


2025届陕西省宝鸡市数学九上开学调研试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)某单位组织职工开展植树活动,植树量与人数之间的关系如下表,下列说法不正确的是()
A.参加本次植树活动共有29人B.每人植树量的众数是4
C.每人植树量的中位数是5D.每人植树量的平均数是5
2、(4分)在中,,,则BC边上的高为
A.12B.10C.9D.8
3、(4分)当x=3时,函数y=-2x+1的值是( )
A.3B.-5C.7D.5
4、(4分)下列代数式是分式的是( )
A.B.C.D.
5、(4分)如果方程组的解x、y的值相等 则m的值是( )
A.1B.-1C.2D.-2
6、(4分)如图,中,,在同一平面内,将绕点A旋转到的位置,使得,则等于( )
A.B.C.D.
7、(4分)下列计算中正确的是( )
A.B.C.D.
8、(4分)一次函数y=kx﹣b,当k<0,b<0时的图象大致位置是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知一次函数y=﹣2x+4,完成下列问题:
(1)在所给直角坐标系中画出此函数的图象;
(2)根据函数图象回答:
方程﹣2x+4=0的解是______________;当x_____________时,y>2;当﹣4≤y≤0时,相应x的取值范围是_______________.
10、(4分)某公司招聘英语翻译,听、说、写成绩按3∶3∶2计入总成绩.某应聘者的听、说、写成绩分别为80分,90分,95分(单项成绩和总成绩满分均为百分制),则他的总成绩为____________分.
11、(4分)已知点A(m,n),B(5,3)关于x轴对称,则m + n =______.
12、(4分)菱形的两条对角线的长分别为6和8,则这个菱形的周长为_____.
13、(4分)如图,梯形中,,点分别是的中点. 已知两底之差是6,两腰之和是12,则的周长是____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.
(1)求证:四边形AECF是矩形;
(2)若AB=6,求菱形的面积.
15、(8分)画出函数y=2x-1的图象.
16、(8分)某学校为了解学生上学的交通方式,现从全校学生中随机抽取了部分学生进行“我上学的交通方式”问卷调查,规定每人必须并且只能在“乘车”、“步行”、“骑车”和“其他”四项中选择一项,并根据统计结果绘制成如下两幅不完整的统计图.
请解答下列问题:
(1)在这次调查中,样本容量为 ;
(2)补全条形统计图;
(3)“乘车”所对应的扇形圆心角为 °;
(4)若该学校共有2000名学生,试估计该学校学生中选择“步行”方式的人数.
17、(10分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(﹣4,1),B(﹣1,1),C(﹣2,3).
(1)将△ABC向右平移1个单位长度,再向下平移3个单位长度后得到△A1B1C1,请画出△A1B1C1;
(2)将△ABC绕原点O顺时针旋转90°后得到△A2B2C2,请画出△A2B2C2;
(3)直接写出以C1、B1、B2为顶点的三角形的形状是 .
18、(10分)解方程:
(1);
(2).
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件__________使四边形AECF是平行四边形(只填一个即可).
20、(4分)小明从A地出发匀速走到B地.小明经过(小时)后距离B地(千米)的函数图像如图所示.则A、B两地距离为_________千米.
21、(4分)计算:(-0.75)2015 × = _____________.
22、(4分)如图,把放在平面直角坐标系中,,,点A、B的坐标分别为、,将沿x轴向右平移,当点C落在直线上时,线段BC扫过的面积为______.
23、(4分)如图,在4×4方格纸中,小正方形的边长为1,点A,B,C在格点上,若△ABC的面积为2,则满足条件的点C的个数是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)中国新版高铁“复兴号”率先在北京南站和上海虹桥站双向首发“复兴号”高铁从某车站出发,在行驶过程中速度(千米/分钟)与时间(分钟)的函数关系如图所示.
(1)当时,求关于工的函数表达式,
(2)求点的坐标.
(3)求高铁在时间段行驶的路程.
25、(10分)阅读下列材料:
在学习“可化为一元一次方程的分式方程及其解法”的过程中,老师提出一个问题:若关于x的分式方程=1的解为正数,求a的取值范围.
经过独立思考与分析后,小杰和小哲开始交流解题思路如下:
小杰说:解这个关于x的分式方程,得x=a+1.由题意可得a+1>0,所以a>﹣1,问题解决.
小哲说:你考虑的不全面,还必须保证x≠1,即a+1≠1才行.
(1)请回答: 的说法是正确的,并简述正确的理由是 ;
(2)参考对上述问题的讨论,解决下面的问题:
若关于x的方程的解为非负数,求m的取值范围.
26、(12分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,在平面直角坐标系中如图所示:完成下列问题:
(1)画出△ABC绕点O逆时针旋转90∘后的△A BC;点B1的坐标为___;
(2)在(1)的旋转过程中,点B运动的路径长是___
(3)作出△ABC关于原点O对称的△ABC;点C的坐标为___.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
分析:A.将人数进行相加,即可得出结论A正确;B、由种植4棵的人数最多,可得出结论B正确;C、由4+10=14,可得出每人植树量数列中第15个数为5,即结论C正确;D、利用加权平均数的计算公式,即可求出每人植树量的平均数约是4.7棵,结论D错误.此题得解.
详解:A.∵4+10+8+6+1=29(人),∴参加本次植树活动共有29人,结论A正确;
B.∵10>8>6>4>1,∴每人植树量的众数是4棵,结论B正确;
C.∵共有29个数,第15个数为5,∴每人植树量的中位数是5棵,结论C正确;
D.∵(3×4+4×10+5×8+6×6+7×1)÷29≈4.7(棵),∴每人植树量的平均数约是4.7棵,结论D不正确.
故选D.
点睛:本题考查了条形统计图、中位数、众数以及加权平均数,逐一分析四个选项的正误是解题的关键.
2、A
【解析】
作于D,根据等腰三角形的性质求出BD,根据勾股定理计算,得到答案.
【详解】
解:作于D,
,
,
由勾股定理得,,
故选A.
本题考查的是勾股定理、等腰三角形的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.
3、B
【解析】
把x=3代入解析式进行计算即可得.
【详解】
当x=3时,
y=-2x+1=-2×3+1=-5,
故选B.
本题考查了求函数值,正确把握求解方法是解题的关键.
4、D
【解析】
判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.
【详解】
、、的分母中均不含有字母,因此它们是整式,而不是分式;
分母中含有字母,因此是分式.
故选:D.
考查分式的定义,掌握分式的定义是判断代数式是不是分式的前提.
5、B
【解析】
由题意x、y值相等,可计算出x=y=2,然后代入含有m的代数式中计算m即可
【详解】
x、y相等 即x=y=2,x-(m-1)y =6 即2−(m-1)×2=6 解得m=-1
故本题答案应为:B
二元一次方程组的解法是本题的考点,根据题意求出x、y的值是解题的关键
6、A
【解析】
根据平行线的性质得到∠ACD=∠CAB=63°,根据旋转变换的性质求出∠ADC=∠ACD=63°,根据三角形内角和定理求出∠CAD=54°,然后计算即可.
【详解】
解:∵DC∥AB,
∴∠ACD=∠CAB=63°,
由旋转的性质可知,AD=AC,∠DAE=∠CAB=63°,
∴∠ADC=∠ACD=63°,
∴∠CAD=54°,
∴∠CAE=9°,
∴∠BAE=54°,
故选:A.
本题考查的是旋转变换,掌握平行线的性质、旋转变换的性质是解题的关键.
7、D
【解析】
分析:根据二次根式的加减法则对各选项进行逐一计算即可.
详解:A、与不是同类项,不能合并,故本选项错误;
B、与不是同类项,不能合并,故本选项错误;
C、3与不是同类项,不能合并,故本选项错误;
D、=,故本选项正确.
故选:D.
点睛:本题考查的是二次根式的加减法,在进行二次根式的加减运算时要把各二次根式化为最简二次根式,再合并同类项即可.
8、A
【解析】
先根据k<0,b<0判断出一次函数y=kx-b的图象经过的象限,进而可得出结论.
【详解】
解:∵一次函数y=kx-b,k<0,b<0,
∴-b>0,
∴函数图象经过一二四象限,
故选:A.
本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中,当k<0,b>0时的图象在一、二、四象限是解答此题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(1)见解析;(2)x=2,<1,2≤x≤1
【解析】
(1)列表,描点,连线即可;
(2)利用函数图象得出y=0时,x的值;观察y>2时,函数图象对应的x的取值;观察函数图象,即可确定当﹣1≤y≤0时,x对应的取值范围.
【详解】
(1)列表:
描点,连线可得:
(2)根据函数图象可得:
当y=0时,x=2,故方程﹣2x+1=0的解是x=2;
当x<1时,y>2;
当﹣1≤y≤0时,相应x的取值范围是2≤x≤1.
故答案为:x=2;<1;2≤x≤1.
本题考查的是作一次函数的图象及一次函数与不等式的关系,能把式子与图象结合起来是关键.
10、87.1
【解析】分析:运用加权平均数的公式直接计算.用80分,90分,91分,分别乘以3,3,2,再用它们的和除以8即可.
详解:由题意知,总成绩=(80×3+90×3+91×2)÷(3+3+2)=87.1(分).
故答案为:87.1.
点睛:本题考查的是加权平均数的求法.本题易出现的错误是直接求出80,90,91的平均数.
11、1
【解析】
根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得m=5,n=-3,代入可得到m + n的值.
【详解】
解:∵点A(m,n),B(5,3)关于x轴对称,
∴m=5,n=-3,
即:m + n =1.
故答案为:1.
此题主要考查了关于x轴对称点的坐标特点,关键是掌握坐标变化规律:(1)关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数;(1)关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.
12、1
【解析】
根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.
【详解】
解:如图,根据题意得AO=×8=4,BO=×6=3,
∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD.
∴△AOB是直角三角形.
∴.
∴此菱形的周长为:5×4=1
故答案为:1.
13、1.
【解析】
延长EF交BC于点H,可知EF,FH,FG、EG分别为△BDC、△ABC、△BDC和△ACD的中位线,由三角形中位线定理结合条件可求得EF+FG+EG,可求得答案.
【详解】
连接AE,并延长交CD于K,
∵AB∥CD,
∴∠BAE=∠DKE,∠ABD=∠EDK,
∵点E、F、G分别是BD、AC、DC的中点.
∴BE=DE,
在△AEB和△KED中,
,
∴△AEB≌△KED(AAS),
∴DK=AB,AE=EK,EF为△ACK的中位线,
∴EF=CK=(DC-DK)=(DC-AB),
∵EG为△BCD的中位线,∴EG=BC,
又FG为△ACD的中位线,∴FG=AD,
∴EG+GF=(AD+BC),
∵两腰和是12,即AD+BC=12,两底差是6,即DC-AB=6,
∴EG+GF=6,FE=3,
∴△EFG的周长是6+3=1.
故答案为:1.
此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.
三、解答题(本大题共5个小题,共48分)
14、(1)证明见解析;(2)24
【解析】
试题分析:(1)首先证明△ABC是等边三角形,进而得出∠AEC=90°,四边形AECF是平行四边形,即可得出答案;
(2)利用勾股定理得出AE的长,进而求出菱形的面积.
试题解析:(1)∵四边形ABCD是菱形,
∴AB=BC,
又∵AB=AC,
∴△ABC是等边三角形,
∵E是BC的中点,
∴AE⊥BC,
∴∠AEC=90°,
∵E、F分别是BC、AD的中点,
∴AF=AD,EC=BC,
∵四边形ABCD是菱形,
∴AD∥BC且AD=BC,
∴AF∥EC且AF=EC,
∴四边形AECF是平行四边形,
又∵∠AEC=90°,
∴四边形AECF是矩形;
(2)在Rt△ABE中,AE=,
所以,S菱形ABCD=6×3=18.
考点:1.菱形的性质;2..矩形的判定.
15、见解析.
【解析】
通过列出表格,画出函数图象即可.
【详解】
列表:
画出函数y=2x-1的图象.如图所示.
此题考查一次函数的图象,解题关键在于掌握其性质定义.
16、(1)50;(2)图略;(3) ;(4)600.
【解析】
(1)用此次调查的乘车的学生数除以其占比即可得到样本容量;
(2)用调查的总人数减去各组人数即可得到步行的人数,即可补全统计图;
(3)用360°×40%即可得到“乘车”所对应的扇形圆心角度数;
(4)用2000乘以“步行”方式的占比即可.
【详解】
(1)样本容量为20÷40%=50
(2)步行的人数为50-20-10-5=15(人)
补全统计图如下:
(3)“乘车”所对应的扇形圆心角为40%×360°=144°
(4)估计该学校学生中选择“步行”方式的人数为2000×=600(人)
此题主要考查统计调查,解题的关键是根据统计图求出样本容量.
17、(1)详见解析,点A1,B1,C1的坐标分别为(﹣3,﹣2),(0,﹣2),(﹣1,0);(2)详见解析;(3)等腰直角三角形.
【解析】
(1)利用点平移的坐标特征写出点A1,B1,C1的坐标,然后描点即可;
(2)利用网格特点和旋转的性质画出点A、B、C的对应点A2、B2、C2得到△A2B2C2;
(3)利用勾股定理的逆定理进行判断.
【详解】
解:(1)如图,将△ABC向右平移1个单位长度,再向下平移3个单位长度,则△A1B1C1即为所作;点A1,B1,C1的坐标分别为(﹣3,﹣2),(0,﹣2),(﹣1,0)
(2)如图,每个点都绕原点顺时针旋转90°,则△A2B2C2即为所作.
(3)∵C1B12=5,C1B22=5,B1B22=10,
∴C1B12+C1B22=B1B22,C1B1=C1B2,
∴以C1、B1、B2为顶点的三角形的形状是等腰直角三角形.
故答案为等腰直角三角形.
此题考查平移和旋转的知识点,结合平移和旋转的规则即可作图求解,第三问考查勾股定理的应用.
18、 (1),; (2) ,
【解析】
(1)运用因式分解法求解即可;
(2)运用公式法求解即可.
【详解】
(1)
,
(2)
∵a=2,b=3,c=-1
∴Δ=9-4×2×(-1)=17>0
,
此题考查解一元二次方程,熟练掌握各种解法适用的题型,选择合适的方法解题是关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、AF=CE(答案不唯一).
【解析】
根据平行四边形性质得出AD∥BC,得出AF∥CE,当AF=CE时,四边形AECF是平行四边形;根据有一组对边相等且平行的四边形是平行四边形的判定,可添加AF=CE或FD=EB.
根据两组对边分别平行的四边形是平行四边形的定义,可添加AE∥FC.
添加∠AEC=∠FCA或∠DAE=∠DFC等得到AE∥FC,也可使四边形AECF是平行四边形.
20、20
【解析】
根据图象可知小明从A地出发匀速走到B地需要4小时,走3小时后距离B地5千米,所以小明的速度为5千米/时,据此解答即可.
【详解】
解:根据题意可知小明从A地出发匀速走到B地需要4小时,走3小时后距离B地5千米,所以小明的速度为5千米/时,
所以A、B两地距离为:4×5=20(千米).
故答案为:20
本题考查了一次函数的应用,观察函数图象结合数量关系,列式计算是解题的关键.
21、
【解析】
根据积的乘方的逆用进行计算求解.
【详解】
解:(-0.75)2015 ×
=
=
=
=
本题考查积的乘方的逆用使得运算简便,掌握积的乘方公式正确计算是本题的解题关键.
22、14
【解析】
先求AC的长,即求C的坐标,由平移性质得,平移的距离,因此可求线段BC扫过的面积.
【详解】
点A、B的坐标分别为、,
,
在中,,,
,
,
由于沿x轴平移,点纵坐标不变,且点C落在直线上时,,
,
平移的距离为,
扫过面积,
故答案为:14
本题考查了一次函数图象上点的坐标特征,平移的性质,关键是找到平移的距离.
23、1.
【解析】
根据三角形的面积公式,只要找出底乘以高等于4的点的位置即可.
【详解】
解:如图,点C的位置可以有1种情况.
故答案为:1.
本题主要考查了勾股定理及三角形的面积,根据格点的情况,按照一定的位置查找,不要漏掉而导致出错.
二、解答题(本大题共3个小题,共30分)
24、(1);(2)点的坐标为;(3)高铁在时段共行驶了千米.
【解析】
(1)根据函数图象中的数据可以求得OA段对应的函数解析式;
(2)根据函数图象中的数据可以求得AC段对应的函数解析式,然后将x=15代入,求得相应的y值,即可得到点C的坐标;
(3)根据(2)点C的坐标和图象中的数据可以求得高铁在CD时段共行驶了多少千米.
【详解】
(1)当时,
设关于的函数表达式是,
,得,
即当,关于的函数表达式是.
(2)设段对应的函数解析式为,
得
即段对应的函数表达式为.
当时,,
即点的坐标为.
(3)(千米),
答:高铁在时段共行驶了千米.
考查了一次函数的应用,正确读取图象的信息并用待定系数求解析式是解题的关键.
25、(1)小哲;分式的分母不为0;(2)m≥﹣6且m≠﹣2.
【解析】
(1)根据分式方程解为正数,且分母不为0判断即可;
(2)分式方程去分母转化为整式方程,由分式方程的解为非负数确定出m的范围即可.
【详解】
解:(1)小哲的说法是正确的,正确的理由是分式的分母不为0;
故答案为:小哲;分式的分母不为0;
(2)去分母得:m+x=2x﹣6,
解得:x=m+6,
由分式方程的解为非负数,得到m+6≥0,且m+6≠2,
解得:m≥﹣6且m≠﹣2.
本题考查的知识点是解一元一次不等式及解分式方程,解题的关键是熟练的掌握解一元一次不等式及解分式方程.
26、(1)图见解析,;(2);(3)图见解析,(2,3).
【解析】
(1)如图,画出△ABC绕原点O逆时针旋转90°的△A BC;
(2)如图,根据弧长公式 ,计算点B运动的路径长;画出△ABC后的△ABC;
(3)如图,画出△ABC关于原点O对称的△ABC.
【详解】
(1)如图所示:点B1的坐标为(3,−4);
故答案为:(3,−4)
(2)由勾股定理得:OB==5,
∴
故答案为: ;
(3)如图所示,点C2的坐标为(2,3)
故答案为:(2, 3).
此题考查作图-旋转变换,掌握作图法则是解题关键
题号
一
二
三
四
五
总分
得分
批阅人
植树量(棵)
3
4
5
6
7
人数
4
10
8
6
1
x
2
0
y=﹣2x+1
0
1
2025届陕西省宝鸡市金台区九上数学开学质量跟踪监视试题【含答案】: 这是一份2025届陕西省宝鸡市金台区九上数学开学质量跟踪监视试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年陕西省西安电子科技中学九上数学开学调研试题【含答案】: 这是一份2024年陕西省西安电子科技中学九上数学开学调研试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年广西贵港市覃塘区数学九上开学调研试题【含答案】: 这是一份2024年广西贵港市覃塘区数学九上开学调研试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。