搜索
    上传资料 赚现金
    英语朗读宝

    2025届南昌市南大附中数学九年级第一学期开学预测试题【含答案】

    2025届南昌市南大附中数学九年级第一学期开学预测试题【含答案】第1页
    2025届南昌市南大附中数学九年级第一学期开学预测试题【含答案】第2页
    2025届南昌市南大附中数学九年级第一学期开学预测试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届南昌市南大附中数学九年级第一学期开学预测试题【含答案】

    展开

    这是一份2025届南昌市南大附中数学九年级第一学期开学预测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)抚顺市中小学机器人科技大赛中,有7名学生参加决赛,他们决赛的成绩各不相同,其中一名参赛选手想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名学生成绩的( )
    A.中位数 B.众数 C.平均数 D.方差
    2、(4分)如图,矩形在平面直角坐标系中, ,,把矩形沿直线对折使点落在点处,直线与的交点分别为,点在轴上,点在坐标平面内,若四边形是菱形,则菱形的面积是( )
    A.B.C.D.
    3、(4分)为弘扬传统文化,某校初二年级举办传统文化进校园朗诵大赛,小明同学根据比赛中九位评委所给的某位参赛选手的分数,制作了一个表格,如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是( )
    A.中位数B.众数C.平均数D.方差
    4、(4分)如图,折线ABCDE描述了一汽车在某一直路上行驶时汽车离出发地的距离s(千米)和行驶时间t(小时)间的变量关系,则下列结论正确的是( )
    A.汽车共行驶了120千米
    B.汽车在行驶途中停留了2小时
    C.汽车在整个行驶过程中的平均速度为每小时24千米
    D.汽车自出发后3小时至5小时间行驶的速度为每小时60千米
    5、(4分)将下列多项式因式分解,结果中不含因式x-1的是( )
    A.x2-1B.x2+2x+1C.x2-2x+1D.x(x-2)+(2-x)
    6、(4分)函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是( )
    A.B.
    C.D.
    7、(4分)直线上两点的坐标分别是,,则这条直线所对应的一次函数的解析式为( )
    A.B.C.D.
    8、(4分)某校八年级(2)班第一组女生的体重(单位:):35,36,36,42,42,42,45,则这组数据的众数为( )
    A.45B.42C.36D.35
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)使有意义的x的取值范围是_____.
    10、(4分)等腰三角形的两边长分别为4和9,则第三边长为
    11、(4分)如图,在等腰梯形 ABCD 中,AD∥BC,AB=CD.点 P 为底边 BC 的延长线上任意一点,PE⊥AB 于 E,PF⊥DC 于 F,BM⊥DC 于 M.请你探究线段 PE、PF、BM 之间的数量关系:
    ______.
    12、(4分)在平面直角坐标系中,已知点A(﹣,0),B(,0),点C在x轴上,且AC+BC=6,写出满足条件的所有点C的坐标_____.
    13、(4分)将二元二次方程化为两个一次方程为______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)为了选拔一名学生参加全市诗词大赛,学校组织了四次测试,其中甲乙两位同学成绩较为优秀,他们在四次测试中的成绩(单位:分)如表所示.
    (1)分别求出两位同学在四次测试中的平均分;
    (2)分别求出两位同学测试成绩的方差.你认为选谁参加比赛更合适,请说明理由.
    15、(8分)如图,已知函数y=x+1和y=ax+3的图象交于点P,点P的横坐标为1,
    (1)关于x,y的方程组 的解是 ;
    (2)a= ;
    (3)求出函数y=x+1和y=ax+3的图象与x轴围成的几何图形的面积.
    16、(8分)如图1,在△ABC中,∠BAC=90°,AB=AC,在△ABC内部作△CED,使∠CED=90°,E在BC上,D在AC上,分别以AB,AD为邻边作平行四边形ABFD,连接AF、AE、EF.
    (1)证明:AE=EF;
    (2)判断线段AF,AE的数量关系,并证明你的结论;
    (3)在图(1)的基础上,将△CED绕点C逆时针旋转,请判断(2)问中的结论是否成立?若成立,结合图(2)写出证明过程;若不成立,请说明理由
    17、(10分)求证:对角线相等的平行四边形是矩形.(要求:画出图形,写出已知和求证,并给予证明)
    18、(10分)一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.
    (1)农民自带的零钱是多少?
    (2) 由表达式你能求出降价前每千克的土豆价格是多少?试求降价前y与x之间的关系式
    (3) 降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,,,,若,则的长为______.
    20、(4分)若代数式有意义,则x的取值范围是__________.
    21、(4分)如图,△ACB≌△DCE,∠ACD=50°,则∠BCE的度数为_____.
    22、(4分)一个多边形的内角和等于 1800°,它是______边形.
    23、(4分)在直角梯形中,,如果,,,那么对角线__________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图所示的折线ABC表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.
    (1)写出y与t之间的函数关系式;
    (2)通话2分钟应付通话费多少元?通话7分钟呢?
    25、(10分)某商店的一种服装,每件成本为50元.经市场调研,售价为60元时,可销售800件;售价每提高5元,销售量将减少100件.求每件商品售价是多少元时,商店销售这批服装获利能达到12000元?
    26、(12分)如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫做格点.
    (1)以格点为顶点画,使三这长分别为;
    (2)若的三边长分别为m、n、d,满足,求三边长,若能画出以格点为顶点的三角形,请画出该格点三角形.

    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    7人成绩的中位数是第4名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
    【详解】
    由于总共有7个人,且他们的分数互不相同,第4的成绩是中位数,要判断是否进入前4名,故应知道中位数的多少,
    故选A.
    本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义,熟练掌握相关的定义是解题的关键.
    2、C
    【解析】
    如图,连接AD,根据勾股定理先求出OC的长,然后根据折叠的性质以及勾股定理求出AD、DF的长,继而作出符合题意的菱形,分别求出菱形的两条对角线长,然后根据菱形的面积等于对角线积的一半进行求解即可.
    【详解】
    如图,连接AD,
    ∵∠AOC=90°,AC=5,AO=3,
    ∴CO==4,
    ∵把矩形沿直线对折使点落在点处,
    ∴∠AFD=90°,AD=CD,CF=AF=,
    设AD=CD=m,则OD=4-m,
    在Rt△AOD中,AD2=AO2+OD2,
    ∴m2=32+(4-m)2,
    ∴m=,
    即AD=,
    ∴DF===,
    如图,过点F作FH⊥OC,垂足为H,延长FH至点N,使HN=HF,在HC上截取HM=HD,则四边形MFDN即为符合条件的菱形,
    由题意可知FH=,
    ∴FN=2FH=3,DH=,
    ∴DM=2DH=,
    ∴S菱形MFDN=,
    故选C.
    本题考查了折叠的性质,菱形的判定与性质,勾股定理等知识,综合性质较强,有一定的难度,正确添加辅助线,画出符合题意的菱形是解题的关键.
    3、A
    【解析】
    根据中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数可得答案.
    【详解】
    如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是中位数.
    故选A.
    点睛:本题主要考查了中位数,关键是掌握中位数定义.
    4、D
    【解析】
    根据观察图象的横坐标、纵坐标,可得行驶的路程与时间的关系,根据路程与时间的关系,可得速度.
    【详解】
    A、由图象可以看出,最远处到达距离出发地120千米处,但又返回原地,所以行驶的路程为240千米,错误,不符合题意;
    B、停留的时候,时间增加,路程不变,所以停留的时间为2-1.5=0.5小时,错误,不符合题意;
    C、平均速度为总路程÷总时间,总路程为240千米,总时间为5小时,所以平均速度为240÷5=48千米/时,错误,不符合题意;
    D、汽车自出发后3小时至5小时间行驶的速度为120÷(5-3)=60千米/时,正确,符合题意,
    故选D.
    本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决;用到的知识点为:平均速度=总路程÷总时间.
    5、B
    【解析】
    将各选项进行因式分解即可得以选择出正确答案.
    【详解】
    A. x2﹣1=(x+1)(x-1);
    B. x2+2x+1=(x+1)2 ;
    C. x2﹣2x+1 =(x-1)2;
    D. x(x﹣2)﹣(x﹣2)=(x-2)(x-1);
    结果中不含因式x-1的是B;
    故选B.
    6、C
    【解析】
    根据a、b的符号进行判断,两函数图象能共存于同一坐标系的即为正确答案.
    【详解】
    解:分四种情况:
    ①当a>0,b>0时,y=ax+b的图象经过第一、二、三象限,y=bx+a的图象经过第一、二、三象限,无选项符合;
    ②当a>0,b<0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,C选项符合;
    ③当a<0,b>0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,C选项符合;
    ④当a<0,b<0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.
    故选C.
    一次函数y=kx+b的图象有四种情况:
    ①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;
    ②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;
    ③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;
    ④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.
    7、A
    【解析】
    利用待定系数法求函数解析式.
    【详解】
    解:∵直线y=kx+b经过点P(-20,5),Q(10,20),
    ∴ ,
    解得,
    所以,直线解析式为.
    故选:A.
    本题主要考查待定系数法求函数解析式,是中考的热点之一,需要熟练掌握.解题的关键是掌握待定系数法.
    8、B
    【解析】
    出现次数最多的数是1.故众数是1.
    【详解】
    解:出现次数最多的数是1.故众数是1.
    故答案:B
    注意众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、x≥2
    【解析】
    根据题意可得2x﹣4≥0,然后求解关于x的一元一次不等式即可.
    【详解】
    解:∵有意义,
    ∴2x﹣4≥0,
    解得:x≥2.
    故答案为x≥2.
    本题考查了算术平方根有意义,解一元一次不等式,解此题的关键在于熟练掌握其知识点.
    10、9
    【解析】
    试题分析:∵等腰三角形的两边长分别为4和9,∴分两种情况(1)腰为4,底边为9,但是4+4<9,所以不能组成三角形(2))腰为9,底边为4,符合题意,所以第三边长为9.
    考点:等腰三角形的概念及性质.
    11、PE-PF=BM.
    【解析】
    过点B作BH∥CD,交PF的延长线于点H,易证四边形BMFH是平行四边形,于是有FH=BM,再用AAS证明△PBE≌△PBH,可得PH=PE,继而得到结论.
    【详解】
    解:PE-PF=BM. 理由如下:
    过点B作BH∥CD,交PF的延长线于点H,如图
    ∴∠PBH=∠DCB,
    ∵PF⊥CD,BM⊥CD,
    ∴BM∥FH,PH⊥BH,
    ∴四边形BMFH是平行四边形,∠H=90°,
    ∴FH=BM,
    ∵等腰梯形ABCD中,AD∥BC,AB=DC,
    ∴∠ABC=∠DCB,
    ∴∠ABC=∠PBH,
    ∵PE⊥AB,
    ∴∠PEB=∠H=90°,又PB为公共边,
    ∴△PBE≌△PBH(AAS),
    ∴PH=PE,
    ∴PE=PF+FH=PF+BM.
    即PE-PF=BM.
    本题考查了等腰梯形的性质、平行四边形的判定与性质和全等三角形的判定与性质,解题的关键是正确添加辅助线,构造所需的平行四边形和全等三角形.
    12、(3,0)或(﹣3,0)
    【解析】
    试题解析:设点C到原点O的距离为a,
    ∵AC+BC=6,
    ∴a-+a+=6,
    解得a=3,
    ∴点C的坐标为(3,0)或(-3,0).
    13、和
    【解析】
    二元二次方程的中间项,根据十字相乘法,分解即可.
    【详解】
    解:,

    ∴,.
    故答案为:和.
    本题考查了高次方程解法和分解因式的能力.熟练运用十字相乘法,是解答本题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)(分,(分;(2)选择甲参加比赛更合适.
    【解析】
    (1)由平均数的公式计算即可;
    (2)先分别求出两位同学测试成绩的方差,再根据方差的意义求解即可.
    【详解】
    解:(1)(分,
    (分,
    (2),

    甲的方差小于乙的方差,
    选择甲参加比赛更合适.
    本题考查了方差与平均数.平均数是指在一组数据中所有数据之和再除以数据的个数.方差的意义:方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    15、(1);(2)-1;(3)2
    【解析】
    (1)先求出点P为(1,2),再把P点代入解析式即可解答.
    (2)把P(1,2)代入y=ax+3,即可解答.
    (3)根据y=x+1与x轴的交点为(﹣1,0),y=﹣x+3与x轴的交点为(3,0),即可得到这两个交点之间的距离,再根据三角形的面积公式,即可解答.
    【详解】
    (1)把x=1代入y=x+1,得出y=2,
    函数y=x+1和y=ax+3的图象交于点P(1,2),
    即x=1,y=2同时满足两个一次函数的解析式.
    所以关于x,y的方程组 的解是 .
    故答案为;
    (2)把P(1,2)代入y=ax+3,
    得2=a+3,解得a=﹣1.
    故答案为﹣1;
    (3)∵函数y=x+1与x轴的交点为(﹣1,0),
    y=﹣x+3与x轴的交点为(3,0),
    ∴这两个交点之间的距离为3﹣(﹣1)=2,
    ∵P(1,2),
    ∴函数y=x+1和y=ax+3的图象与x轴围成的几何图形的面积为:×2×2=2.
    此题考查一次函数与二元一次方程,解题关键在于把已知点代入解析式求解.
    16、(1)证明见解析;(2)AF=AE.证明见解析;(3)AF=AE成立.证明见解析.
    【解析】
    (1)根据△ABC是等腰直角三角形,△CDE是等腰直角三角形,四边形ABFD是平行四边形,判定△ACE≌△FDE(SAS),进而得出AE=EF;
    (2)根据∠DFE+∠EAF+∠AFD=90°,即可得出△AEF是直角三角形,再根据AE=FE,得到△AEF是等腰直角三角形,进而得到AF=AE;
    (3)延长FD交AC于K,先证明△EDF≌△ECA(SAS),再证明△AEF是等腰直角三角形即可得出结论.
    【详解】
    (1)如图1,
    ∵△ABC中,∠BAC=90°,AB=AC,
    ∴△ABC是等腰直角三角形,
    ∵∠CED=90°,E在BC上,D在AC上,
    ∴△CDE是等腰直角三角形,
    ∴CE=CD,
    ∵四边形ABFD是平行四边形,
    ∴DF=AB=AC,
    ∵平行四边形ABFD中,AB∥DF,
    ∴∠CDF=∠CAB=90°,
    ∵∠C=∠CDE=45°,
    ∴∠FDE=45°=∠C,
    在△ACE和△FDE中,

    ∴△ACE≌△FDE(SAS),
    ∴AE=EF;
    (2)AF=AE.
    证明:如图1,∵AB∥DF,∠BAD=90°,
    ∴∠ADF=90°,
    ∴Rt△ADF中,∠DAE+∠EAF+∠AFD=90°,
    ∵△ACE≌△FDE,
    ∴∠DAE=∠DFE,
    ∴∠DFE+∠EAF+∠AFD=90°,
    即△AEF是直角三角形,
    又∵AE=FE,
    ∴△AEF是等腰直角三角形,
    ∴AF=AE;
    (3)AF=AE仍成立.
    证明:如图2,延长FD交AC于K.
    ∵∠EDF=180°-∠KDC-∠EDC=135°-∠KDC,
    ∠ACE=(90°-∠KDC)+∠DCE=135°-∠KDC,
    ∴∠EDF=∠ACE,
    ∵DF=AB,AB=AC,
    ∴DF=AC,
    在△EDF和△ECA中,

    ∴△EDF≌△ECA(SAS),
    ∴EF=EA,∠FED=∠AEC,
    ∴∠FEA=∠DEC=90°,
    ∴△AEF是等腰直角三角形,
    ∴AF=AE.
    本题属于四边形综合题,主要考查了全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质等知识的综合应用,等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点.
    17、见解析.
    【解析】
    分析:首先根据题意写出已知和求证,再根据全等三角形的判定与性质,可得∠ACD与∠BCD的关系,根据平行四边形的邻角互补,可得∠ACD的度数,根据矩形的判定,可得答案.
    详解:已知:如图,在□ABCD中, AC=BD. 求证:□ABCD是矩形.
    证明:∵四边形ABCD是平行四边形,
    ∴AD∥CB,AD=BC,
    在△ADC和△BCD中,
    ∵,
    ∴△ADC≌△BCD,
    ∴∠ADC=∠BCD.
    又∵AD∥CB,
    ∴∠ADC+∠BCD=180°,
    ∴∠ADC=∠BCD=90°.
    ∴平行四边形ABCD是矩形.
    点睛:本题考查了矩形的判定,利用全等三角形的判定与性质得出∠ADC=∠BCD是解题关键.
    18、(1) 5元(2) 0.5元/千克; y=x+5(0≤x≤30);(3)他一共带了45千克土豆.
    【解析】
    (1)根据题意得出自带的零钱;(2)根据图象可知降价前售出的土豆数量为30千克,总金额为15元,然后计算单价;根据降价后的价格和金额求出降价后售出的数量,然后计算总质量.
    【详解】
    (1)根据图示可得:农民自带的零钱是5元.
    (2)(20-5)÷30=0.5(元/千克) ∴y=x+5(0≤x≤30)
    答:降价前他出售的土豆每千克是0.5元.
    (3)(26-20)÷0.4+30=15+30=45(千克) 答:他一共带了45千克土豆.
    考点:一次函数的应用.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    作PE⊥OB于E,先根据角平分线的性质求出PE的长度,再根据平行线的性质得∠OPC=∠AOP,然后即可求出∠ECP的度数,再在Rt△ECP中利用直角三角形的性质即可求出结果.
    【详解】
    解:作PE⊥OB于E,如图所示:
    ∵PD⊥OA,∴PE=PD=4,
    ∵PC∥OA,∠AOP=∠BOP=15°,
    ∴∠OPC=∠AOP=15°,
    ∴∠ECP=15°+15°=30°,
    ∴PC=2PE=1.
    故答案为:1.
    本题考查了角平分线的性质定理、三角形的外角性质和30°角的直角三角形的性质,属于基本题型,作PE⊥OB构建角平分线的模型是解题的关键.
    20、且
    【解析】
    结合二次根式和分式有意义的条件,列式求解即可得到答案;
    【详解】
    解:∵代数式有意义,
    ∴,
    解得:且,
    故答案为:且.
    本题主要考查了二次根式和分式有意义的条件;对于二次根式,被开方数不能为负;对于分式,分母不能为0;掌握这两个知识点是解题的关键.
    21、50°
    【解析】
    根据全等三角形对应角相等可得∠ACB=∠DCE,然后根据∠ACB+∠BCD=∠DCE+∠BCD得出答案.
    【详解】
    解: ∵△ACB≌△DCE
    ∴∠ACB=∠DCE
    ∴∠ACB+∠BCD=∠DCE+∠BCD,
    ∴∠BCE=∠ACD=50°
    故答案为:50°.
    本题考查全等三角形的性质,题目比较简单.
    22、十二
    【解析】
    根据多边形的内角和公式列方程求解即可;
    【详解】
    设这个多边形是n边形,
    由题意得,(n-2)•180°=1800°,
    解得n=12;
    故答案为十二
    本题考查了多边形的内角和,关键是掌握多边形的内角和公式.
    23、
    【解析】
    过点D作交BC于点E,首先证明四边形ABED是矩形,则,进而求出EC的长度,然后在含30°的直角三角形中求出DE的长度,最后利用勾股定理即可求出BD的长度.
    【详解】
    过点D作交BC于点E,
    ∵,




    ∴四边形ABED是矩形,







    故答案为:.
    本题主要考查矩形的判定及性质,含30°的直角三角形的性质和勾股定理,掌握矩形的判定及性质,含30°的直角三角形的性质和勾股定理是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)当03时,y=t-0.6;(2)2.4元;6.4元
    【解析】
    试题分析:(1)由图,当时,y为恒值;当时,图象过点(3,2.4)、(5,4.4),可根据待定系数法求函数关系式;
    (2)因为,所以根据AB段对应的函数即可得到结果;因为7>3,所以根据BC段对应的函数关系式即可得结果.
    (1)当时,;
    当时,设函数关系式为,
    ∵图象过点(3,2.4)、(5,4.4),
    ,解得,
    y与t之间的函数关系式为;
    (2)当时,元,
    当时,元.
    考点:本题考查的是一次函数的应用
    点评:此类题目的解决需仔细分析函数图象,从中找寻信息,利用待定系数法求出函数解析式,从而解决问题.
    25、70或80
    【解析】
    要求服装的单价,可设服装的单价为x元,则每件服装的利润是(x-50)元,销售服装的件数是[800-20(x-60)]件,以此等量关系列出方程即可;
    【详解】
    解:设单价应定为x元,根据题意得:
    (x−50)[800−(x−60)÷5×100]=12000,
    (x−50)[800−20x+1200]=12000,
    整理得,x2−150x+5600=0,
    解得=70,=80;
    答:这种服装的单价应定为70元或80元.
    本题主要考查了一元二次方程的应用,掌握一元二次方程的应用是解题的关键.
    26、(1)见解析如图(1);(2)三边分别为,3,2是格点三角形.图见解析.
    【解析】
    (1)根据勾股定理画出图形即可.
    (2)先将等式变形,根据算术平方根和平方的非负性可得m和n的值,计算d的值,画出格点三角形即可.
    【详解】
    (1)如图(1)所示:
    (2)∵,
    ∴,
    解得:m=3,n=2,
    ∴三边长为3,2,或,3,2,
    如图(2)所示:,3,2是格点三角形.
    本题考查的是勾股定理,格点三角形、算术平方根和平方的非负性,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.
    题号





    总分
    得分
    中位数
    众数
    平均数
    方差
    9.2
    9.3
    9.1
    0.3

    90
    85
    95
    90

    98
    82
    88
    92

    相关试卷

    2025届河南大附中数学九年级第一学期开学检测模拟试题【含答案】:

    这是一份2025届河南大附中数学九年级第一学期开学检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年山西大附中数学九年级第一学期开学经典模拟试题【含答案】:

    这是一份2024-2025学年山西大附中数学九年级第一学期开学经典模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年南昌市南大附中数学九年级第一学期期末达标检测试题含答案:

    这是一份2023-2024学年南昌市南大附中数学九年级第一学期期末达标检测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,的值是,若. 则下列式子正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map