|试卷下载
终身会员
搜索
    上传资料 赚现金
    2025届新疆巴州三中学九上数学开学检测模拟试题【含答案】
    立即下载
    加入资料篮
    2025届新疆巴州三中学九上数学开学检测模拟试题【含答案】01
    2025届新疆巴州三中学九上数学开学检测模拟试题【含答案】02
    2025届新疆巴州三中学九上数学开学检测模拟试题【含答案】03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届新疆巴州三中学九上数学开学检测模拟试题【含答案】

    展开
    这是一份2025届新疆巴州三中学九上数学开学检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,有一张长方形纸片,其中,.将纸片沿折叠,,若,折叠后重叠部分的面积为( )
    A.B.C.D.
    2、(4分)反比例函数y=在第一象限的图象如图所示,则k的值可能是( )
    A.1B.2C.3D.4
    3、(4分)如图,兔子的三个洞口A、B、C构成△ABC,猎狗想捕捉兔子,必须到三个洞口的距离都相等,则猎狗应蹲守在( )
    A.三条边的垂直平分线的交点B.三个角的角平分线的交点
    C.三角形三条高的交点D.三角形三条中线的交点
    4、(4分)不能判定四边形ABCD为平行四边形的题设是( )
    A.AB=CD,AB∥CDB.∠A=∠C,∠B=∠DC.AB=AD,BC=CDD.AB=CD,AD=BC
    5、(4分)将直线y=2x-3向右平移2个单位。再向上平移2个单位后,得到直线y=kx+b.则下列关于直线y=kx+b的说法正确的是( )
    A.与y轴交于(0,-5)B.与x轴交于(2,0)
    C.y随x的增大而减小D.经过第一、二、四象限
    6、(4分)在下列条件中,能判定四边形为平行四边形的是( )
    A.两组对边分别平行B.一组对边平行且另一组对边相等
    C.两组邻边相等D.对角线互相垂直
    7、(4分)如图,把一个矩形纸片ABCD沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′为( )。
    A.70°B.65°C.50°D.25°
    8、(4分)如图,在平行四边形ABCD中,AC、BD相交于点O,点E是AB的中点.若OE=3cm,则AD的长是( )
    A.3cmB.6cmC.9cmD.12cm
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)小明对自己上学路线的长度进行了20次测量,得到20个数据x1,x2,…,x20,已知x1+x2+…+x20=2019,当代数式(x﹣x1)2+(x﹣x2)2+…+(x﹣x20)2取得最小值时,x的值为___________.
    10、(4分)计算:π0-()-1=______.
    11、(4分)已知,则的值为__________.
    12、(4分)高6cm的旗杆在水平面上的影长为8cm,此时测得一建筑物的影长为28cm,则该建筑物的高为______.
    13、(4分)已知P1(x1,y1),P2(x2 ,y2)两点都在反比例函数的图象上,且x1< x2 < 0,则y1 ____ y2.(填“>”或“<”)
    三、解答题(本大题共5个小题,共48分)
    14、(12分)为了了解某校初中各年级学生每天的平均睡眠时间(单位:h,精确到1h),抽样调查了部分学生,并用得到的数据绘制了下面两幅不完整的统计图.
    请你根据图中提供的信息,回答下列问题:
    (1)求出扇形统计图中百分数a的值为 ,所抽查的学生人数为 .
    (2)求出平均睡眠时间为8小时的人数,并补全频数直方图.
    (3)求出这部分学生的平均睡眠时间的众数和平均数.
    (4)如果该校共有学生1200名,请你估计睡眠不足(少于8小时)的学生数.
    15、(8分)如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.
    (1)求证:四边形OCED是矩形;
    (2)若CE=1,DE=2,ABCD的面积是 .
    16、(8分)甲、乙两车分别从、两地同时出发,甲车匀速前往地,到达地后立即以另一速度按原路匀速返回到地; 乙车匀速前往地,设甲、乙两车距地的路程为(千米),甲车行驶的时间为时), 与之间的函数图象如图所示
    (1)甲车从地到地的速度是__________千米/时,乙车的速度是__________千米/时;
    (2)求甲车从地到达地的行驶时间;
    (3)求甲车返回时与之间的函数关系式,并写出自变量的取值范围;
    (4)求乙车到达地时甲车距地的路程.
    17、(10分)如图,在中,按如下步骤作图:
    ①以点A为圆心,AB长为半径画弧;
    ②以点C为圆心,CB长为半径画弧,两弧相交于点D;
    ③连接BD,与AC交于点E,连接AD、CD;
    (1)求证:;
    (2)当时,猜想四边形ABCD是什么四边形,并证明你的结论;
    (3)当,,现将四边形ABCD通过割补,拼成一个正方形,那么这个正方形的边长是多少?
    18、(10分)如图,在▱ABCD中,对角线AC与BD相交于点O,点M,N在对角线AC上,且AM=CN,求证:BM∥DN.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)马拉松赛选手分甲、乙两组运动员进行了艰苦的训练,他们在相同条件下各10次比赛,成绩的平均数相同,方差分别为0.25,0.21,则成绩较为稳定的是_________(选填“甲”或“乙)
    20、(4分)化简,=______ ;= ________ ;= ______.
    21、(4分)分式方程的解是_____.
    22、(4分)如图,在平面直角坐标系中,平行四边形OABC的边OA在x轴的正半轴上,A、C两点的坐标分别为(2,0)、(1,2),点B在第一象限,将直线y=-2x沿y轴向上平移m(m>0)个单位.若平移后的直线与边BC有交点,则m的取值范围是_____________.
    23、(4分)一次函数y=-2x+4的图象与x轴交点坐标是______,与y轴交点坐标是_________
    二、解答题(本大题共3个小题,共30分)
    24、(8分)在平面直角坐标系中,点的坐标为,点和点的坐标分别为,,且,四边形是矩形
    (1)如图,当四边形为正方形时,求,的值;
    (2)探究,当为何值时,菱形的对角线的长度最短,并求出的最小值.
    25、(10分)先化简,再求值:,其中,.
    26、(12分)如图,平面直角坐标系中,直线AB交y轴于点A(0,1),交x轴于点B(3,0).直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,在点D的上方,设P(1,n).
    (1)求直线AB的解析式;
    (2)求△ABP的面积(用含n的代数式表示);
    (3)当S△ABP=2时,以PB为边在第一象限作等腰直角三角形BPC,求出点C的坐标.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据折叠的性质,可知折叠后重叠部分的面积等于长方形ABCD的面积减去长方形AEFD的面积,即可得解.
    【详解】
    根据题意,得折叠后重叠部分的面积等于长方形ABCD的面积减去长方形AEFD的面积,
    ∵,,

    故答案为B.
    此题主要考查折叠的性质和长方形的面积求解,熟练掌握,即可解题.
    2、C
    【解析】
    如图,当x=2时,y=,
    ∵1<y<2,
    ∴1<<2,
    解得2<k<4,
    所以k=1.
    故选C.
    3、A
    【解析】
    根据题意,知猎狗应该到三个洞口的距离相等,则此点就是三角形三边垂直平分线的交点.
    【详解】
    解:猎狗到△ABC三个顶点的距离相等,则猎狗应蹲守在△ABC的三条(边垂直平分线)的交点.
    故选:A.
    此题考查了线段垂直平分线的性质,以及三角形的角平分线、中线和高,熟练掌握性质是解本题的关键.
    4、C
    【解析】
    A. ∵AB=CD,AB∥CD,
    ∴四边形ABCD为平行四边形(一组对边平行且相等的四边形是平行四边形);本选项能判定四边形ABCD为平行四边形;
    B. ∵∠A=∠C,∠B=∠D,
    ∴四边形ABCD为平行四边形(两组对角分别相等的四边形是平行四边形);本选项能判定四边形ABCD为平行四边形;
    C. 由AB=AD,BC=CD,不能判定四边形ABCD为平行四边形;
    D. ∵AB=CD,AD=BC,
    ∴四边形ABCD为平行四边形(两组对边分别相等的四边形是平行四边形);本选项能判定四边形ABCD为平行四边形
    故选C.
    本题考查平行四边形的判定.
    5、A
    【解析】
    利用一次函数图象的平移规律,左加右减,上加下减,得出即可.
    【详解】
    直线y=2x-3向右平移2个单位得y=2(x-2)-3,即y=2x-7;
    再向上平移2个单位得y=2x-7+2,即y=2x-5,
    A.当x=0时,y=-5,
    与y轴交于(0,-5),
    本项正确,
    B.当y=0时,x=,
    与x轴交于(,0),
    本项错误;
    C.2>0
    y随x的增大而增大,
    本项错误;
    D. 2>0,
    直线经过第一、三象限,
    -5<0
    直线经过第四象限,
    本项错误;
    故选A.
    此题主要考查了一次函数图象与几何变换,正确把握变换规律是解题关键.
    6、A
    【解析】
    根据平行四边形的判定定理逐个判断即可.
    【详解】
    A、两组对边分别平行的四边形是平行四边形,故本选项符合题意;
    B、一组对边平行且另一组对边相等的四边形不一定是平行四边形,故本选项不符合题意;
    C、两组邻边相等的四边形不一定是平行四边形,故本选项不符合题意;
    D、对角线互相平分的四边形才是平行四边形,故本选项不符合题意;
    故选A.
    本题考查了平行四边形的判定定理,能熟记平行四边形的判定定理的内容是解此题的关键,注意:平行四边形的判定定理有:①两组对边分别平行的四边形是平行四边形,②两组对边分别相等的四边形是平行四边形,③两组对角分别平行的四边形是平行四边形,④一组对边平行且相等的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形.
    7、C
    【解析】
    首先根据AD∥BC,求出∠FED的度数,然后根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,则可知∠DEF=∠FED′,最后求得∠AED′的大小.
    【详解】
    解:∵AD∥BC,
    ∴∠EFB=∠FED=65°,
    由折叠的性质知,∠DEF=∠FED′=65°,
    ∴∠AED′=180°-2∠FED=50°,
    故选:C.
    此题考查了长方形的性质与折叠的性质.此题比较简单,解题的关键是注意数形结合思想的应用.
    8、B
    【解析】
    根据平行四边形的性质,可得出点O平分BD,则OE是三角形ABD的中位线,则AD=2OE,问题得解.
    【详解】
    解:∵四边形ABCD为平行四边形,
    ∴BO=DO,
    ∵点E是AB的中点,
    ∴OE为△ABD的中位线,
    ∴AD=2OE,
    ∵OE=3cm,
    ∴AD=6cm.
    故选B.
    本题考查了平行四边形的性质、三角形的中位线定理,是基础知识比较简单,熟记平行四边形的各种性质是解题关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、100.1
    【解析】
    先设出y=(x-x1)2+(x-x2)2+(x-x3)2+…+(x-x20)2,然后进行整理得出y=20x2-2(x1+x2+x3+…+x20)x+(x12+x22+x32+…+x202),再求出二次函数的最小值即可.
    【详解】
    解:设y=(x-x1)2+(x-x2)2+(x-x3)2+…+(x-x20)2
    =x2-2xx1+x12+x2-2xx2+x22+x2-2xx3+x32+…+x2-2xx20+x202
    =20x2-2(x1+x2+x3+…+x20)x+(x12+x22+x32+…+x202),
    =20x2-2×2019x+(x12+x22+x32+…+x202),
    则当x=时,(x-x1)2+(x-x2)2+(x-x3)2+…+(x-x20)2取得最小值,
    即当x=100.1时,(x-x1)2+(x-x2)2+(x-x3)2+…+(x-x20)2取得最小值.
    故答案为100.1.
    此题考查了二次函数的性质,关键是设y=(x-x1)2+(x-x2)2+(x-x3)2+…+(x-x20)2,整理出一个二次函数.
    10、-1
    【解析】
    直接利用零指数幂和负整数指数幂的运算法则进行计算即可.
    【详解】
    原式=1-3=-1.
    故答案为:-1.
    本题主要考查实数的运算,掌握零指数幂和负整数指数幂的运算法则是解题的关键.
    11、
    【解析】
    根据二次根式有意义的条件可求得x的值,继而可求得y值,代入所求式子即可求得答案.
    【详解】
    由题意得,
    解得:x=4,
    所以y=3,
    所以=,
    故答案为:.
    本题考查了二次根式有意义的条件,熟练掌握是解题的关键.
    12、21
    【解析】
    【分析】设建筑物高为hm,依题意得.
    【详解】设建筑物高为hm,依题意得
    解得,h=21
    故答案为21
    【点睛】本题考核知识点:成比例性质.解题关键点:理解同一时刻,物高和影长成比例.
    13、>
    【解析】
    根据反比例函数的增减性,k=1>0,且自变量x<0,图象位于第三象限,y随x的增大而减小,从而可得结论.
    【详解】
    在反比例函数y=中,k=1>0,
    ∴该函数在x<0内y随x的增大而减小.
    ∵x1<x1<0,
    ∴y1>y1.
    故答案为:>.
    本题考查了反比例函数的性质,解题的关键是得出反比例函数在x<0内y随x的增大而减小.本题属于基础题,难度不大,解决该题型题目时,根据系数k的取值范围确定函数的图象增减性是关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)45%,60;(2)见解析18;(3)7,7.2;(4)780
    【解析】
    (1)根据睡眠时间为6小时、7小时、8小时、9小时的百分比之和为1可得a的值,用睡眠时间为6小时的人数除以所占的比例即可得到抽查的学生人数;
    (2)用抽查的学生人数乘以睡眠时间为8小时所占的比例即可得到结果;
    (3)根据众数,平均数的定义即可得到结论;
    (4)用学生总数乘以抽样中睡眠不足(少于8小时)的学生数所占的比例列式计算即可.
    【详解】
    (1)a=1﹣20%﹣30%﹣5%=45%;
    所抽查的学生人数为:3÷5%=60(人).
    故答案为:45%,60;
    (2)平均睡眠时间为8小时的人数为:60×30%=18(人);
    (3)这部分学生的平均睡眠时间的众数是7人,
    平均数7.2(小时);
    (4)1200名睡眠不足(少于8小时)的学生数1200=780(人).
    本题考查了频数(率)分布直方图,扇形统计图,以及用样本估计总体,弄清题意是解答本题的关键.
    15、(1)证明见解析;(2)1.
    【解析】
    【分析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;
    (2)由菱形的对角线互相垂直平分和菱形的面积公式解答.
    【详解】(1)∵四边形ABCD是菱形,
    ∴AC⊥BD,
    ∴∠COD=90°.
    ∵CE∥OD,DE∥OC,
    ∴四边形OCED是平行四边形,
    又∠COD=90°,
    ∴平行四边形OCED是矩形;
    (2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2.
    ∵四边形ABCD是菱形,
    ∴AC=2OC=1,BD=2OD=2,
    ∴菱形ABCD的面积为:AC•BD=×1×2=1,
    故答案为1.
    【点睛】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.
    16、(1);
    (2)甲车从地到达地的行驶时间是2.5小时;
    (3)甲车返回时与之间的函数关系式是;
    (4)乙车到达地时甲车距地的路程是175千米.
    【解析】
    (1)根据题意列算式计算即可得到结论;
    (2)根据题意列算式计算即可得到结论;
    (3)设甲车返回时与之间的函数关系式为y=kt+b,根据题意列方程组求解即可得到结论;
    (4)根据题意列算式计算即可得到结论.
    【详解】
    解:(1)甲车从A地开往B地时的速度是:180÷1.5=120千米/时,乙车从B地开往A地的速度是:(300-180)÷1.5=80千米/时,
    故答案为:120;80;
    (2) (小时)
    答:甲车从地到达地的行驶时间是2.5小时
    (3)设甲车返回时与之间的函数关系式为,
    则有
    解得:,
    ∴甲车返回时与之间的函数关系式是
    (4)小时,
    把代入得:
    答:乙车到达地时甲车距地的路程是175千米.
    本题考查了待定系数法及一次函数的解析式的运用,行程问题的数量关系的运用,解答时正确看图理解题意和求出一次函数的解析式是关键.
    17、(1)证明见解析(2)四边形ABCD是菱形(3)
    【解析】
    (1)依据条件证即可;
    (2)依据四条边都相等的四边形是菱形判定即可;
    (3)割补后,图形的面积不变,故正方形的面积就等于菱形的面积,求出菱形面积即可得正方形的边长.
    【详解】
    (1)证明:在和中,,


    (2)解:四边形ABCD是菱形,理由如下:
    ,,,

    四边形ABCD是菱形;
    (3)解:,,

    四边形ABCD的面积,
    拼成的正方形的边长.
    本题主要考查了三角形的全等的证明、菱形的判定、正方形的性质,正确理解作图步骤获取有用条件是解题的关键.
    18、证明见解析
    【解析】
    试题分析:由平行四边形的性质得出OA=OC,OB=OD,再证出OM=ON,由SAS证明△BOM≌△DON,得出对应角相等∠OBM=∠ODN,再由内错角相等,两直线平行,即可得出结论.
    试题解析:证明:∵四边形ABCD是平行四边形,
    ∴OA=OC,OB=OD,
    ∵AM=CN,∴OM=ON,
    在△BOM和△DON中,
    ∴△BOM≌△DON(SAS),
    ∴∠OBM=∠ODN,
    ∴BM∥DN.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、乙
    【解析】
    根据方差的意义判断即可.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    【详解】
    ∵甲乙的方差分别为1.25,1.21
    ∴成绩比较稳定的是乙
    故答案为:乙
    运用了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    20、5 5 3
    【解析】
    直接利用二次根式的性质化简求出即可.
    【详解】
    =5;=5;=3.
    故答案为:5.;5;3.
    此题考查二次根式的化简,解题关键在于掌握二次根式的性质.
    21、
    【解析】
    两边都乘以x(x-1),化为整式方程求解,然后检验.
    【详解】
    原式通分得:
    去分母得:
    去括号解得,
    经检验,为原分式方程的解
    故答案为
    本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.
    22、4≤m≤1
    【解析】
    设平移后的直线解析式为y=-2x+m.根据平行四边形的性质结合点O、A、C的坐标即可求出点B的坐标,再由平移后的直线与边BC有交点,可得出关于m的一元一次不等式组,解不等式组即可得出结论.
    【详解】
    设平移后的直线解析式为y=-2x+m.
    ∵四边形OABC为平行四边形,且点A(2,0),O(0,0),C(1,2),
    ∴点B(3,2).
    ∵平移后的直线与边BC有交点,
    ∴,
    解得:4≤m≤1.
    本题考查了平行四边形的性质、平移的性质以及两条直线相交的问题,解题的关键是找出关于m的一元一次不等式组.
    23、 (2,0) (0,4)
    【解析】把y=0代入y=2x+4得:0=2x+4,x=−2,
    令x=0,代入y=2x+4解得y=4,
    ∴一次函数y=2x+4的图象与y轴交点坐标这(0,4),
    即一次函数y=2x+4与x轴的交点坐标是(−2,0),与y轴交点坐标这(0,4).
    二、解答题(本大题共3个小题,共30分)
    24、见详解.
    【解析】
    (1)先判断出∠ADE=∠BAO,即可判断出△ABO≌△ADE,得出DE=OA=3,AE=OB,即可求出m;
    (2)先判断出BD⊥x轴时,求出AC的最小值,再求出DM=2,最后用勾股定理求出AE即可得出m.
    【详解】
    解:(1)如图1,过点D作DE⊥y轴于E,
    ∴∠AED=∠AOB=90°,
    ∴∠ADE+∠DAE=90°,
    ∵四边形ABCD是正方形,
    ∴AD=AB,∠BAD=90°,
    ∴∠DAE+∠BAO=90°,
    ∴∠ADE=∠BAO,
    在△ABO和△ADE中,

    ∴△ABO≌△ADE,
    ∴DE=OA,AE=OB,
    ∵A(0,3),B(m,0),D(n,1),
    ∴OA=3,OB=m,OE=1,DE=n,
    ∴n=3,
    ∴OE=OA+AE=OA+OB=3+m=1,
    ∴m=1;
    (2))如图3,由矩形的性质可知,BD=AC,
    ∴BD最小时,AC最小,
    ∵B(m,0),D(n,1),
    ∴当BD⊥x轴时,BD有最小值1,此时,m=n,
    即:AC的最小值为1,
    连接BD,AC交于点M,过点A作AE⊥BD于E,
    由矩形的性质可知,DM=BM=BD=2,
    ∵A(0,3),D(n,1),
    ∴DE=1,
    ∴EM=DM-DE=1,
    在Rt△AEM中,根据勾股定理得,AE=,
    ∴m=,即:
    当m=时,矩形ABCD的对角线AC的长最短为1.
    此题是四边形综合题,主要考查了正方形的性质,矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,解(1)的关键是△ABO≌△ADE,解(2)的关键是△ADE≌△CBF和△AOB∽△DEA,解(3)的关键是作出辅助线,是一道中考常考题.
    25、;.
    【解析】
    根据分式的减法和除法可以化简题目中的式子,然后将a、b的值代入化简后的式子即可解答本题.
    【详解】
    解:(-)÷
    =
    =
    =
    =,
    当a=+,b=-时,
    原式===.
    本题考查分式的化简求值、分母有理化,解答本题的关键是明确分式化简求值的计算方法.
    26、(1)y=x+1;(2);(3)点C的坐标是(3,4)或(5,2)或(3,2).
    【解析】
    (1)把的坐标代入直线的解析式,即可求得的值,然后在解析式中,令,求得的值,即可求得的坐标;
    (2)利用即可求出结果;
    (3)分三种情况讨论,当、、分别为等腰直角三角形的直角顶点时,求出点的坐标分别为、、。
    【详解】
    (1)设直线AB的解析式是y=kx+b
    把A(0,1),B(3,0)代入得:
    解得:
    ∴直线AB的解析式是:
    (2)过点A作AM⊥PD,垂足为M,则有AM=1,
    ∵x=1时,=,P在点D的上方,
    ∴PD=n﹣,
    由点B(3,0),可知点B到直线x=1的距离为2,即△BDP的边PD上的高长为2,
    ∴,
    ∴;
    (3)当S△ABP=2时,,解得n=2,∴点P(1,2).
    ∵E(1,0), ∴PE=BE=2,
    ∴∠EPB=∠EBP=45°.
    第1种情况,如图1,∠CPB=90°,BP=PC,
    过点C作CN⊥直线x=1于点N.
    ∵∠CPB=90°,∠EPB=45°,
    ∴∠NPC=∠EPB=45°.
    又∵∠CNP=∠PEB=90°,BP=PC,
    ∴△CNP≌△BEP,∴PN=NC=EB=PE=2,
    ∴NE=NP+PE=2+2=4, ∴C(3,4).
    第2种情况,如图2, ∠PBC=90°,BP=BC,
    过点C作CF⊥x轴于点F.
    ∵∠PBC=90°,∠EBP=45°,
    ∴∠CBF=∠PBE=45°.
    又∵∠CFB=∠PEB=90°,BC=BP,
    ∴△CBF≌△PBE.
    ∴BF=CF=PE=EB=2,
    ∴OF=OB+BF=3+2=5, ∴C(5,2).
    3种情况,如图3,∠PCB=90°,
    ∴∠CPB=∠EBP=45°,
    ∴△PCB≌△ BEP,
    ∴PC=CB=PE=EB=2,∴C(3,2).
    ∴以PB为边在第一象限作等腰直角三角形BPC,
    综上所述点C的坐标是(3,4)或(5,2)或(3,2).
    本题考核知识点:本题主要考查一次函数的应用和等腰三角形的性质. 解题关键点:掌握一次函数和等腰三角形性质,运用分类思想.
    题号





    总分
    得分
    相关试卷

    2025届湖南省湘西州数学九上开学复习检测模拟试题【含答案】: 这是一份2025届湖南省湘西州数学九上开学复习检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年新疆乌鲁木齐市数学九上开学质量检测模拟试题【含答案】: 这是一份2024年新疆乌鲁木齐市数学九上开学质量检测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年新疆伊犁州九上数学开学预测试题【含答案】: 这是一份2024-2025学年新疆伊犁州九上数学开学预测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map