2025届四川省什邡市城南学校九年级数学第一学期开学监测试题【含答案】
展开
这是一份2025届四川省什邡市城南学校九年级数学第一学期开学监测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各组数中,不能作为直角三角形的三边长的是( )
A.1.5,2,3B.6,8,10C.5,12,13D.15,20,25
2、(4分)如图,菱形中,于,交于F,于,若的周长为4,则菱形的面积为( ).
A.B.C.16D.
3、(4分)式子在实数范围内有意义,则x的取值范围是( )
A.x>1B.x≥1C.x<1D.x≤1
4、(4分)的三边长分别为,下列条件:①;②;③;④其中能判断是直角三角形的个数有( )
A.个B.个C.个D.个
5、(4分)下列各组数,可以作为直角三角形的三边长的是( )
A.2,3,4B.3,4,6C.4,5,6D.6,8,10
6、(4分)的平方根是( )
A.B.C.D.
7、(4分)一个正比例函数的图象经过(1,﹣3),则它的表达式为( )
A.y=﹣3xB.y=3xC.y=D.y=﹣
8、(4分)某市为了改善城市容貌,绿化环境,计划过两年时间,绿地面积增加44%,这两年平均每年绿地面积的增长率是 ( )
A.19%B.20%C.21%D.22%
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)为响应“低碳生活”的号召,李明决定每天骑自行车上学,有一天李明骑了1000米后,自行车发生了故障,修车耽误了5分钟,车修好后李明继续骑行,用了8分钟骑行了剩余的800米,到达学校(假设在骑车过程中匀速行驶).若设他从家开始去学校的时间为t(分钟),离家的路程为y(千米),则y与t(15<t≤23)的函数关系为________.
10、(4分)一次函数y=kx+b(k、b是常数)当自变量x的取值为1≤x≤5时,对应的函数值的范围为﹣2≤y≤2,则此一次函数的解析式为_____.
11、(4分)如图是由6个形状大小完全相同菱形组成的网格,若菱形的边长为1,一个内角(∠O)为60°,△ABC的各顶点都在格点上,则BC边上的高为______.
12、(4分)若反比例函数y=(2k-1)的图象在二、四象限,则k=________.
13、(4分)已知点(-4,y1),(2,y2)都在直线y=ax+2(a<0)上,则y1, y2的大小关系为_________ .
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,中,点为边上一点,过点作于,已知.
(1)若,求的度数;
(2)连接,过点作于,延长交于点,若,求证:.
15、(8分)小华思考解决如下问题:
原题:如图1,点P,Q分别在菱形ABCD的边BC,CD上,∠PAQ=∠B,求证:AP=AQ.
(1)小华进行探索,若将点P,Q的位置特殊化:把∠PAQ绕点A旋转得到∠EAF,使AE⊥BC,点E、F分别在边BC、CD上,如图1.此时她证明了AE=AF,请你证明;
(1)由以上(1)的启发,在原题中,添加辅助线:如图3,作AE⊥BC,AF⊥CD,垂足分别为E,F.请你继续完成原题的证明;
(3)如果在原题中添加条件:AB=4,∠B=60°,如图1,求四边形APCQ的周长的最小值.
16、(8分)已知:如图,在△ABC中,点D在AC上(点D不与A,C重合).若再添加一个条件,就可证出△ABD∽△ACB.
(1)你添加的条件是 ;
(2)根据题目中的条件和添加上的条件证明△ABD∽△ACB.
17、(10分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:
(Ⅰ)图1中a的值为 ;
(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;
(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.
18、(10分)某加工厂购进甲、乙两种原料,若甲原料的单价为元千克,乙原料的单价为元千克.现该工厂预计用不多于万元且不少于万元的资金购进这两种原料共千克.
(l)若需购进甲原料千克,请求出的取值范围;
(2)经加工后:甲原料加工的产品,利润率为;每一千克乙原料加工的产品售价为元.则应该怎样安排进货,才能使销售的利润最大?
(3)在(2)的条件下,为了促销,公司决定每售出一千克乙原料加工的产品,返还顾客现金元,而甲原料加工的产品售价不变,要使所有进货方案获利相同,求的值
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若一次函数y=(2m﹣1)x+3﹣2m的图象经过一、二、四象限,则m的取值范围是__________
20、(4分)将直线y=2x向下平移2个单位,所得直线的函数表达式是_____.
21、(4分)关于x的一元二次方程x2﹣2x+k﹣1=0没有实数根,则k的取值范围是_____.
22、(4分)小聪让你写一个含有字母的二次根式.具体要求是:不论取何实数,该二次根式都有意义,且二次根式的值为正.你所写的符合要求的一个二次根式是______.
23、(4分)若二次根式有意义,则x的取值范围是 ▲ .
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,已知等边△ABC,点D在直线BC上,连接AD,作∠ADN=60°,直线DN交射线AB于点E,过点C作CF∥AB交直线DN于点F.
(1)当点D在线段BC上,∠NDB为锐角时,如图①.
①判断∠1与∠2的大小关系,并说明理由;
②过点F作FM∥BC交射线AB于点M,求证:CF+BE=CD;
(2)①当点D在线段BC的延长线上,∠NDB为锐角时,如图②,请直接写出线段CF,BE,CD之间的数量关系;
②当点D在线段CB的延长线上,∠NDB为钝角或直角时,如图③,请直接写出线段CF,BE,CD之间的数量关系.
25、(10分)甲、乙两人利用不同的交通工具,沿同一路线从A地出发前往B地,甲出发1h后,乙出发,设甲与A地相距y甲(km),乙与A地相距y乙(km),甲离开A地的时间为x(h),y甲、y乙与x之间的函数图象如图所示.
(1)甲的速度是_____km/h;
(2)当1≤x≤5时,求y乙关于x的函数解析式;
(3)当乙与A地相距240km时,甲与A地相距_____km.
26、(12分)为了满足市场需求,某厂家生产A、B两种款式的环保购物袋,每天共生产5000个,两种购物袋的成本和售价如下表:
设每天生产A种购物袋x个,每天共获利y元.
(1)求y与x的函数解析式;
(2)如果该厂每天最多投入成本12000元,那么每天最多获利多少元?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
只要验证两小边的平方和是否等于最长边的平方即可判断三角形是不是直角三角形,据此进行判断.
【详解】
解:A、(1.5)2+22≠32,不能构成直角三角形,故本选项符合题意;
B、62+82=100=102,能构成直角三角形,故本选项不符合题意;
C、52+122=169=132,能构成直角三角形,故本选项不符合题意;
D、152+202=252,能构成直角三角形,故本选项符合题意;
故选A.
本题考查勾股定理的逆定理的应用,判断三角形是否为直角三角形只要验证两小边的平方和等于最长边的平方即可.
2、B
【解析】
由菱形的性质得到∠BCD=45°,推出△BFG与△BEC是等腰直角三角形,根据全等三角形的性质得到FG=FE,CG=CE,设BG=FG=EF=x,得到BF=x,根据△BFG的周长为4,列方程x+x+x=4,即可得到结论.
【详解】
∵菱形ABCD中,∠D=135°,
∴∠BCD=45°,
∵BE⊥CD于E,FG⊥BC于G,
∴△BFG与△BEC是等腰直角三角形,
∵∠GCF=∠ECF,∠CGF=∠CEF=90°,
CF=CF,
∴△CGF≌△CEF(AAS),
∴FG=FE,CG=CE,
设BG=FG=EF=x,
∴BF=x,
∵△BFG的周长为4,
∴x+x+x=4,
∴x=4-2,
∴BE=2,
∴BC=BE=4,
∴菱形ABCD的面积=4×2=8,
故选:B.
考查了菱形的性质,等腰三角形的性质,求FG的长是本题的关键.
3、B
【解析】
根据被开方数大于等于0列式计算即可得解.
【详解】
解:由题意得,x﹣1≥0,
解得x≥1.
故选:B.
本题主要考查了二次根式有意义的条件,掌握被开方数大于等于0是解题的关键.
4、C
【解析】
判定直角三角形的方法有两个:一是有一个角是的三角形是直角三角形;二是根据勾股逆定理判断,即三角形的三边满足,其中边c为斜边.
【详解】
解:由三角形内角和定理可知,
①中,,
,
,能判断是直角三角形,①正确,
③中, ,,不是直角三角形,③错误;
②中化简得 即 ,边b是斜边,由勾股逆定理是直角三角形,②正确;
④中经计算满足,其中边c为斜边,由勾股逆定理是直角三角形,④正确,所以能判断是直角三角形的个数有3个.
故答案为:C
本题考查了直角三角形的判定,主要从边和角两方面去考虑,即有一个角是直角或三边满足,灵活运用直角三角形边角的特殊性质取判定直角三角形是解题的关键.
5、D
【解析】
分别求出两小边的平方和和最长边的平方,看看是否相等即可.
【详解】
∵22+32≠42,
∴以2,3,4为边的三角形不是直角三角形,故本选项不符合题意;
B、∵32+42≠62,
∴以3,4,6为边的三角形不是直角三角形,故本选项不符合题意;
C、∵42+52≠62,
∴以4,5,6为边的三角形不是直角三角形,故本选项不符合题意;
D、∵62+82=102,
∴以6,8,10为边的三角形是直角三角形,故本选项符合题意。
故选D.
本题考查了勾股定理的逆定理,能够熟记勾股定理的逆定理的内容是解此题的关键.
6、B
【解析】
根据开平方的意义,可得一个数的平方根.
【详解】
解:9的平方根是±3,
故选:B.
本题考查了平方根,乘方运算是解题关键,注意平方根是两个互为相反的数.
7、A
【解析】
设正比例函数解析式为y=kx(k≠0),然后将点(1,-3)代入该函数解析式即可求得k的值.
【详解】
设正比例函数解析式为y=kx(k≠0).则根据题意,得
﹣3=k,解得k=﹣3
∴正比例函数的解析式为:y=﹣3x
故选A.
本题考查了待定系数法求正比例函数解析式.此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.
8、B
【解析】
试题分析:设这两年平均每年绿地面积的增长率是x,则过一年时间的绿地面积为1+x,过两年时间的绿地面积为(1+x)2,根据绿地面积增加44%即可列方程求解.
设这两年平均每年绿地面积的增长率是x,由题意得
(1+x)2=1+44%
解得x1=0.2,x2=-2.2(舍)
故选B.
考点:一元二次方程的应用
点评:提升对实际问题的理解能力是数学学习的指导思想,因而此类问题是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、y=100t-500(15<t≤23)
【解析】
分析:
由题意可知,李明骑车的速度为100米/分钟,由此可知他从家到学校共用去了23分钟,其中自行车出故障前行驶了10分钟,自行车修好后行驶了8分钟,由此可知当时,y与t的函数关系为:.
详解:
∵车修好后,李明用8分钟骑行了800米,且骑车过程是匀速行驶的,
∴李明整个上学过程中的骑车速度为:100米/分钟,
∴在自行车出故障前共用时:1000÷100=10(分钟),
∵修车用了5分钟,
∴当时,是指小明车修好后出发前往学校所用的时间,
∴由题意可得:(),
化简得:().
故答案为:().
点睛:“由题意得到李明骑车的速度为100米/分钟,求时,y与t间的函数关系是求自行车修好后到家的距离与行驶的时间间的函数关系”是解答本题的关键.
10、y=x﹣1或y=﹣x+1
【解析】
分k>0及k<0两种情况考虑:当k>0时,y值随x的增大而增大,由x、y的取值范围可得出点的坐标,由点的坐标利用待定系数法即可求出一次函数解析式;当k<0时,y值随x的增大而减小,由x、y的取值范围可得出点的坐标,由点的坐标利用待定系数法即可求出一次函数解析式.综上即可得出结论.
【详解】
当k>0时,y值随x的增大而增大,
∴,解得:,
∴一次函数的解析式为y=x﹣1;
当k<0时,y值随x的增大而减小,
∴,解得:,
∴一次函数的解析式为y=﹣x+1.
综上所述:一次函数的解析式为y=x﹣1或y=﹣x+1.
故答案为y=x﹣1或y=﹣x+1.
本题考查了待定系数法求一次函数解析式以及一次函数的性质,分k>0及k<0两种情况利用待定系数法求出函数解析式是解题的关键.
11、
【解析】
如图,连接EA、EC,先证明∠AEC=90°,E、C、B共线,求出AE即可.
【详解】
解:如图,连接EA,EC,
∵菱形的边长为1,由题意得∠AEF=30°,∠BEF=60°,AE=,
∴∠AEC=90°,
∵∠ACE=∠ACG=∠BCG=60°,
∴∠ECB=180°,
∴E、C、B共线,
∴AE即为△ACB的BC边上的高,
∴AE=,
故答案为.
本题考查菱形的性质,特殊三角形边角关系等知识,解题的关键是添加辅助线构造直角三角形解决问题,属于中考常考题型.
12、1
【解析】
根据反比例函数的定义,次数为-1次,再根据图象在二、四象限,2k-1<1,求解即可.
【详解】
解:根据题意,3k2-2k-1=-1,2k-1<1,
解得k=1或k=且k<,
∴k=1.
故答案为1.
本题利用反比例函数的定义和反比例函数图象的性质求解,需要熟练掌握并灵活运用.
13、y1>y2
【解析】
∵k=a
相关试卷
这是一份2025届四川省成都市部分学校九年级数学第一学期开学学业质量监测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年四川省什邡市师古中学九年级数学第一学期开学学业质量监测试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份四川省什邡市师古中学2023-2024学年九上数学期末监测模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,计算的值是等内容,欢迎下载使用。