2025届山东省威海市文登区实验中学九年级数学第一学期开学达标检测模拟试题【含答案】
展开
这是一份2025届山东省威海市文登区实验中学九年级数学第一学期开学达标检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在平行四边形ABCD中,AB=4,AD=6,DE平分∠ADC,则BE的长为( )
A.1B.2C.3D.4
2、(4分)下列算式中,正确的是
A.B.
C.D.
3、(4分)如图,直线y=ax+b(a≠0)过点A(0,4),B(-3,0),则方程ax+b=0的解是( )
A.x=-3B.x=4C.x=D.x=
4、(4分)下列算式正确的( )
A.=1B.=
C.=x+yD.=
5、(4分)赵强同学借了一本书,共280页,要在两周借期内读完.当他读了一半时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x页,则下面所列方程中,正确的是( )
A.B.
C.D.
6、(4分)一天早上小华步行上学,他离开家后不远便发现数学书忘在了家里,于是以相同的速度回家去拿,到家后发现弟弟把牛奶洒在了地上,就放下手中的东西,收拾好后才离开.为了不迟到,小华跑步到了学校,则小华离学校的距离y与时间t之间的函数关系的大致图象是( )
A.B.C.D.
7、(4分)若关x的分式方程有增根,则m的值为( )
A.3B.4C.5D.6
8、(4分)如图,已知一条直线经过点、点,将这条直线向左平移与轴、轴分别交于点、点.若,则直线的函数解析式为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如右图,一只蚂蚁沿着边长为2的正方体表面从点A出发,经过3个面爬到点B,如果它运动的路径是最短的,则此最短路径的长为 .
10、(4分)直线与坐标轴围成的图形的面积为________.
11、(4分)如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD的面积是18,则DP的长是_____.
12、(4分)分式方程的解是_____.
13、(4分)把长为20,宽为a的长方形纸片(10<a<20),如图那样折一下,剪下一个边长等于长方形宽度的正方形(称为第一次操作);再把剩下的长方形如图那样折一下,剪下一个边长等于此时长方形宽度的正方形(称为第二次操作);如此反复操作下去,若在第n次操作后,剩下的长方形为正方形,则操作停止.当n=3时,a的值为________.
三、解答题(本大题共5个小题,共48分)
14、(12分)(1)计算:
(2)
15、(8分)先化简,再求值:,其中与2,3构成的三边,且为整数.
16、(8分)如图,在四边形ABCD中,,,,点P自点A向D以的速度运动,到D点即停止点Q自点C向B以的速度运动,到B点即停止,点P,Q同时出发,设运动时间为.
用含t的代数式表示:
______;______;______.
(2)当t为何值时,四边形APQB是平行四边形?
17、(10分)化简:()÷并解答:
(1)当x=1+时,求原代数式的值;
(2)原代数式的值能等于﹣1吗?为什么?
18、(10分)如图,在平直角坐标系xOy中,直线与反比例函数的图象关于点
(1)求点P的坐标及反比例函数的解析式;
(2)点是x轴上的一个动点,若,直接写出n的取值范围.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,将一朵小花放置在平面直角坐标系中第三象限内的甲位置,先将它绕原点O旋转到乙位置,再将它向下平移2个单位长到丙位置,则小花顶点A在丙位置中的对应点的坐标为______.
20、(4分)将直线y= 7x向下平移2个单位,所得直线的函数表达式是________.
21、(4分)如图,在平面直角坐标系xOy中,菱形AOBC的边长为8,∠AOB=60°. 点D是边OB上一动点,点E在BC上,且∠DAE=60°.
有下列结论:
①点C的坐标为(12,);②BD=CE;
③四边形ADBE的面积为定值;
④当D为OB的中点时,△DBE的面积最小.
其中正确的有_______.(把你认为正确结论的序号都填上)
22、(4分)直角三角形的两条直角边长分别为、,则这个直角三角形的斜边长为________cm.
23、(4分)学校篮球集训队11名队员进行定点投篮训练,将11名队员在1分钟内投进篮筐的球数由小到大排序后为6,7,8,9,9,9,9,10,10,10,12,这组数据的众数和中位数分别是______________.
二、解答题(本大题共3个小题,共30分)
24、(8分)甲、乙两位同学参加数学竞赛辅导,三项培训内容的考试成绩如下表,现要选拔一人参赛.
(1)若按三项考试成绩的平均分选拔,应选谁参赛;
(2)若代数、几何、综合分别按20%、30%、50%的比例计算平均分,应选谁参赛.
25、(10分)下表是小华同学一个学期数学成绩的记录.根据表格提供的信息,回答下列的问题:
(1)小明6次成绩的众数是 ,中位数是 ;
(2)求该同学这个同学这一学期平时成绩的平均数;
(3)总评成绩权重规定如下:平时成绩占20%,期中成绩占30%,期末成绩占50%,请计算出小华同学这一个学期的总评成绩是多少分?
26、(12分).
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
只要证明CD=CE=4,根据BE=BC-EC计算即可.
【详解】
∵四边形ABCD是平行四边形,
∴AB=CD=4,AD=BC=6,
∵AD∥BC,
∴∠ADE=∠DEC,
∵DE平分∠ADC,
∴∠CDE=∠ADE,
∴∠DEC=∠CDE,
∴DC=CE=AB=4,
∴BE=BC-CE=6-4=2,
故选B.
本题考查了平行线性质,等腰三角形的性质和判定,平行四边形性质等知识点,关键是求出BC、CE的长.
2、C
【解析】
根据二次根式的混合运算法则逐一计算即可判断.
【详解】
解:A.,此选项错误;
B. ,此选项错误;
C.,此选项正确;
D.,此选项错误;
故选:C.
本题考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算法则.
3、A
【解析】
根据所求方程的解,即为函数y=ax+b图象与x轴交点横坐标,确定出解即可.
【详解】
方程ax+b=0的解,即为函数y=ax+b图象与x轴交点的横坐标,
∵直线y=ax+b过B(-3,0),
∴方程ax+b=0的解是x=-3,
故选A.
本题考查了一次函数与一元一次方程,任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.
4、A
【解析】
A、分子(-a+b)2=(a-b)2,再与分母约分即可;
B、把分子和分母都除以-1得出结论;
C、是最简分式;
D、分子和分母同时扩大10倍,要注意分子和分母的每一项都要扩大10倍.
【详解】
A、==1,所以此选项正确;
B、=≠,所以此选项错误;
C、不能化简,是最简分式,所以此选项错误;
D、=≠,所以此选项错误;
故选:A.
本题考查了分式的化简,依据是分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变;要注意以下几个问题:①当分子、分母的系数为分数或小数时,应运用分数的基本性质将分式的分子、分母中的系数化为整数,如选项D;②当分子或分母出现完全平方式时,要知道(a-b)2=(b-a)2,如选项A;③当分子和分母的首项系数为负时,通常会乘以-1,化为正数,要注意每一项都乘,不能漏项,如选项B;④因式分解是基础,熟练掌握因式分解,尤其是平方差公式和完全平方公式.
5、C
【解析】
设读前一半时,平均每天读x页,等量关系为:读前一半用的时间+读后一半用的时间=14,据此列方程即可.
【详解】
解:设读前一半时,平均每天读x页,则读前一半用的时间为:,读后一半用的时间为:.
由题意得,+=14,
故选:C.
本题考查了由实际问题列分式方程,解答本题的关键是读懂题意,设出未知数,找出等量关系,列出分式方程.
6、B
【解析】
根据题意可得小华步行上学时小华离学校的距离减小,而后离开家后不远便发现数学书忘在了家里,于是以相同的速度回家去拿时小华离学校的距离增大,到家后发现弟弟把牛奶洒在了地上,就放下手中的东西,收拾好后才离开距离不变,小华跑步到了学校时小华离学校的距离减小直至为1.
【详解】
解:根据题意可得小华步行上学时小华离学校的距离减小,而后离开家后不远便发现数学书忘在了家里,于是以相同的速度回家去拿时小华离学校的距离增大,到家后发现弟弟把牛奶洒在了地上,就放下手中的东西,收拾好后才离开距离不变,小华跑步到了学校时小华离学校的距离减小直至为1.
故选:B.
本题考查函数的图象,关键是根据题意得出距离先减小再增大,然后不变后减小为1进行判断.
7、D
【解析】
分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出m的值.
【详解】
去分母得:2x-x+3=m,
由分式方程有增根,得到x-3=0,即x=3,
把x=3代入整式方程得:m=6,
故选D.
此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.
8、A
【解析】
先求出直线AB的解析式,再根据BD=DC计算出平移方式和距离,最后根据平移的性质求直线CD的解析式.
【详解】
设直线AB的解析式为y=kx+b,
∵A(0,2)、点B(1,0)在直线AB上,
∴ 解得,
∴直线AB的解析式为y=−2x+2;
∵BD=DC,
∴△BCD为等腰三角形
又∵AD⊥BC,
∴CO=BO(三线合一),
∴C(-1,0)
即B点向左平移两个单位为C,也就是直线AB向左平移两个单位得直线CD
∴平移以后的函数解析式为:y=−2(x+2)+2,化简为y=-2x-2
故选A.
本题考查一次函数图象与几何变换,解决本题要会根据图像上的点求一次函数解析式和利用平移的性质得出平移后函数解析式,能根据BD=DC计算出平移方向和距离是解决本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
试题分析:如图,将正方体的三个侧面展开,连结AB,则AB最短,.
考点:1.最短距离2.正方体的展开图
10、1
【解析】
由一次函数的解析式求得与坐标轴的交点,然后利用三角形的面积公式即可得出结论.
【详解】
由一次函数y=x+4可知:一次函数与x轴的交点为(-4,0),与y轴的交点为(0,4),
∴其图象与两坐标轴围成的图形面积=×4×4=1.
故答案为:1.
本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
11、
【解析】
过点D作DE⊥DP交BC的延长线于E,先判断出四边形DPBE是矩形,再根据等角的余角相等求出∠ADP=∠CDE,再利用“角角边”证明△ADP和△CDE全等,根据全等三角形对应边相等可得DE=DP,然后判断出四边形DPBE是正方形,再根据正方形的面积公式解答即可.
解:如图,过点D作DE⊥DP交BC的延长线于E,
∵∠ADC=∠ABC=90°,
∴四边形DPBE是矩形,
∵∠CDE+∠CDP=90°,∠ADC=90°,
∴∠ADP+∠CDP=90°,
∴∠ADP=∠CDE,
∵DP⊥AB,
∴∠APD=90°,
∴∠APD=∠E=90°,
在△ADP和△CDE中,
∠ADP=∠CDE,∠APD=∠E,AD=CD,
∴△ADP≌△CDE(AAS),
∴DE=DP,四边形ABCD的面积=四边形DPBE的面积=18,
∴矩形DPBE是正方形,
∴DP=.
故答案为3.
“点睛”本题考查了正方形的判定与性质,全等三角形的判定与性质,熟记各性质并作辅助线构造出全等三角形和正方形是解题的关键.
12、
【解析】
两边都乘以x(x-1),化为整式方程求解,然后检验.
【详解】
原式通分得:
去分母得:
去括号解得,
经检验,为原分式方程的解
故答案为
本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.
13、12或2
【解析】
根据操作步骤,可知每一次操作时所得正方形的边长都等于原矩形的宽.所以首先需要判断矩形相邻的两边中,哪一条边是矩形的宽.当10<a<1时,矩形的长为1,宽为a,所以第一次操作时所得正方形的边长为a,剩下的矩形相邻的两边分别为1-a,a.由1-a<a可知,第二次操作时所得正方形的边长为1-a,剩下的矩形相邻的两边分别为1-a,a-(1-a)=2a-1.由于(1-a)-(2a-1)=40-3a,所以(1-a)与(2a-1)的大小关系不能确定,需要分情况进行讨论.又因为可以进行三次操作,故分两种情况:①1-a>2a-1;②1-a<2a-1.对于每一种情况,分别求出操作后剩下的矩形的两边,根据剩下的矩形为正方形,列出方程,求出a的值.
【详解】
由题意,可知当10<a<1时,第一次操作后剩下的矩形的长为a,宽为1-a,所以第二次操作时正方形的边长为1-a,
第二次操作以后剩下的矩形的两边分别为1-a,2a-1.此时,分两种情况:
①如果1-a>2a-1,即a<,那么第三次操作时正方形的边长为2a-1.
∵经过第三次操作后所得的矩形是正方形,
∴矩形的宽等于1-a,
即2a-1=(1-a)-(2a-1),
解得a=12;
②如果1-a<2a-1,即a>,那么第三次操作时正方形的边长为1-a.
则1-a=(2a-1)-(1-a),
解得a=2.
故答案为:12或2.
三、解答题(本大题共5个小题,共48分)
14、(1)3;(2)1.
【解析】
(1)先进行二次根式的除法运算,然后把二次根式化为最简二次根式后合并即可;
(2)利用平方差公式计算.
【详解】
(1)原式=3-2+
=+2
=3;
(2)原式=49-48
=1.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
15、1
【解析】
试题分析:先进行分式的除法运算,再进行分式的加减法运算,根据三角形三边的关系确定出a的值,然后代入进行计算即可.
试题解析:原式= ,
∵a与2、3构成△ABC的三边,
∴3−2
相关试卷
这是一份2025届山东省威海市文登市数学九上开学复习检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届山东省威海市文登区八校联考数学九上开学经典模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年山东省威海市文登区文登实验,三里河中学数学九上开学调研模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。