安徽省淮北市西园中学2024年数学九上开学经典模拟试题【含答案】
展开
这是一份安徽省淮北市西园中学2024年数学九上开学经典模拟试题【含答案】,共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图是某件商晶四天内的进价与售价的折线统计图.那么售出每件这种商品利润最大的是( )
A.第一天B.第二天C.第三天D.第四天
2、(4分)下列叙述,错误的是( )
A.对角线互相垂直且相等的平行四边形是正方形
B.对角线互相垂直平分的四边形是菱形
C.对角线互相平分的四边形是平行四边形
D.对角线相等的四边形是矩形
3、(4分)下列各组线段中,能够组成直角三角形的一组是( )
A.1,2,3B.2,3,4C.4,5,6D.1,,
4、(4分)如图,已知四边形ABCD是边长为4的正方形,E为CD上一点,且DE=1,F为射线BC上一动点,过点E作EG⊥AF于点P,交直线AB于点G.则下列结论中:①AF=EG;②若∠BAF=∠PCF,则PC=PE;③当∠CPF=45°时,BF=1;④PC的最小值为﹣1.其中正确的有( )
A.1个B.1个C.3个D.4个
5、(4分)如图,在▱ABCD中,∠C=130°,BE平分∠ABC,则∠AEB等于( )
A.B.C.D.
6、(4分)如图,四边形和四边形是以点为位似中心的位似图形,若,四边形的面积等于4,则四边形的面积为( )
A.3B.4C.6D.9
7、(4分)下列根式中是最简二次根式的是( )
A.B.C.D.
8、(4分)某校七年级有13名同学参加百米竞赛,预赛成绩各不相同,要取前6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的( )
A.中位数B.众数C.平均数D.极差
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,已知边长为4的菱形ABCD中,AC=BC,E,F分别为AB,AD边上的动点,满足BE=AF,连接EF交AC于点G,CE、CF分别交BD与点M,N,给出下列结论:①∠AFC=∠AGE;②EF=BE+DF;③△ECF面积的最小值为3,④若AF=2,则BM=MN=DN;⑤若AF=1,则EF=3FG;其中所有正确结论的序号是_____.
10、(4分)如果一组数据:5,,9,4的平均数为6,那么的值是_________
11、(4分)二次三项式是一个完全平方式,则k=_______.
12、(4分)已知点P(-1,m),Q(-2,n)都在反比例函数的图像上,则m____n(填“>”或“60°,故△ADP不可能是等边三角形.
【详解】
(1)补全的图形,如图所示.
(2)AG=DH.
证明:∵四边形ABCD是菱形,
∴,∥,.
∵点为点关于的对称点,
∴垂直平分.
∴,.
∴.
又∵,
∴.
∵,,
∴.
∴△≌△.
∴.
(3)不存在.
理由如下:
由(2)可知,∠DAG=∠CDH,∠G=∠GAB,
∴∠DPA=∠PDG+∠G=∠DAG+∠GAB=70°>60°.
∴△ADP不可能是等边三角形.
【点睛】本题考核知识点:菱形,轴对称,等边三角形. 解题关键点:此题比较综合,要熟记菱形性质,全等三角形的判定和性质,轴对称性质,等边三角形判定.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
分析:根据矩形的性质、结合点A的坐标得到点D的横坐标为2,点B的纵坐标为1,根据反比例函数解析式求出点D的坐标,点B的坐标,根据矩形的周长公式计算即可.
详解:∵四边形ABCD是矩形,点A的坐标为(2,1),
∴点D的横坐标为2,点B的纵坐标为1,
当x=2时,y==3,
当y=1时,x=6,
则AD=3-1=2,AB=6-2=4,
则矩形ABCD的周长=2×(2+4)=1,
故答案为1.
点睛:本题考查的是反比例函数图象上点的坐标特征、矩形的性质,掌握反比例函数图象上点的坐标特征是解题的关键.
20、(3,).
【解析】
试题分析:先利用两点间的距离公式计算出AD=2,再根据菱形的性质得到CD=AD=2,CD∥AB,然后根据平行于x轴的直线上的坐标特征写出C点坐标.
解:∵点D的坐标为(1,),
∴AD==2,
∵四边形ABCD为菱形,
∴CD=AD=2,CD∥AB,
∴C点坐标为(3,).
故答案为(3,).
21、17或-7
【解析】
利用完全平方公式的结构特征判断即可确定出k的值.
【详解】
解:∵二次三项式4x2-(k-5)x+9是完全平方式,
∴k-5=±12,
解得:k=17或k=-7,
故答案为:17或-7
此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.
22、
【解析】
过作,利用正方形的性质和全等三角形的判定得出,进而利用勾股定理解答即可.
【详解】
解:过作,
正方形,
,,
,
,
,且,,
,
,,
当时,的最小值为
故答案为:
本题考查正方形的性质,关键是利用正方形的性质和全等三角形的判定得出.
23、3或-1
【解析】
据题意得,∵(x+2)*5=(x+2)2-52∴x2+4x-21=0,∴(x-3)(x+1)=0,∴x=3或x=-1.
二、解答题(本大题共3个小题,共30分)
24、(1)y1=4500x+1500;y2=4800x;(2)答案见解析;(3)从甲商场买4台,从乙商场买6台时,总运费最少,最少运费是560元
【解析】
(1)根据题意列出函数解析式即可;
(2)①若甲商场购买更优惠,可得不等式4500x+1500<4800x,解此不等式,即可求得答案;
②若乙商场购买更优惠,可得不等式4500x+1500>4800x,解此不等式,即可求得答案;
③若两家商场收费相同,可得方程4500x+1500=4800x,解此方程,即可求得答案;
(3)根据题意列出函数解析式,再根据增减性即可进行解答.
【详解】
解:(1)y1=6000+(1-25%)×6000(x-1)=4500x+1500;
y2=(1-20%)×6000x=4800x;
(2)设学校购买x台电脑,
若到甲商场购买更优惠,则:
4500x+1500<4800x,
解得:x>5,
即当购买电脑台数大于5时,甲商场购买更优惠;
若到乙商场购买更优惠,则:
4500x+1500>4800x,
解得:x<5,
即当购买电脑台数小于5时,乙商场购买更优惠;
若两家商场收费相同,则:
4500x+1500=4800x,
解得:x=5,
即当购买5台时,两家商场的收费相同;
(3)w=50a+(10-a)60=600-10a,
当a取最大时,费用最小,
∵甲商场只有4台,
∴a取4,W=600-40=560,
即从甲商场买4台,从乙商场买6台时,总运费最少,最少运费是560元.
本题考查了一元一次不等式实际应用问题,涉及了不等式与方程的解法,解题的关键是理解题意,根据题意求得函数解析式,然后利用函数的性质求解.
25、(1)见解析,;(2)四边形是菱形,理由见解析
【解析】
(1)由菱形的性质可得AD=CD,∠A=∠C=45°,∠ADC=135°,由折叠的性质可得AE=DE=AD,GE⊥AD,∠A=∠GDA=45°,DF=FC=CD,HF⊥CD,∠C=∠CDH=45°,由四边形的内角和定理可求解;
(2)由题意可证GE∥DH,GD∥HF,可证四边形DGOH是平行四边形,由“ASA”可证△DEG≌△DFH,可得DG=DH,即可证四边形DGOH是菱形.
【详解】
解:(1)如图,延长EG,FH交于点O,
∵四边形ABCD是菱形,∠A=45°,
∴AD=CD,∠A=∠C=45°,∠ADC=135°,
∵把△AEG翻折,使得点A与点D重合,折痕为EG;把△CFH翻折,使得点C与点D重合,折痕为FH,
∴AE=DE=AD,GE⊥AD,∠A=∠GDA=45°,DF=FC=CD,HF⊥CD,∠C=∠CDH=45°,
∵∠EOF+∠OED+∠OFD+∠ADC=360°,
∴∠EOF=360°-90°-90°-135°=45°;
(2)四边形是菱形.理由如下:
∵∠ADC=135°,∠ADG=∠CDH=45°,
∴∠GDC=∠ADH=90°,且GE⊥AD,HF⊥CD,
∴GE∥DH,GD∥HF,
∴四边形DGOH是平行四边形,
∵AE=DE=AD,DF=FC=CD,AD=CD,
∴DE=DF,且∠ADG=∠CDH=45°,∠DEG=∠DFH=90°,
∴△DEG≌△DFH(ASA)
∴DG=DH,
∴四边形DGOH是菱形.
本题考查了翻折变换,菱形的判定和性质,平行四边形的判定和性质,以及全等三角形的判定和性质,灵活运用折叠的性质进行解题是本题的关键.
26、(1)A(1,0),B(1,1);(2)OD⊥BF,理由见解析;(3)当P点为线段DE的三等分点时,AF的长度为2或2.
【解析】
(1)利用正方形的性质得出OA=AB=1,即可得出结论;
(2)利用SAS判断出△AOD≌△BAF,进而得出∠AOD=∠BAF,即可得出结论;
(3)先表示出BD,DP,再判断出△BDP∽△BAF,得出,代入解方程即可得出结论。
【详解】
(1)∵四边形OABC是正方形,
∴BC⊥OC,AB⊥OA,OB=AB=BC=OC,
∵OC=1,
∴BC=AB=1,
∴A(1,0),B(1,1);
(2)OD⊥BF,理由:如图,延长OD交BF于G,
∵四边形ADEF是正方形,
∴AD=AF,∠BAF=∠OAD,
在△AOD和△BAF中, ,
∴△AOD≌△BAF(SAS),
∴∠AOD=∠BAF,
∴∠BAF+∠AFB=90°,
∴∠AOD+AFB=90°,
∴∠OGF=90°,
∴OD⊥BF;
(3)设正方形ADEF的边长为x,
∴AF=AD=DE=x,
∴BD=AB﹣AD=1﹣x,
∵点P是DE的三等分点,
∴DP=AF=x或DP=AF=x
∵DE∥AF,
∴△BDP∽△BAF,
∴,
∴或 ,
∴x=2或x=2,
当P点为线段DE的三等分点时,AF的长度为2或2.
本题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,垂直的判定,相似三角形的判定和性质,用方程的思想解决问题是解本题的
题号
一
二
三
四
五
总分
得分
批阅人
商场
优惠条件
甲商场
第一台按原价收费,其余的每台优惠25%
乙商场
每台优惠20%
相关试卷
这是一份安徽省淮北市相山区2025届数学九上开学复习检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份安徽省滁州市来安县2025届九上数学开学经典模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年级安徽省淮北市西园中学九年级数学第一学期开学调研试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。