


安徽省十学校2025届九上数学开学学业水平测试模拟试题【含答案】
展开这是一份安徽省十学校2025届九上数学开学学业水平测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)有100个数据,落在某一小组内的频数与总数之比是0.4,那么在这100个数据中,落在这一小组内的数据的频数是( )
A.100 B.40 C.20 D.4
2、(4分)甲、乙两同学同时从学校出发,步行10千米到某博物馆,已知甲每小时比乙多走1千米,结果乙比甲晚20分钟,设乙每小时走x千米,则所列方程正确的是()
A.B.C.D.
3、(4分)下列事件中,属于必然事件的是( )
A.某校初二年级共有480人,则至少有两人的生日是同一天
B.经过路口,恰好遇到红灯
C.打开电视,正在播放动画片
D.抛一枚硬币,正面朝上
4、(4分)下列各组数据中的三个数,可作为三边长构成直角三角形的是( )
A.1、2、3 B. C. D.
5、(4分)如图,在ABCD中,∠A=130°,则∠C-∠B的度数为( )
A.90°B.80°C.70°D.60°
6、(4分)下列运算正确的是( ).
A.B.
C.D.
7、(4分)为考察甲、乙、丙三种小麦的长势,在同一时期分别从中随机抽取部分麦苗,计算后得到苗高(单位:cm)的方差为,,,则麦苗高度最整齐的是( )
A.甲B.乙C.丙D.都一样
8、(4分)如图,在中,已知,,平分交边于点,则边的长等于( )
A.4cmB.6cmC.8cmD.12cm
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=20°,则∠2=_____.
10、(4分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,P为AB边上(不与A、B重合的一动点,过点P分别作PE⊥AC于点E,PF⊥BC于点F,则线段EF的最小值是_____.
11、(4分)如图,在中,,,的面积是,边的垂直平分线分别交,边于点,.若点为边的中点,点为线段上一动点,则周长的最小值为__________.
12、(4分)已知反比例函数,若,且,则的取值范围是_____.
13、(4分)若,化简的正确结果是________________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.
(1)若∠A=40°,求∠DBC的度数;
(2)若AE=6,△CBD的周长为20,求△ABC的周长.
15、(8分)已知关于的方程有两个实数根.
(1)求实数的取值范围;
(2)若为正整数,方程的根为.求:的值.
16、(8分)如图,在正方形ABCD中,AB=6,点E在边CD上,且CE=2DE,将△ADE沿AE对折得到△AFE,延长EF交边BC于点G,连结AG、CF.
(1)求证:△ABG≌△AFG;
(2)判断BG与CG的数量关系,并证明你的结论;
(3)作FH⊥CG于点H,求GH的长.
17、(10分)某年5月,我国南方某省A、B两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区. 已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市. 已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用分别为每吨15元和30元,设从C市运往B市的救灾物资为x吨.
(1)请填写下表;
(2)设C、D两市的总运费为W元,求W与x之间的函数关系式,并写出自变量x的取值范围;
(3)经过抢修,从C市到B市的路况得到了改善,缩短了运输时间,运费每吨减少n元(n>0),其余路线运费不变,若C、D两市的总运费的最小值不小于10080元,求n的取值范围.
18、(10分)在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根
据调查结果绘制的两幅不完整的统计图.
请你根据统计图提供的信息,解答下列问题:
(1)本次调查中,一共调查了 名同学;
(2)条形统计图中,m= ,n= ;
(3)扇形统计图中,艺术类读物所在扇形的圆心角是 度;
(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)当________时,方程无解.
20、(4分)如图,在中,,,,为的中点,则______.
21、(4分)如图,正方形ABCD的顶点B,C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过顶点A(m,2)和CD边上的点E(n,),过点E的直线l交x轴于点F,交y轴于点G(0,-2),则点F的坐标是
22、(4分)请写出一个比2小的无理数是___.
23、(4分)观察分析下列数据:,则第17个数据是 _______ .
二、解答题(本大题共3个小题,共30分)
24、(8分)已知:如图,一次函数与的图象相交于点.
(1)求点的坐标;
(2)结合图象,直接写出时的取值范围.
25、(10分)如图1,在正方形ABCD中,点E、F分别是边BC、AB上的点,且CE=BF.连结DE,过点E作EG⊥DE,使EG=DE,连结FG、FC
(1)请判断:FG与CE的数量关系是 ________,位置关系是________ 。
(2)如图2,若点E、F分别是边CB、BA延长线上的点,其他条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;
(3)如图3,若点E、F分别是边BC、AB延长线上的点,其他条件不变,(1)中结论是否仍然成立?请直接写出你的判断。
26、(12分)如图,梯形ABCD中,AD∥BC,点M是BC的中点,且MA=MD.
求证:四边形ABCD是等腰梯形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据频率、频数的关系:频率=频数÷数据总数,可得频数=频率×数据总数.
【详解】
∵一个有100个数据的样本,落在某一小组内的频率是0.4,∴在这100个数据中,落在这一小组内的频数是:100×0.4=1.
故选B.
本题考查了频率、频数与数据总数的关系:频数=频率×数据总数.
2、D
【解析】
根据题意,等量关系为乙走的时间-=甲走的时间,根据等量关系式列写方程.
【详解】
20min=h
根据等量关系式,方程为:
故选:D
本题考查列写分式方程,注意题干中的单位不统一,需要先换算单位.
3、A
【解析】A. 某校初二年级共有480人,则至少有两人的生日是同一天;属于必然事件;
B. 经过路口,恰好遇到红灯;属于随机事件;
C. 打开电视,正在播放动画片;属于随机事件;
D. 抛一枚硬币,正面朝上;属于随机事件。
故选A.
4、C
【解析】试题解析:A、∵12+22=5≠32,
∴以这三个数为长度的线段不能构成直角三角形,故选项错误;
B、∵(32)2+(42)2≠(52)2 ,
∴以这三个数为长度的线段不能构成直角三角形,故选项错误;
C、∵()2+()2=3=()2,
∴以这三个数为长度的线段,能构成直角三角形,故选项正确;
D、∵()2+()2=7≠()2,
∴以这三个数为长度的线段不能构成直角三角形,故选项错误.
故选C.
【点睛】本题主要考查了勾股定理的逆定理,已知三条线段的长,判断是否能构成直角三角形的三边,判断的方法是:判断两个较小的数的平方和是否等于最大数的平方即可判断.
5、B
【解析】
根据平行四边形的性质求出∠B和∠C的度数,即可得到结论.
【详解】
解:∵四边形ABCD是平行四边形,AD∥BC,则∠B=180°-∠A=180°-130°=50°.
又∵∠C=∠A=130°,∴故∠C-∠B=130°-50°=80°.
故选B.
本题考查了平行四边形的性质.熟练掌握平行四边形的性质是解答本题的关键.
6、C
【解析】
根据二次根式的性质和法则逐一计算即可判断.
【详解】
A. 是同类二次根式,不能合并,此选项错误;
B. =18,此选项错误;
C. ,此选项正确;
D.,此选项错误;
故选:C
本题考查二次根式的混合运算,熟练掌握计算法则是解题关键.
7、B
【解析】
根据方差的定义,方差越小数据越稳定.由此即可解答.
【详解】
∵,,,
∴S丙2>S甲2>S乙2,方差最小的为乙,
∴麦苗高度最整齐的是乙.
故选B.
本题考查了方差的应用,方差是用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)的统计量. 在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.
8、A
【解析】
首先根据平行四边形的性质,得出,,,进而得出∠DAE=∠AEB,然后得出∠BAE=∠AEB,根据等腰三角形的性质,即可得解.
【详解】
∵平行四边形ABCD
∴,,
∴∠DAE=∠AEB
又∵平分
∴∠BAE=∠DAE
∴∠BAE=∠AEB
∴AB=BE
又∵,,
∴CD=4 cm
故答案为A.
此题主要考查平行四边形和等腰三角形的性质,熟练掌握,即可解题.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、110°
【解析】
已知∠1=20°,可求得∠3=90°-20°=70°,再由矩形的对边平行,根据两直线平行,同旁内角互补可得∠2+∠3=180°,即可得∠2=110°.
10、2.1.
【解析】
连接CP,利用勾股定理列式求出AB,判断出四边形CFPE是矩形,根据矩形的对角线相等可得EF=CP,再根据垂线段最短可得CP⊥AB时,线段EF的值最小,然后根据三角形的面积公式列出方程求解即可.
【详解】
解:如图,连接CP.
∵∠ACB=90°,AC=3,BC=1,
∴AB=,
∵PE⊥AC,PF⊥BC,∠ACB=90°,
∴四边形CFPE是矩形,
∴EF=CP,
由垂线段最短可得CP⊥AB时,线段EF的值最小,
此时,S△ABC=BC•AC=AB•CP,
即×1×3=×5•CP,
解得CP=2.1.
∴EF的最小值为2.1.
故答案为2.1.
11、10
【解析】
连接AD,根据等腰三角形的性质可得而AD⊥BC,根据三角形的面积求出AD的长,由EF是AC的垂直平分线可得当AD,EF交点M时,周长的最小值为AD+CD的长,故可求解.
【详解】
连接AD,∵,点为边的中点,
∴AD⊥BC,
∵,的面积是,
∴AD=16×2÷4=8,
∵EF是AC的垂直平分线,
∴点C关于直线EF的对称点为A,
∴AD的长为CM+MD的最小值,
∴周长的最小值为AD+CD=8+BC=8+2=10.
故填:10.
此题主要考查对称轴的应用,解题的关键是熟知等腰三角形的性质及垂直平分线的性质.
12、或
【解析】
利用反比例函数增减性分析得出答案.
【详解】
解:且,
时,,
在第三象限内,随的增大而减小,
;
当时,,在第一象限内,随的增大而减小,
则,
故的取值范围是:或.
故答案为:或.
此题主要考查了反比例函数图象上点的坐标特征,正确掌握反比例函数增减性是解题关键.
13、1.
【解析】
根据二次根式的性质,绝对值的性质,先化简代数式,再合并.
【详解】
解:∵2<x<3,
∴|x-2|=x-2,|3-x|=3-x,
原式=|x-2|+3-x
=x-2+3-x
=1.
故答案为:1.
本题考查二次根式的性质及绝对值的性质,能正确根据二次根式的性质进行化简是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)30°;(2)1.
【解析】
(1)由在△ABC中,AB=AC,∠A=40°,利用等腰三角形的性质,即可求得∠ABC的度数,然后由AB的垂直平分线MN交AC于点D.根据线段垂直平分线的性质,可得AD=BD,可得∠ABD的度数,即可求得∠DBC的度数.
(2)由△CBD的周长为20,可得AC+BC=20,根据AB=2AE=12,即可得出答案.
【详解】
解:(1)解:∵在△ABC中,AB=AC,∠A=40°,
∴∠ABC=∠C=70°,
∵AB的垂直平分线MN交AC于点D,
∴AD=BD,
∴∠ABD=∠A=40°,
∴∠DBC=∠ABC﹣∠ABD=30°.
(2)∵MN垂直平分AB,
∴DA=DB,AB=2AE=12,
∵BC+BD+DC=20,
∴AD+DC+BC=20,
∴AC+BC=20,
∴△ABC的周长为:AB+AC+BC=12+20=1.
此题考查了线段垂直平分线的性质以及等腰三角形的性质,掌握垂直平分线上任意一点,到线段两端点的距离相等是解题的关键..
15、(1);(2)17
【解析】
(1)根据根判别式可得;(2)因为为正整数,又,所以此时方程为,其中;
【详解】
解:(1)由解的
(2)因为为正整数,又,所以此时方程为,其中
所以
考核知识点:根判别式,根与系数关系.理解相关知识即可.
16、(1)见解析;(2)BG=CG;(3)GH=.
【解析】
(1)先计算出DE=2,EC=4,再根据折叠的性质AF=AD=6,EF=ED=2,∠AFE=∠D=90°,∠FAE=∠DAE,然后根据“HL”可证明Rt△ABG≌Rt△AFG;
(2)由全等性质得GB=GF、∠BAG=∠FAG,从而知∠GAE=∠BAD=45°、GE=GF+EF=BG+DE;设BG=x,则GF=x,CG=BC﹣BG=6﹣x,在Rt△CGE中,根据勾股定理得(6﹣x)2+42=(x+2)2,解之可得BG=CG=3;
(3)由(2)中结果得出GF=3、GE=5,证△FHG∽△ECG得=,代入计算可得.
【详解】
(1)∵正方形ABCD的边长为6,CE=2DE,
∴DE=2,EC=4,
∵把△ADE沿AE折叠使△ADE落在△AFE的位置,
∴AF=AD=6,EF=ED=2,∠AFE=∠D=90°,∠FAE=∠DAE,
在Rt△ABG和Rt△AFG中
∵ ,
∴Rt△ABG≌Rt△AFG(HL);
(2)∵Rt△ABG≌Rt△AFG,
∴GB=GF,∠BAG=∠FAG,
∴∠GAE=∠FAE+∠FAG=∠BAD=45°,
设BG=x,则GF=x,CG=BC﹣BG=6﹣x,
在Rt△CGE中,GE=x+2,EC=4,CG=6﹣x,
∵CG2+CE2=GE2,
∴(6﹣x)2+42=(x+2)2,解得x=3,
∴BG=3,CG=6﹣3=3
∴BG=CG;
(3)由(2)知BG=FG=CG=3,
∵CE=4,
∴GE=5,
∵FH⊥CG,
∴∠FHG=∠ECG=90°,
∴FH∥EC,
∴△FHG∽△ECG,
则=,即=,
解得GH=.
本题考查了四边形的综合问题,解题的关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了三角形全等的判定与性质、勾股定理和正方形的性质.
17、(1)如表见解析;(2)W=-10x+11200,; (1)
【解析】
(1)根据题意可以将表格中的空缺数据补充完整;
(2)根据题意可以求得w与x的函数关系式,并写出x的取值范围;
(1)根据题意,利用分类讨论的数学思想可以解答本题.
【详解】
(1)∵C市运往B市x吨,
∴C市运往A市(240-x)吨,D市运往B市(100-x)吨,D市运往A市260-(100-x)=(x-40)吨,
故答案为240-x、x-40、100-x;
(2)由题意可得,
w=20(240-x)+25x+15(x-40)+10(100-x)=-10x+11200,
又得40≤x≤240,
∴w=10x+11200(40≤x≤240);
(1)由题意可得,
w=20(240-x)+(25-n)x+15(x-40)+10(100-x)=-(n+10)x+11200,
∵n>0,
∴-(n+10)<0,
∴W随x的增大而减小
当x取最大值240时,W最小值=-(n+10)×240+11200≥10080,
即:-(n+10)×240+11200≥10080
解得,n≤1,
由上可得,m的取值范围是0<n≤1.
本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用函数和不等式的性质解答.
18、解:(1)1.
(2) 40;2.
(3)3.
(4)学校购买其他类读物900册比较合理.
【解析】
(1)∵从条形图得出文学类人数为:70,从扇形图得出文学类所占百分比为:35%,
∴本次调查中,一共调查了:70÷35%=1人.
(2)∵从扇形图得出科普类所占百分比为:30%,
∴科普类人数为:n=1×30%=2人, 艺术类人数为:m=1﹣70﹣30﹣2=40人.
(3)根据艺术类读物所在扇形的圆心角是:40÷1×32°=3°.
(4)根据喜欢其他类读物人数所占的百分比为 ,
则200册中其他读物的数量: (本).
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
根据分式方程无解,得到1−x= 0,求出x的值,分式方程去分母转化为整式方程,将x的值代入整式方程计算即可求出m的值.
【详解】
解:分式方程去分母得:m=2(1−x)+1,
由分式方程无解,得到1−x=0,即x=1,
代入整式方程得:m=1.
故答案为:1.
此题考查了分式方程的解,将分式方程转化为整式方程是解本题的关键.
20、
【解析】
根据勾股定理以及直角三角形斜边上的中线性质即可求出答案.
【详解】
∵∠ABC=90°,BC=4cm,AB=3cm,
∴由勾股定理可知:AC=5cm,
∵点D为AC的中点,
∴BD=AC=cm,
故答案为:
本题考查勾股定理,解题的关键是熟练运用勾股定理以及直角三角形斜边上的中线的性质,本题属于基础题型.
21、(,0).
【解析】
试题分析:∵正方形的顶点A(m,2),
∴正方形的边长为2,
∴BC=2,
而点E(n,),
∴n=2+m,即E点坐标为(2+m,),
∴k=2•m=(2+m),解得m=1,
∴E点坐标为(3,),
设直线GF的解析式为y=ax+b,
把E(3,),G(0,﹣2)代入得,
解得,
∴直线GF的解析式为y=x﹣2,
当y=0时,x﹣2=0,解得x=,
∴点F的坐标为(,0).
考点:反比例函数与一次函数的交点问题.
22、(答案不唯一).
【解析】
根据无理数的定义写出一个即可.
【详解】
解:比2小的无理数是,
故答案为:(答案不唯一).
本题考查了无理数的定义,能熟记无理数是指无限不循环小数是解此题的关键,此题是一道开放型的题目,答案不唯一.
23、
【解析】
分析:将原数变形为:1×,2×,3×,4×…,根据规律可以得到答案.
详解:将原数变形为:1×,2×,3×,4×…,所以第17个数据是:17×=51.
故答案为:51.
点睛:本题考查了算术平方根,解题的关键是将所得二次根式变形,找到规律解答.
二、解答题(本大题共3个小题,共30分)
24、(1)点A的坐标为;(2)
【解析】
(1)将两个函数的解析式联立得到方程组,解此方程组即可求出点A的坐标;
(2)根据函数图象以及点A坐标即可求解.
【详解】
解:(1)依题意得:,
解得:,
∴点A的坐标为;
(2) 由图象得,当时,的取值范围为:.
本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
25、(1)FG=CE,FG∥CE;(2)详见解析;(3)成立,理由详见解析.
【解析】
(1)构造辅助线后证明△HGE≌△CED,利用对应边相等求证四边形GHBF是矩形后,利用等量代换即可求出FG=CE,FG∥CE;
(2)构造辅助线后证明△HGE≌△CED,利用对应边相等求证四边形GHBF是矩形后,利用等量代换即可求出FG=CE,FG∥CE;
(3)证明△CBF≌△DCE,即可证明四边形CEGF是平行四边形,即可得出结论.
【详解】
(1)FG=CE,FG∥CE;理由如下:
过点G作GH⊥CB的延长线于点H,如图1所示:
则GH∥BF,∠GHE=90°,
∵EG⊥DE,
∴∠GEH+∠DEC=90°,
∵∠GEH+∠HGE=90°,
∴∠DEC=∠HGE,
在△HGE与△CED中,
,
∴△HGE≌△CED(AAS),
∴GH=CE,HE=CD,
∵CE=BF,
∴GH=BF,
∵GH∥BF,
∴四边形GHBF是矩形,
∴GF=BH,FG∥CH
∴FG∥CE,
∵四边形ABCD是正方形,
∴CD=BC,
∴HE=BC,
∴HE+EB=BC+EB,
∴BH=EC,
∴FG=EC;
(2)FG=CE,FG∥CE仍然成立;理由如下:
过点G作GH⊥CB的延长线于点H,如图2所示:
∵EG⊥DE,
∴∠GEH+∠DEC=90°,
∵∠GEH+∠HGE=90°,
∴∠DEC=∠HGE,
在△HGE与△CED中,
,
∴△HGE≌△CED(AAS),
∴GH=CE,HE=CD,
∵CE=BF,∴GH=BF,
∵GH∥BF,
∴四边形GHBF是矩形,
∴GF=BH,FG∥CH
∴FG∥CE,
∵四边形ABCD是正方形,
∴CD=BC,
∴HE=BC,
∴HE+EB=BC+EB,
∴BH=EC,
∴FG=EC;
(3)FG=CE,FG∥CE仍然成立.理由如下:
∵四边形ABCD是正方形,
∴BC=CD,∠FBC=∠ECD=90°,
在△CBF与△DCE中,
,
∴△CBF≌△DCE(SAS),
∴∠BCF=∠CDE,CF=DE,
∵EG=DE,∴CF=EG,
∵DE⊥EG
∴∠DEC+∠CEG=90°
∵∠CDE+∠DEC=90°
∴∠CDE=∠CEG,
∴∠BCF=∠CEG,
∴CF∥EG,
∴四边形CEGF平行四边形,
∴FG∥CE,FG=CE.
四边形综合题,考查了正方形的性质、全等三角形的判定与性质、平行四边形的判定与性质、矩形的判定与性质等知识.本题综合性强,有一定难度,解题的关键是利用全等三角形的对应边相等进行线段的等量代换,从而求证出平行四边形.
26、证明见解析
【解析】
解:∵ MA=MD,∴ △MAD是等腰三角形,
∴ ∠DAM=∠ADM.
∵ AD∥BC,
∴ ∠AMB=∠DAM,∠DMC=∠ADM.
∴ ∠AMB=∠DMC.
又∵ 点M是BC的中点,∴ BM=CM.
在△AMB和△DMC中,
∴ △AMB≌△DMC.
∴ AB=DC,四边形ABCD是等腰梯形.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份安徽省名校2025届九上数学开学学业水平测试试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份安徽省淮南市西部2024年九上数学开学学业水平测试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份安徽省2025届九上数学开学学业水平测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。