2025届山东省济南商河县联考数学九年级第一学期开学综合测试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一组数据:2,3,4,x中若中位数与平均数相等,则数x不可能是( )
A.1B.2C.3D.5
2、(4分)若关于的一元二次方程有两个实数根,则的取值范围是( )
A.B.,且C.,且D.
3、(4分)已知点P在第四象限,且到x轴的距离为3,到y轴的距离为2,则点P的坐标为( )
A.(-2,3)B.(2,-3)C.(3,-2)D.(-3,2)
4、(4分)如图,在平面直角坐标系中,等边△OAB的顶点B的坐标为(2,0),点A在第一象限内,将△OAB沿直线OA的方向平移至△O′A′B′的位置,此时点A′的横坐标为3,则点B′的坐标为( )
A.(4,2)B.(3,3)C.(4,3)D.(3,2)
5、(4分)用配方法解方程,方程可变形为( )
A.x 12 4B.x 12 4C.x 12 2D.x 12 2
6、(4分)如图,已知平行四边形中,则( )
A.B.C.D.
7、(4分)函数中自变量x的取值范围是( )
A.x≥ 1 B.x≤ 1 C.x≠ 1 D.x> 1
8、(4分)如图,中,于点,点为的中点,连接,则的周长是( )
A.4+2B.7+C.12D.10
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)有一面积为5的等腰三角形,它的一个内角是30°,则以它的腰长为边的正方形的面积为 .
10、(4分)如图,直线y=kx+b(k≠0)经过点A(﹣2,4),则不等式kx+b>4的解集为______.
11、(4分)对于一次函数,若,那么对应的函数值y1与y2的大小关系是________.
12、(4分)若二次根式有意义,则x的取值范围是 ▲ .
13、(4分)若式子在实数范围内有意义,则应满足的条件是_____________.
三、解答题(本大题共5个小题,共48分)
14、(12分)计算:
15、(8分)已知,在正方形ABCD中,点E在边AD上,点F在边BC的延长线上,且AE=CF,连接AC,EF.
(1)如图①,求证:EF//AC;
(2)如图②,EF与边CD交于点G,连接BG,BE,
①求证:△BAE≌△BCG;
②若BE=EG=4,求△BAE的面积.
16、(8分)有一块薄铁皮ABCD,∠B=90°,各边的尺寸如图所示,若对角线AC剪开,得到的两块都是“直角三角形”形状吗?为什么?
17、(10分)在中,,是的中点,是的中点,过点作交的延长线于点,连接.
(1)求证:.
(2)求证:四边形是菱形.
18、(10分)计算:﹣(π﹣2019)0+2﹣1.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,梯形ABCD中,AB∥CD,点E、F、G分别是BD、AC、DC的中点.已知两底差是6,两腰和是12,则△EFG的周长是 .
20、(4分)距离地面2m高的某处把一物体以初速度v0(m/s)竖直向上抛物出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足: (其中g是常数,通常取10m/s2).若v0=10m/s,则该物体在运动过程中最高点距地面_________m.
21、(4分)如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值是________ .
22、(4分)在实数范围内分解因式:3x2﹣6=_____.
23、(4分)已知方程ax2+7x﹣2=0的一个根是﹣2,则a的值是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,正方形ABCD的边长为4,动点E从点A出发,以每秒2个单位的速度沿A→D→A运动,动点G从点A出发,以每秒1个单位的速度沿A→B运动,当有一个点到达终点时,另一点随之也停止运动.过点G作FG⊥AB交AC于点F.设运动时间为t(单位:秒).以FG为一直角边向右作等腰直角三角形FGH,△FGH与正方形ABCD重叠部分的面积为S.
(1)当t=1.5时,S=________;当t=3时,S=________.
(2)设DE=y1,AG=y2,在如图所示的网格坐标系中,画出y1与y2关于t的函数图象.并求当t为何值时,四边形DEGF是平行四边形?
25、(10分)下面的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又原路返回,顺路到文具店去买笔,然后散步回家.其中x表示时间,y表示张强离家的距离.根据图象回答:
(1)体育场离张强家的多远?张强从家到体育场用了多长时间?
(2)体育场离文具店多远?
(3)张强在文具店逗留了多久?
(4)计算张强从文具店回家的平均速度.
26、(12分)如图,点分别是对角线上两点,.求证:.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
因为中位数的值与大小排列顺序有关,而此题中x的大小位置未定,故应该分类讨论x所处的所有位置情况:从小到大(或从大到小)排列在中间(在第二位或第三位结果不影响);结尾;开始的位置.
【详解】
(1)将这组数据从小到大的顺序排列为2,3,x,4,
处于中间位置的数是3,x,
那么由中位数的定义可知,这组数据的中位数是(3+x)÷2,
平均数为(2+3+4+x)÷4,
∴(3+x)÷2=(2+3+4+x)÷4,
解得x=3,大小位置与3对调,不影响结果,符合题意;
(2)将这组数据从小到大的顺序排列后2,3,4,x,
中位数是(3+4)÷2=3.1,
此时平均数是(2+3+4+x)÷4=3.1,
解得x=1,符合排列顺序;
(3)将这组数据从小到大的顺序排列后x,2,3,4,
中位数是(2+3)÷2=2.1,
平均数(2+3+4+x)÷4=2.1,
解得x=1,符合排列顺序.
∴x的值为1、3或1.
故选B.
本题考查的知识点是结合平均数确定一组数据的中位数,解题关键是要明确中位数的值与大小排列顺序有关.
2、C
【解析】
根据根的判别式即可求解的取值范围.
【详解】
一元二次方程,
,.
有个实根,
.
且.
故选C.
本题考查了一元二次方程根的问题,掌握根的判别式是解题的关键.
3、B
【解析】
试题分析:根据点P在第四象限,所以P点的横坐标在x轴的正半轴上,纵坐标在y轴的负半轴上,由P点到x轴的距离为3,到y轴的距离为2,即可推出P点的横、纵坐标,从而得出(2,-3).
故选B.
考点:平面直角坐标系
4、A
【解析】
作AM⊥x轴,根据等边三角形的性质得出OA=OB=2,∠AOB=60°,利用含30°角的直角三角形的性质求出OM=OA=1,即可求出AM的长,进而可得A点坐标,即可得出直线OA的解析式,把x=3代入可得A′点的坐标,由一对对应点A与A′的移动规律即可求出点B′的坐标.
【详解】
如图,作AM⊥x轴于点M,
∵等边△OAB的顶点B坐标为(2,0),
∴OA=OB=2,∠AOB=60°,
∴OM=OA=1,AM=OM=,
∴A(1,),
∴直线OA的解析式为:y=x,
∴当x=3时,y=3,
∴A′(3,3),
∴将A点向右平移2个单位,再向上平移2个单位后得到A′点,
∴将B(2,0)向右平移2个单位,再向上平移2个单位后可得到B′点,
∴点B′的坐标为(4,2),
故选A
本题考查坐标与图形变化—平移及等边三角形的性质,根据等边三角形的性质得到平移规律是解题关键.
5、B
【解析】
将的常数项变号后移项到方程右边,然后方程两边都加上,方程左边利用完全平方公式变形后,即可得到结果.
【详解】
,
移项得:,
两边加上得:,
变形得:,
则原方程利用配方法变形为.
故选.
此题考查了利用配方法解一元二次方程,利用此方法的步骤为:1、将二次项系数化为“”;2、将常数项移项到方程右边;3、方程两边都加上一次项系数一半的平方,方程左边利用完全平方公式变形,方程右边为非负常数;4、开方转化为两个一元一次方程来求解.
6、B
【解析】
由平行四边形的邻角互补得到的度数,由平行四边形的对角相等求.
【详解】
解:因为:平行四边形,所以:,,
又因为:所以:,解得:,所以:.
故选B.
本题考查的是平行四边形的性质,掌握平行四边形的角的性质是解题关键.
7、A
【解析】
试题分析:当x+1≥0时,函数有意义,所以x≥ 1,故选:A.
考点:函数自变量的取值范围.
8、D
【解析】
根据等腰三角形三线合一的性质,先求出BE,再利用直角三角形斜边中线定理求出DE即可.
【详解】
∵在△ABC中,AB=AC=6,AE平分∠BAC,
∴BE=CE=BC=4,
又∵D是AB中点,
∴BD=AB=3,
∴DE是△ABC的中位线,
∴DE=AC=3,
∴△BDE的周长为BD+DE+BE=3+3+4=1.
故选:D.
本题主要考查了直角三角形斜边中线定理及等腰三角形的性质:是三线合一,是中学阶段的常规题.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1或1.
【解析】
试题分析:分两种情形讨论①当30度角是等腰三角形的顶角,②当30度角是底角,
①当30度角是等腰三角形的顶角时,如图1中,
当∠A=30°,AB=AC时,设AB=AC=a,
作BD⊥AC于D,∵∠A=30°,
∴BD=AB=a,
∴•a•a=5,
∴a2=1,
∴△ABC的腰长为边的正方形的面积为1.
②当30度角是底角时,如图2中,
当∠ABC=30°,AB=AC时,作BD⊥CA交CA的延长线于D,设AB=AC=a,
∵AB=AC,
∴∠ABC=∠C=30°,
∴∠BAC=11°,∠BAD=60°,
在RT△ABD中,∵∠D=90°,∠BAD=60°,
∴BD=a,
∴•a•a=5,
∴a2=1,
∴△ABC的腰长为边的正方形的面积为1.
考点:正方形的性质;等腰三角形的性质.
10、x>-1.
【解析】
结合函数的图象利用数形结合的方法确定不等式的解集即可.
【详解】
观察图象知:当x>-1时,kx+b>4,
故答案为x>-1.
考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
11、
【解析】
先根据一次函数判断出函数图象的增减性,再根据x1<x1进行判断即可.
【详解】
∵直线,k=-<0,
∴y随x的增大而减小,
又∵x1<x1,
∴y1>y1.
故答案为>.
本题考查的是一次函数的增减性,即一次函数y=kx+b(k≠0)中,当k>0,y随x的增大而增大;当k<0,y随x的增大而减小.
12、.
【解析】
根据二次根式有意义的条件:被开方数大于等于0列出不等式求解.
【详解】
根据二次根式被开方数必须是非负数的条件,得.
本题考查二次根式有意义的条件,牢记被开方数必须是非负数.
13、
【解析】
直接利用二次根式的定义分析得出答案.
【详解】
解:二次根式在实数范围内有意义,则x-1≥0,
解得:x≥1.
故答案为:x≥1.
此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.
三、解答题(本大题共5个小题,共48分)
14、5
【解析】
原式
本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.
15、(1)见解析;(1)①见解析;②△BAE的面积为1.
【解析】
(1)利用平行四边形的判定及其性质定理即可解决问题;
(1)①根据SAS可以证明两三角形全等;
②先根据等腰直角△DEG计算DE的长,设AE=a,表示正方形的边长,根据勾股定理列式,可得+a=4,最后根据三角形面积公式,整体代入可得结论.
【详解】
(1)证明:∵正方形ABCD
∴AE//CF,
∵AE=CF
∴AEFC是平行四边形
∴EF//AC.
(1)①如图,
∵四边形ABCD是正方形,且EF∥AC,
∴∠DEG=∠DAC=45°,∠DGE=∠DCA=45°;
∵AD∥BF,
∴∠CFG=∠DEG=45°,
∵∠CGF=∠DGE=45°,
∴∠CGF=∠CFG,
∴CG=CF;
∵AE=CF,
∴AE=CG;
在△ABE与△CBG中,
∵AE=CG,∠BAE=∠BCG,AB=BC
∴△ABE≌CBG(SAS);
②由①知△DEG是等腰直角三角形,
∵EG=4,
∴DE=,
设AE=a,则AB=AD=a+,
Rt△ABE中,由勾股定理得:AB1+AE1=BE1,
∴(a+)1+a1=41,
∴a1+a=4,
∴S△ABE=AB•AE=a(a+)= (a1+a)=×4=1.
本题是四边形的综合题,本题难度适中,考查了正方形的性质、全等三角形的判定及其应用问题;解题的关键是熟练掌握正方形的性质,结合等腰直角三角形的性质来解决问题;并利用未知数结合整体代入解决问题.
16、是,理由见解析.
【解析】
先在△ABC中,由∠B=90°,可得△ABC为直角三角形;根据勾股定理得出AC2=AB2+BC2=8,那么AD2+AC2=9=DC2,由勾股定理的逆定理可得△ACD也为直角三角形.
【详解】
都是直角三角形.理由如下:
连结AC.
在△ABC中,∵∠B=90°,
∴△ABC为直角三角形;
∴AC2=AB2+BC2=8,
又∵AD2+AC2=1+8=9,而DC2=9,
∴AC2+AD2=DC2,
∴△ACD也为直角三角形.
考点:1.勾股定理的逆定理;2.勾股定理.
17、(1)见解析;(2) 见解析
【解析】
(1)根据已知条件易证,利用全等三角形的性质即可证得结论;(2)根据(1)的结论,结合已知条件证得,利用一组对边平行且相等的四边形为平行四边形,证得四边形是平行四边形,再利用直角三角形斜边的中线等于斜边的一半证得,由一组邻边相等的平行四边形为菱形即可判定四边形是菱形.
【详解】
(1)证明:如图,,
,
是直角三角形,是边上的中线,是的中点,
,,
在和中,
,
;
.
(2)由(1)知,
,
,
,
四边形是平行四边形,
,是的中点,
,
四边形是菱形.
本题考查全等三角形的判定与性质、平行四边形的判定、菱形的判定及直角三角形斜边的中线等于斜边的一半的性质,熟练运用相关知识是解决问题的关键.
18、
【解析】
本题涉及零指数幂、负指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
【详解】
解:原式.
本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.
【解析】
试题分析:延长EF交BC于点H,可知EF,FH,FG、EG分别为△BDC、△ABC、△BDC和△ACD的中位线,由三角形中位线定理结合条件可求得EF+FG+EG,可求得答案.
解:连接AE,并延长交CD于K,
∵AB∥CD,
∴∠BAE=∠DKE,∠ABD=∠EDK,
∵点E、F、G分别是BD、AC、DC的中点.
∴BE=DE,
在△AEB和△KED中,
,
∴△AEB≌△KED(AAS),
∴DK=AB,AE=EK,EF为△ACK的中位线,
∴EF=CK=(DC﹣DK)=(DC﹣AB),
∵EG为△BCD的中位线,∴EG=BC,
又FG为△ACD的中位线,∴FG=AD,
∴EG+GF=(AD+BC),
∵两腰和是12,即AD+BC=12,两底差是6,即DC﹣AB=6,
∴EG+GF=6,FE=3,
∴△EFG的周长是6+3=1.
故答案为:1.
点评:此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.
20、7
【解析】试题分析:将=10和g=10代入可得:S=-5+10t,则最大值为: =5,则离地面的距离为:5+2=7m.
考点:二次函数的最值.
21、
【解析】
根据矩形的性质就可以得出EF,AP互相平分,且EF=AP,根据垂线段最短的性质就可以得出AP⊥BC时,AP的值最小,即AM的值最小,由勾股定理求出BC,根据面积关系建立等式求出其解即可.
【详解】
解:∵PE⊥AB,PF⊥AC,∠BAC=90°,
∴∠EAF=∠AEP=∠AFP=90°,
∴四边形AEPF是矩形,
∴EF,AP互相平分.且EF=AP,
∴EF,AP的交点就是M点,
∵当AP的值最小时,AM的值就最小,
∴当AP⊥BC时,AP的值最小,即AM的值最小.
∵AP×BC=AB×AC,
∴AP×BC=AB×AC,
在Rt△ABC中,由勾股定理,得BC==10,
∵AB=6,AC=8,
∴10AP=6×8,
∴AP=
∴AM=,
故答案为:.
考点:(1)、矩形的性质的运用;(2)、勾股定理的运用;(3)、三角形的面积公式
22、3(x+)(x﹣)
【解析】
先提取公因式3,然后把2写成2,再利用平方差公式继续分解因式即可.
【详解】
3x2-6,
=3(x2-2),
=3(x2-2),
=3(x+)(x-).
故答案为:3(x+)(x-).
本题考查了实数范围内分解因式,注意把2写成2的形式继续进行因式分解.
23、1
【解析】
根据一元二次方程的解的定义,将x=﹣2代入已知方程,通过一元一次方程来求a的值.
【详解】
解:根据题意知,x=﹣2满足方程ax2+7x﹣2=0,则1a﹣11﹣2=0,即1a﹣16=0,
解得,a=1.
故答案是:1.
考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.
二、解答题(本大题共3个小题,共30分)
24、(1);;(2)当t=或t=4时,四边形DEGF是平行四边形.
【解析】
(1)当t=1.5时,如图①,重叠部分的面积是△FGH的面积,求出即可;当t=3时,如图②,重叠部分的面积是四边形FGBK的面积,也就是△FGH的面积减去△KBH的面积,求出即可;
(2)进行分类讨论,列出方程即可求出t的值.
【详解】
解:当t=1.5时,如图①,重叠部分的面积是△FGH的面积,所以S=;
当t=3时,如图②,重叠部分的面积是四边形FGBK的面积,也就是△FGH的面积减去△KBH的面积,所以S=×3×3-×2×2=.
(2)由题意可以求得
y1= ;y2=t(0≤t≤4).<
所以y1与y2关于t的函数图象如图③所示.
因为运动过程中,DE∥FG,所以当DE=FG时,四边形DEGF是平行四边形.
∵FG=AG,
∴DE=AG,
∴y1=y2.由图象可知,有两个t值满足条件:
①当0≤t≤2时,由4-2t=t,解得t=;
②当2
25、(1)体育场离张强家2.5km,张强从家到体育场用了15min;(2)体育场离文具店1km;(3) 张强在文具店逗留了20min;(4)张强从文具店回家的平均速度为km/min
【解析】
(1)根据张强锻炼时时间增加,路程没有增加,表现在函数图象上就出现第一次与x轴平行的图象;
(2)由图中可以看出,体育场离张强家2.5千米,文具店离张强家1.5千米,得出体育场离文具店距离即可;
(3)张强在文具店逗留,第二次出现时间增加,路程没有增加,时间为:65-1.
(4)根据观察函数图象的纵坐标,可得路程,根据观察函数图象的横坐标,可得回家的时间,根据路程与时间的关系,可得答案.
【详解】
解:(1)从图象上看,体育场离张强家2.5km,张强从家到体育场用了15min.
(2)2.5-1.5=1(km),
所以体育场离文具店1km.
(3)65-1=20(min),
所以张强在文具店逗留了20min.
(4)1.5÷(100-65)= (km/min),
张强从文具店回家的平均速度为km/min.
此题主要考查了函数图象,正确理解函数图象横纵坐标表示的意义是解答此题的关键,需注意理解时间增多,路程没有变化的函数图象是与x轴平行的一条线段.
26、见解析
【解析】
用SAS证明△BAF≌△DCE即可说明∠DEC=∠BFA.
【详解】
证明::∵四边形为平行四边形,
∴,
∴,
又,
∴≌,
∴.
本题主要考查了平行四边形的性质、全等三角形的判定和性质,解决这类问题一般是四边形转化为三角形处理.
题号
一
二
三
四
五
总分
得分
2025届山东省济南市中学数学九年级第一学期开学联考试题【含答案】: 这是一份2025届山东省济南市中学数学九年级第一学期开学联考试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年山东省济南章丘区五校联考九年级数学第一学期开学联考试题【含答案】: 这是一份2024年山东省济南章丘区五校联考九年级数学第一学期开学联考试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年山东省济南平阴县联考数学九年级第一学期开学综合测试试题【含答案】: 这是一份2024年山东省济南平阴县联考数学九年级第一学期开学综合测试试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。