CD=4,在Rt△BCD中,
BD=.
点睛:本题考查了勾股定理及其逆定理的应用,勾股定理是:直角三角形两条直角边的平方和等于斜边的平方;勾股定理逆定理是:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.
25、(1);(2);(3)
【解析】
(1)求出点E纵坐标,把点E坐标代入反比例函数解析式中即可求出k的值,再联立方程组求出点F的坐标;
(2)运用“割补法”,根据求解即可;
【详解】
(1)设点的坐标为(1,a),代入y= y=-x+得,a=2,
∴,
把代入得,
∴
联立方程组得,解得,
∴
(2)分别过点、做轴的垂线段、,如图,
令y=0,则,解得x=7,令x=0,则y=
∴,,
又,,
∵
=
=
=
(3)如图,
设,则有
则,,,
∴,
∴
本题主要考查反比例函数的综合题,解答本题的关键是熟练掌握反比例函数的性质以及运用“割补法”求三角形的面积.
26、(1)K=- ,的面积=3;(2)(2,0)或(2-)或C3(-2,0);(3)(4,-3)或(-4,9).
【解析】
①将代入直线可得K=- ,的面积=OB·OA==3.
②如详解图,分类讨论c1,c2,求坐标.
③如详解图,分类讨论p1,p2,求坐标.
【详解】
(1)将代入直线可得K=- ,点B坐标为(3,0),的面积=OB·OA·=2·3·=3.
②已知△ABC为等腰三角形,则AB=AC.可求出AB长为,以A为圆心,AB为半径画弧,与x轴交点有2个,易得C点坐标为C1(2,0)或C2(2-).
以B为圆心,BA为半径画弧与x轴交点有一个,坐标为C3(-2,0)
③设P点坐标为(x,)
∵S△BAM=,∴P点在线段AB外.
若P在线段BA延长线上时,S△PBM=S△BAM+S△PAM
=
=
=3,x=4.
所以P坐标为(4,-3),
若P在线段AB延长线上,S△PBM=S△PAM-S△BAM=﹣
若﹣=3,x=-4,则P点为(-4,9).
本题主要考察对称与函数方程的综合运用,能够根据图像求相关数据与方程是解题关键.
题号
一
二
三
四
五
总分
得分
批阅人
决赛成绩/分
95
90
85
80
人数
4
6
8
2
弹簧所挂物体的质量(单位:㎏)
0
0.1
0.2
0.3
0.4
弹簧的长度(单位cm)
12
12.5
13
13.5
14
饮料
果汁饮料
碳酸饮料
进价(元/箱)
40
25
售价(元/箱)
52
32
累计购物实际花费
130
290
…
x
在甲商场
127
…
在乙商场
126
…
累计购物实际花费
130
290
…
x
在甲商场
127
271
…
0.9x+10
在乙商场
126
278
…
0.92x+2.2
安徽省合肥市46中学2024年九上数学开学教学质量检测模拟试题【含答案】: 这是一份安徽省合肥市46中学2024年九上数学开学教学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届庐江县数学九上开学检测试题【含答案】: 这是一份2025届庐江县数学九上开学检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届安徽省合肥市名校联考九上数学开学教学质量检测试题【含答案】: 这是一份2025届安徽省合肥市名校联考九上数学开学教学质量检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。