|试卷下载
终身会员
搜索
    上传资料 赚现金
    2025届重庆市南开融侨中学数学九上开学教学质量检测试题【含答案】
    立即下载
    加入资料篮
    2025届重庆市南开融侨中学数学九上开学教学质量检测试题【含答案】01
    2025届重庆市南开融侨中学数学九上开学教学质量检测试题【含答案】02
    2025届重庆市南开融侨中学数学九上开学教学质量检测试题【含答案】03
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届重庆市南开融侨中学数学九上开学教学质量检测试题【含答案】

    展开
    这是一份2025届重庆市南开融侨中学数学九上开学教学质量检测试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)若有意义,则的取值范围是( )
    A.B.C.D.且
    2、(4分) “龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行最终贏得比赛,下列函数图象可以体现这一故事过程的是( )
    A.B.C.D.
    3、(4分)如图,平行四边形ABCD中,EF∥BC,GH∥AB,EF,GH相交于点O,则图中有平行四边形( )
    A.4个B.5个C.8个D.9个
    4、(4分)已知点P(a+l,2a-3)关于x轴的对称点在第一象限,则a的取值范围是( )
    A.B.C.D.
    5、(4分)下列式子中,为最简二次根式的是( )
    A.B.C.D.
    6、(4分)如图,在正方形ABCD中,E、F分别是边CD、AD上的点,且CE=DF.AE与BF相交于点O,则下列结论错误的是( )
    A.AE=BFB.AE⊥BF
    C.AO=OED.S△AOB=S四边形DEOF
    7、(4分)如图,的顶点坐标分别为,,,如果将先向左平移个单位,再向上平移个单位得到,那么点的对应点的坐标是( )
    A.B.C.D.
    8、(4分)如图,在菱形中,对角线、相交于点,下列结论中不一定成立的是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知点P(a﹣1,5)和Q(2,b﹣1)关于x轴对称,则(a+b)2014=_____.
    10、(4分)已知四边形ABCD为菱形,∠BAD=60°,E为AD中点,AB=6cm,P为AC上任一点.求PE+PD的最小值是_______
    11、(4分)若关于的一元二次方程的常数项为,则的值是__________.
    12、(4分)小明根据去年4﹣10月本班同学去电影院看电影的人数,绘制了如图所示的折线统计图,图中统计数据的中位数是______人.
    13、(4分)如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD=_____度.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)定义:只有一组对角是直角的四边形叫做损矩形,连结它的两个非直角顶点的线段叫做这个损矩形的直径。
    (1)如图1,损矩形ABCD,∠ABC=∠ADC=90°,则该损矩形的直径是线段AC,同时我们还发现损矩形中有公共边的两个三角形角的特点,在公共边的同侧的两个角是相等的。如图1中:△ABC和△ABD有公共边AB,在AB同侧有∠ADB和∠ACB,此时∠ADB=∠ACB;再比如△ABC和△BCD有公共边BC,在CB同侧有∠BAC和∠BDC,此时∠BAC=∠BDC。请再找一对这样的角来 =
    (2)如图2,△ABC中,∠ABC=90°,以AC为一边向形外作菱形ACEF,D为菱形ACEF的中心,连结BD,当BD平分∠ABC时,判断四边形ACEF为何种特殊的四边形?请说明理由。
    (3)在第(2)题的条件下,若此时AB=,BD=,求BC的长。
    15、(8分)(1)问题发现.
    如图1,和均为等边三角形,点、、均在同一直线上,连接.
    ①求证:.
    ②求的度数.
    ③线段、之间的数量关系为__________.
    (2)拓展探究.
    如图2,和均为等腰直角三角形,,点、、在同一直线上,为中边上的高,连接.
    ①请判断的度数为____________.
    ②线段、、之间的数量关系为________.(直接写出结论,不需证明)
    16、(8分)(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;
    (2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.
    (3)运用(1)(2)解答中所积累的经验和知识,完成下列两题:
    ①如图3,在四边形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB上一点,且∠DCE=45°,BE=4,则DE= .
    ②如图4,在△ABC中,∠BAC=45°,AD⊥BC,且BD=2,AD=6,求△ABC的面积.
    17、(10分)近年来雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注.某商场计划购进一批、两种空气净化装置,每台种设备价格比每台种设备价格多0.7万元,花3万元购买种设备和花7.2万元购买种设备的数量相同.
    (1)求种、种设备每台各多少万元?
    (2)根据销售情况,需购进、两种设备共20台,总费用不高于15万元,求种设备至少要购买多少台?
    (3)若每台种设备售价0.6万元,每台种设备售价1.4万元,在(2)的情况下商场应如何进货才能使这批空气净化装置售完后获利最多?
    18、(10分)如图,△ABC的三个顶点的坐标分别为A(﹣1,﹣1).B(3,2),C(1,﹣2).
    (1)判断△ABC的形状,请说明理由.
    (2)求△ABC的周长和面积.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,菱形ABCD中,点M、N分别在AD,BC上,且AM=CN,MN与AC交于点O,连接DO,若∠BAC=28°,则∠ODC=_____.
    20、(4分)已知平行四边形ABCD中,,,AE为BC边上的高,且,则平行四边形ABCD的面积为________.
    21、(4分)数据15、19、15、18、21的中位数为_____.
    22、(4分)如图,在一次测绘活动中,某同学站在点A的位置观测停放于B、C两处的小船,测得船B在点A北偏东75°方向900米处,船C在点A南偏东15°方向1200米处,则船B与船C之间的距离为______米.
    23、(4分)如图,已知线段,是直线上一动点,点,分别为,的中点,对下列各值:①线段的长;②的周长;③的面积;④直线,之间的距离;⑤的大小.其中不会随点的移动而改变的是_____.(填序号)
    二、解答题(本大题共3个小题,共30分)
    24、(8分)阅读理解
    在△ABC中,AB、BC、AC三边的长分别为、、2,求这个三角形的面积.
    解法一:如图1,因为△ABC是等腰三角形,并且底AC=2,根据勾股定理可以求得底边的高AF为1,所以S△ABC=×2×1=1.
    解法二:建立边长为1的正方形网格,在网格中画出△ABC,使△ABC三个顶点都在小正方形的顶点处,如图2所示,借用网格面积可得S△ABC=S矩形ADEC﹣S△ABD﹣S△EBC=1.
    方法迁移:请解答下面的问题:
    在△ABC中,AB、AC、BC三边的长分别为、、,求这个三角形的面积.
    25、(10分)如图,已知过点B(1,0)的直线与直线:相交于点P(-1,a).且l1与y轴相交于C点,l2与x轴相交于A点.
    (1)求直线的解析式;
    (2)求四边形的面积;
    (3)若点Q是x轴上一动点,连接PQ、CQ,当△QPC周长最小时,求点Q坐标.
    26、(12分)无锡阳山水蜜桃上市后,甲、乙两超市分别用60000元以相同的进价购进相同箱数的水蜜桃,甲超市销售方案是:将水蜜桃按分类包装销售,其中挑出优质大个的水蜜桃400箱,以进价的2倍价格销售,剩下的水蜜桃以高于进价10%销售.乙超市的销售方案是:不将水蜜桃分类,直接销售,价格按甲超市分类销售的两种水蜜桃售价的平均数定价.若两超市将水蜜桃全部售完,其中甲超市获利42000元(其它成本不计).问:
    (1)水蜜桃进价为每箱多少元?
    (2)乙超市获利多少元?哪种销售方式更合算?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    二次根式中被开方数的取值范围:二次根式中的被开方数是非负数,此外还需考虑分母不为零.
    【详解】
    解:要使有意义,则2x+1>0,
    ∴x的取值范围为.
    故选:B.
    本题主要考查二次根式有意义的条件,如果一个式子中含有多个二次根式,那么它们有意义的条件是:各个二次根式中的被开方数都必须是非负数.如果所给式子中含有分母,则除了保证被开方数为非负数外,还必须保证分母不为零.
    2、B
    【解析】
    【分析】根据领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟先到达终点,即可判断.
    【详解】领先的兔子看着缓慢爬行的乌龟,兔子骄傲起来,睡了一觉,在图形上来看在一段时间内兔子所行路程不变,当它醒来时,发现乌龟快到了终点了,于是急忙追赶,但为时已晚,乌龟先到达了终点,说明乌龟到达终点时兔子还没到达,所以排除A、C、D,
    所以符合题意的是B,
    故选B.
    【点睛】本题考查了函数的图象,解答本题的关键是读懂题意及图象,弄清函数图象中横、纵轴所表示的意义及实际问题中自变量与因变量之间的关系.
    3、D
    【解析】
    首先根据已知条件找出图中的平行线段,然后根据两组对边分别平行的四边形是平行四边形,来判断图中平行四边形的个数.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,CD∥AB,
    又∵EF∥BC,GH∥AB,
    ∴∴AB∥GH∥CD,AD∥EF∥BC,
    ∴平行四边形有:□ ABCD,□ABHG,□CDGH,□BCFE,□ADFE,□AGOE,□BEOH,□OFCH,□OGDF,共9个.即共有9个平行四边形.
    故选D.
    本题考查平行四边形的判定与性质,解题的关键是根据已知条件找出图中的平行线段.
    4、B
    【解析】
    关于x轴对称的点的坐标,一元一次不等式组的应用.
    【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”,再根据各象限内的点的坐标的特点列出不等式组求解即可:
    ∵点P(a+1,2a-3)关于x轴的对称点在第一象限,∴点P在第四象限.
    ∴.
    解不等式①得,a>-1,解不等式②得,a<,
    所以,不等式组的解集是-1<a<.故选B.
    5、B
    【解析】
    利用最简二次根式定义判断即可.
    【详解】
    A、原式,不符合题意;
    B、是最简二次根式,符合题意;
    C、原式,不符合题意;
    D、原式,不符合题意;
    故选:B.
    此题考查了最简二次根式,熟练掌握最简二次根式是解本题的关键.
    6、C
    【解析】
    试题解析:A、∵在正方形ABCD中,




    ∴≌

    故此选项正确;
    B、∵≌





    故此选项正确;
    C、连接
    假设AO=OE,



    ∴≌



    ∴AB不可能等于BE,
    ∴假设不成立,即
    故此选项错误;
    D、∵≌


    ∴S△AOB=S四边形DEOF,故此选项正确.
    故选C.
    7、C
    【解析】
    把B点的横坐标减2,纵坐标加1即为点B´的坐标.
    【详解】
    解:由题中平移规律可知:点B´的横坐标为-1−2=−3;纵坐标为1+1=2,
    ∴点B´的坐标是(−3,2).
    故选:C.
    本题考查了坐标与图形变化−平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.
    8、D
    【解析】
    根据菱形的性质即可一一判断
    【详解】
    解:∵四边形是菱形,
    ∴,,,
    故A、B、C正确,
    故选:D.
    本题考查菱形的性质,解题的关键是熟练掌握基本知识,属于中考基础题.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    关于x轴对称的点,横坐标相同,纵坐标互为相反数,可求出a,b,得到答案.
    【详解】
    解:点P(a﹣1,5)和Q(2,b﹣1)关于x轴对称,得
    a﹣1=2,b﹣1=﹣5,
    解得a=3,b=﹣4,
    (a+b)2014=(﹣1)2014=1,
    故答案为:1.
    本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.
    10、
    【解析】
    根据菱形的性质,可得AC是BD的垂直平分线,可得AC上的点到D、B点的距离相等,连接BE交AC与P,可得答案.
    【详解】
    解:∵菱形的性质,
    ∴AC是BD的垂直平分线,AC上的点到B、D的距离相等.
    连接BE交AC于P点,
    PD=PB,
    PE+PD=PE+PB=BE,
    在Rt△ABE中,由勾股定理得

    故答案为3
    本题考查了轴对称,对称轴上的点到线段两端点的距离相等是解题关键.
    11、
    【解析】
    先找到一元二次方程的常数项,得到关于m的方程,解出方程之后检验最后得到答案即可
    【详解】
    关于的一元二次方程的常数项为,故有,解得m=4或m=-1,又因为原方程是关于x的一元二次方程,故m+1≠0,m≠1
    综上,m=4,故填4
    本题考查一元二次方程的概念,解出m之后要重点注意二次项系数不能为0,舍去一个m的值
    12、1
    【解析】
    将这7个数按大小顺序排列,找到最中间的数即为中位数.
    【详解】
    解:这组数据从大到小为:27,1,1,1,42,42,46,
    故这组数据的中位数1.
    故答案为1.
    此题考查了折线统计图及中位数的知识,关键是掌握寻找中位数的方法,一定不要忘记将所有数据从小到大依此排列再计算,难度一般.
    13、30°
    【解析】
    根据旋转的性质得到∠BOD=45°,再用∠BOD减去∠AOB即可.
    【详解】
    ∵将△AOB绕点O按逆时针方向旋转45°后,得到△COD,
    ∴∠BOD=45°,
    又∵∠AOB=15°,
    ∴∠AOD=∠BOD-∠AOB=45°-15°=30°.
    故答案为30°.
    三、解答题(本大题共5个小题,共48分)
    14、(1)∠ABD=∠ACD;(2)四边形ACEF为正方形,理由见解析;(3)5.
    【解析】
    (1)以AD为公共边,有∠ABD=∠ACD;
    (2)证明△ADC是等腰直角三角形,得AD=CD,则AE=CF,根据对角线相等的菱形是正方形可得结论;
    (3)如图2,作辅助线构建直角三角形,证明△ABC≌△CHE,得CH=AB=3,根据平行线等分线段定理可得BG=GH=4,从而得结论.
    【详解】
    解:(1)由图1得:△ABD和△ADC有公共边AD,在AD同侧有∠ABD和∠ACD,此时∠ABD=∠ACD;
    (2)四边形ACEF为正方形,理由是:
    ∵∠ABC=90°,BD平分∠ABC,
    ∴∠ABD=∠CBD=45°
    ∴∠DAC=∠CBD=45°
    ∵四边形ACEF是菱形,
    ∴AELCF,
    ∴∠ADC=90°,
    ∴△ADC是等腰直角三角形,
    ∴AD=CD,.AE=CF,
    ∴菱形ACEF是正方形;
    (3)如图2,过D作DG⊥BC于G,过E作EH⊥BC,交BC的延长线于H,
    ∵∠DBG=45°,
    ∴△BDG是等腰直角三角形,BD=4,
    ∵BG=4,四边形ACEF是正方形,
    ∴AC=CE,∠ACE=90°,AD=DE,
    易得△ABC≌△CHE,
    ∴CH=AB=3,AB//DG//EH,AD=DE,
    ∴BG=GH=4,
    ∴CG=4-3=1,
    ∴BC=BG+CG=4+1=5.
    本题是四边形的综合题,也是新定义问题,考查了损矩形和损矩形的直径的概念,平行线等分线段定理,菱形的性质,正方形的判定等知识,认真阅读理解新定义,第3问有难度,作辅助线构建全等三角形是关键.
    15、(1)①详见解析;②60°;③;(2)①90°;②
    【解析】
    (1)易证∠ACD=∠BCE,即可求证△ACD≌△BCE,根据全等三角形对应边相等可求得AD=BE,根据全等三角形对应角相等即可求得∠AEB的大小;
    (2)易证△ACD≌△BCE,可得∠ADC=∠BEC,进而可以求得∠AEB=90°,即可求得DM=ME=CM,即可解题.
    【详解】
    解:(1)①证明:∵和均为等边三角形,
    ∴,,
    又∵,
    ∴,
    ∴.
    ②∵为等边三角形,
    ∴.
    ∵点、、在同一直线上,
    ∴,
    又∵,
    ∴,
    ∴.


    ∴.
    故填:;
    (2)①∵和均为等腰直角三角形,
    ∴,,
    又∵,
    ∴,
    ∴,
    在和中,

    ∴,
    ∴.
    ∵点、、在同一直线上,
    ∴,
    ∴.
    ②∵,
    ∴.
    ∵,,
    ∴.
    又∵,
    ∴,
    ∴.
    故填:①90°;②.
    本题考查了全等三角形的判定,考查了全等三角形对应边相等、对应角相等的性质,本题中求证△ACD≌△BCE是解题的关键.
    16、(1)见解析;(2)见解析;(4)①DE=4;②△ABC的面积是1.
    【解析】
    (1)根据正方形的性质,可直接证明△CBE≌△CDF,从而得出CE=CF;
    (2)延长AD至F,使DF=BE,连接CF,根据(1)知∠BCE=∠DCF,即可证明∠ECF=∠BCD=90°,根据∠GCE=45°,得∠GCF=∠GCE=45°,利用全等三角形的判定方法得出△ECG≌△FCG,即GE=GF,即可得出答案GE=DF+GD=BE+GD;
    (4)①过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形,设DF=x,则AD=12-x,根据(2)可得:DE=BE+DF=4+x,在直角△ADE中利用勾股定理即可求解;
    ②作∠EAB=∠BAD,∠GAC=∠DAC,过B作AE的垂线,垂足是E,过C作AG的垂线,垂足是G,BE和GC相交于点F,BF=2-2=4,设GC=x,则CD=GC=x,FC=2-x,BC=2+x.在直角△BCF中利用勾股定理求得CD的长,则三角形的面积即可求解.
    【详解】
    (1)证明:如图1,在正方形ABCD中,
    ∵BC=CD,∠B=∠CDF,BE=DF,
    ∴△CBE≌△CDF,
    ∴CE=CF;
    (2)证明:如图2,延长AD至F,使DF=BE,连接CF,
    由(1)知△CBE≌△CDF,
    ∴∠BCE=∠DCF.
    ∴∠BCE+∠ECD=∠DCF+∠ECD
    即∠ECF=∠BCD=90°,
    又∵∠GCE=45°,∴∠GCF=∠GCE=45°,
    ∵CE=CF,∠GCE=∠GCF,GC=GC,
    ∴△ECG≌△FCG,
    ∴GE=GF,
    ∴GE=DF+GD=BE+GD;
    (4)①过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形.
    AE=AB﹣BE=12﹣4=8,
    设DF=x,则AD=12﹣x,
    根据(2)可得:DE=BE+DF=4+x,
    在直角△ADE中,AE2+AD2=DE2,则82+(12﹣x)2=(4+x)2,
    解得:x=2.
    则DE=4+2=4.
    故答案是:4;
    ②作∠EAB=∠BAD,∠GAC=∠DAC,过B作AE的垂线,垂足是E,过C作AG的垂线,垂足是G,BE和GC相交于点F,则四边形AEFG是正方形,且边长=AD=2,BE=BD=2,
    则BF=2﹣2=4,设GC=x,则CD=GC=x,FC=2﹣x,BC=2+x.
    在直角△BCF中,BC2=BF2+FC2,
    则(2+x)2=42+x2,
    解得:x=4.
    则BC=2+4=5,
    则△ABC的面积是:AD•BC=×2×5=1.
    本题考查了全等三角形的判定和性质以及正方形的性质,解决本题的关键是注意每个题目之间的关系,正确作出辅助线.
    17、(1)种设备每台0.5万元,种设备每台l.2万元;(2)种设备至少购买13台;(3)当购买种设备13台,种设备7台时,获利最多.
    【解析】
    (1)设种设备每台万元,则种设备每台万元,根据“3万元购买种设备和花7.2万元购买种设备的数量相同”列分式方程即可求解;
    (2)设购买种设备台,则购买种设备台,根据总费用不高于15万元,列不等式求解即可;
    【详解】
    (1)设种设备每台万元,则种设备每台万元,
    根据题意得:,
    解得,
    经检验,是原方程的解,
    ∴.
    则种设备每台0.5万元,种设备每台l.2万元;
    (2)设购买种设备台,则购买种设备台,
    根据题意得:,
    解得:,
    ∵为整数,
    ∴种设备至少购买13台;
    (3)每台种设备获利(万元),
    每台种设备获利(万元),
    ∵,
    ∴购进种设备越多,获利越多,
    ∴当购买种设备13台,种设备(台)时,获利最多.
    本题主要考查了二元一次方程组和一元一次不等式组的应用,关键是弄懂题意,找出题目中的关键语句,列出方程和不等式.
    18、(1)△ABC是直角三角形(2)5
    【解析】
    (1)根据点A、B、C的坐标求出AB、AC、BC的长,然后利用勾股定理逆定理判断为直角三角形;
    (2)根据三角形的周长和面积公式解答即可.
    【详解】
    (1)△ABC是直角三角形,
    由勾股定理可得:,


    ∴AC2+BC2=AB2,
    ∴△ABC是直角三角形,
    (2)△ABC的周长为:AC+BC+AB=,
    △ABC的面积为:.
    本题考查勾股定理逆定理,解题的关键是掌握勾股定理逆定理.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、62°
    【解析】
    证明≌,根据全等三角形的性质得到AO=CO,根据菱形的性质有:AD=DC,根据等腰三角形三线合一的性质得到DO⊥AC,即∠DOC=90°.根据平行线的性质得到∠DCA=28°,根据三角形的内角和即可求解.
    【详解】
    四边形ABCD是菱形,
    AD//BC,

    在与中,

    ≌;
    AO=CO,
    AD=DC,
    ∴DO⊥AC,
    ∴∠DOC=90°.
    ∵AD∥BC,
    ∴∠BAC=∠DCA.
    ∵∠BAC=28°,∠BAC=∠DCA.,
    ∴∠DCA=28°,
    ∴∠ODC=90°-28°=62°.
    故答案为62°
    考查菱形的性质,等腰三角形的性质,平行线的性质,三角形的内角和定理等,比较基础,数形结合是解题的关键.
    20、2或1
    【解析】
    分高AE在△ABC内外两种情形,分别求解即可.
    【详解】
    ①如图,高AE在△ABC内时,在Rt△ABE中,BE==9,
    在Rt△AEC中,CE==5,
    ∴BC=BE+EC=14,
    ∴S平行四边形ABCD=BC×AE=14×12=1.
    ②如图,高AE在△ABC外时,BC=BE-CE=9-5=4,
    ∴S平行四边形ABCD=BC×AE=12×4=2,
    故答案为1或2.
    本题考查平行四边形的性质.四边形的面积,解题的关键是学会用分类讨论的思想思考问题.
    21、1
    【解析】
    将这五个数排序后,可知第3位的数是1,因此中位数是1.
    【详解】
    将这组数据排序得:15,15,1,19,21,处于第三位是1,因此中位数是1,
    故答案为:1.
    考查中位数的意义和求法,将一组数据排序后处在中间位置的一个数或两个数的平均数是中位数.
    22、192.2
    【解析】
    由题意可知∠NAB=75°,∠SAC=15°,从而得到∠BAC=90°,然后利用勾股定理即可求出BC.
    【详解】
    解:由题意可知∠NAB=75°,∠SAC=15°,
    ∴∠BAC=90°,
    ∵AB=900米,AC=1200米,
    ∴BC==1500米.
    故答案为1500.
    本题考查了勾股定理的应用,得到∠BAC=90°是解题的关键.
    23、①③④
    【解析】
    根据中位线的性质,对线段长度、三角形周长和面积、角的变化情况进行判断即可.
    【详解】
    点,为定点,点,分别为,的中点,
    是的中位线,

    即线段的长度不变,故①符合题意,
    、的长度随点的移动而变化,
    的周长会随点的移动而变化,故②不符合题意;
    的长度不变,点到的距离等于与的距离的一半,
    的面积不变,故③符合题意;
    直线,之间的距离不随点的移动而变化,故④符合题意;
    的大小点的移动而变化,故⑤不符合题意.
    综上所述,不会随点的移动而改变的是:①③④.
    故答案为:①③④.
    本题考查了三角形的动点问题,掌握中位线的性质、线段长度的性质、三角形周长和面积的性质、角的性质是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、S△ABC=.
    【解析】
    方法迁移:根据题意画出图形,△ABC的面积等于矩形EFCH的面积減去三个小直角三角形的面积;思维拓展:根据题意画出图形,△ABC的面积等于大矩形的面积减去三个小直角三角形的面积
    【详解】
    建立边长为1的正方形网格,在网格中画出△ABC,使△ABC三个顶点都在小正方形的顶点处,如图所示,
    借用网格面积可得S△ABC=S矩形EFCH﹣S△ABE﹣S△AFC﹣S△CBH=9﹣ ×2×1﹣×3×1﹣×2×3=
    此题考查勾股定理,解题关键在于利用勾股定理算出各个边长
    25、(1)y=-x+1;(2);(3)点Q坐标为(-,0)时△QPC周长最小
    【解析】
    (1)根据点P在直线l2上,求出P的坐标,然后用待定系数法即可得出结论;
    (2)根据计算即可;
    (3)作点C关于x轴对称点C',直线C’P与x轴的交点即为所求的点Q,求出点Q的坐标即可.
    【详解】
    (1)∵点P(-1,a)在直线l2:y=2x+4上,∴,即,则P的坐标为(-1,2),设直线的解析式为:,那么,解得:,∴的解析式为:.
    (2)∵直线与y轴相交于点C,∴C的坐标为(0,1).
    又∵直线与x轴相交于点A,∴A点的坐标为(-2,0),则AB=3,而,∴.
    (3)作点C关于x轴对称点C′,易求直线C′P:y=-3x-1.当y=0时,x=,∴点Q坐标为(,0)时,△QPC周长最小.
    本题考查了一次函数的应用.掌握用待定系数法求一次函数的解析式、不规则图形面积的求法是解答本题的关键.
    26、 (1)水蜜桃进价为每箱100元; (2)乙超市获利为33000元,甲种销售方式获利多.
    【解析】
    (1)设水蜜桃进价为每箱x元,根据利润=(售价-进价)×箱数,利用甲超市获利42000元列分式方程即可求出x的值,检验即可得答案;(2)根据进价可得甲超市的售价,即可求出乙超市的售价,根据进价和总价可求出购进箱数,即可求出乙超市的利润,与42000元比较即可得答案.
    【详解】
    设水蜜桃进价为每箱x元,
    ∴,
    解得:x=100,
    经检验x=100是分式方程的解,且符合题意,
    则水蜜桃进价为每箱100元;
    (2)∵挑出优质大个的水蜜桃以进价的2倍价格销售,剩下的水蜜桃以高于进价10%销售.
    ∴甲超市水蜜桃的售价是200元/箱和110元/箱,
    ∴乙超市售价为,
    ∵甲、乙两超市分别用60000元以相同的进价购进相同箱数的水蜜桃,
    ∴乙超市购进水蜜桃:60000÷100=600(箱)
    ∴乙超市获利为600×(155-100)=33000(元),
    ∵42000元>33000元,
    ∴甲种销售方式获利多.
    本题考查分式方程的应用,根据题意找出等量关系列出方程是解题关键.
    题号





    总分
    得分
    相关试卷

    2024年重庆南开中学数学九上开学教学质量检测试题【含答案】: 这是一份2024年重庆南开中学数学九上开学教学质量检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年重庆市南开(融侨)中学九上数学开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年重庆市南开(融侨)中学九上数学开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年重庆市南岸区南开(融侨)中学数学九年级第一学期开学复习检测试题【含答案】: 这是一份2024-2025学年重庆市南岸区南开(融侨)中学数学九年级第一学期开学复习检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map