|试卷下载
终身会员
搜索
    上传资料 赚现金
    2025届江苏省仪征市古井中学九年级数学第一学期开学复习检测试题【含答案】
    立即下载
    加入资料篮
    2025届江苏省仪征市古井中学九年级数学第一学期开学复习检测试题【含答案】01
    2025届江苏省仪征市古井中学九年级数学第一学期开学复习检测试题【含答案】02
    2025届江苏省仪征市古井中学九年级数学第一学期开学复习检测试题【含答案】03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届江苏省仪征市古井中学九年级数学第一学期开学复习检测试题【含答案】

    展开
    这是一份2025届江苏省仪征市古井中学九年级数学第一学期开学复习检测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)若二次根式在实数范围内有意义,则a的取值范围是( )
    A.B.C.a>1D.a<1
    2、(4分)若在实数范围内有意义,则x的取值范围是( )
    A.B.C.D.x<3
    3、(4分)将抛物线y=2(x﹣4)2﹣1先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为( )
    A.y=2x2+1B.y=2x2﹣3
    C.y=2(x﹣8)2+1D.y=2(x﹣8)2﹣3
    4、(4分)下列说法中错误的是 ( )
    A.一组对边平行且一组对角相等的四边形是平行四边形
    B.对角线互相垂直的平行四边形是正方形
    C.四个角相等的四边形是矩形
    D.每组邻边都相等的四边形是菱形
    5、(4分)从﹣3、﹣2、﹣1、1、2、3这六个数中,随机抽取一个数记作a,使关于x的分式方程有整数解,且使直线y=3x+8a﹣17不经过第二象限,则符合条件的所有a的和是( )
    A.﹣4B.﹣1C.0D.1
    6、(4分)不等式的解集是( )
    A.B.C.D.
    7、(4分)如图,图中的四边形都是正方形,三角形都是直角三角形,其中正方形的面积分别记为A,B,C,D,则它们之间的关系为 ( )
    A.A+B=C+DB.A+C=B+D
    C.A+D=B+CD.以上都不对
    8、(4分)如图,将□ABCD的一边BC延长至点E,若∠A=110°,则∠1等于( )
    A.110°B.35°C.70°D.55°
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)等腰三角形的一个内角是30°,则另两个角的度数分别为___.
    10、(4分) 如图,以Rt△ABC的三边为边向外作正方形,其面积分别为S1、S2、S3,且S1=5,S2=6,则AB的长为_____.
    11、(4分)将抛物线先向左平移个单位,再向下平移个单位,所得抛物线的解析式为______.
    12、(4分)已知一个菱形的两条对角线的长分别为10和24,则这个菱形的周长为 .
    13、(4分)甲、乙、丙、丁四人进行100m短跑训练,统计近期10次测试的平均成绩都是13.2s,10次测试成绩的方差如下表:则这四人中发挥最稳定的是_________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图1,在平面直角坐标系中,一次函数的图象与轴,轴分别交于点,点,过点作轴,垂足为点,过点作轴,垂足为点,两条垂线相交于点.
    (1)线段,,的长分别为_______,_________,_________;
    (1)折叠图1中的,使点与点重合,再将折叠后的图形展开,折痕交于点,交于点,连接,如图1.
    ①求线段的长;
    ②在轴上,是否存在点,使得为等腰三角形?若存在,请直接写出符合条件的所有点的坐标;若不存在,请说明理由.
    15、(8分)如图所示为一种吸水拖把,它由吸水部分、拉手部分和主干部分构成.小明在拖地中发现,拉手部分在一拉一放的过程中,吸水部分弯曲的角度会发生变化。设拉手部分移动的距离为吸水部分弯曲所成的角度为,经测量发现:拉手部分每移动,吸水部分角度变化.请回答下列问题:
    (1)求出关于的函数解析式;
    (2)当吸水部分弯曲所成的角度为时,求拉手部分移动的距离.
    16、(8分)如图,在正方形ABCD中,AB=3,点E,F分别在CD,AD上,CE=DF,BE,CF相交于点G.
    (1)求BGC的度数;
    (2)若CE=1,H为BF的中点时,求HG的长度;
    (3)若图中阴影部分的面积与正方形ABCD的面积之比为2:3,求△BCG的周长.
    17、(10分)如图,在ABCD中,E、F分别为边AB、CD的中点,连接DE、BF、BD.若AD⊥BD,则四边形BFDE是什么特殊四边形?请证明你的结论.
    18、(10分)如图1,以□ABCD的较短边CD为一边作菱形CDEF,使点F落在边AD上,连接BE,交AF于点G.
    (1)猜想BG与EG的数量关系.并说明理由;
    (2)延长DE,BA交于点H,其他条件不变,
    ①如图2,若∠ADC=60°,求的值;
    ②如图3,若∠ADC=α(0°<α<90°),直接写出的值.(用含α的三角函数表示)
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)函数中,自变量x的取值范围是_____.
    20、(4分)已知不等式组的解集如图所示(原点没标出,数轴长度为1,黑点和圆圈均在整数的位置),则a的值为______.
    21、(4分)我们把“宽与长的比等于黄金比的矩形称为黄金矩形”,矩形是黄金矩形,且,则__________.
    22、(4分)若,则=_____.
    23、(4分)若干桶方便面摆放在桌子上.实物图片左边所给的是它的三视图.则这一堆方便面共有 桶.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)某商店计划购进A、B两种型号的电动自行车共30辆,其中A型电动自行车不少于20辆,A、B两种型号电动自行车的进货单价分别为2500元、3000元,售价分别为2800元、3500元,设该商店计划购进A型电动自行车m辆,两种型号的电动自行车全部销售后可获利润y元.
    (1)求出y与m之间的函数关系式;
    (2)该商店如何进货才能获得最大利润?此时最大利润是多少元?
    25、(10分)因式分解
    (1)
    (2)
    (3)
    (4)
    26、(12分)如图,在直角坐标系中,OA=3,OC=4,点B是y轴上一动点,以AC为对角线作平行四边形ABCD.
    (1)求直线AC的函数解析式;
    (2)设点B(0,m),记平行四边形ABCD的面积为S,请写出S与m的函数关系式,并求当BD取得最小值时,函数S的值;
    (3)当点B在y轴上运动,能否使得平行四边形ABCD是菱形?若能,求出点B的坐标;若不能,说明理由.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    分析:根据二次根式有意义的条件可得a-1≥0,再解不等式即可.
    详解:由题意得:a-1≥0,
    解得:a≥1,
    故选A.
    点睛:此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.
    2、B
    【解析】
    根据二次根式有意义的条件列出不等式,解不等式即可.
    【详解】
    解:由题意得,3-x≥0,
    解得,x≤3,
    故选:B.
    本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.
    3、A
    【解析】
    【分析】根据平移的规律即可得到平移后函数解析式.
    【详解】抛物线y=2(x-4)2-1先向左平移4个单位长度,得到的抛物线解析式为y=2(x-4+4)2-1,即y=2x2-1,再向上平移2个单位长度得到的抛物线解析式为y=2x2-1+2,即y=2x2+1;
    故选A
    【点睛】本题考查的是二次函数图象与几何变换,熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式是解题的关键.
    4、A
    【解析】
    根据矩形、菱形、平行四边形的知识可判断出各选项,从而得出答案.
    【详解】
    A、一组对边平行的四边形是平行四边形,说法错误,有可能是梯形,应该是一组对边平行且相等的四边形是平行四边形;
    B、对角线互相垂直且相等的平行四边形是正方形,此说法正确;
    C、根据四边形的内角和为360°,可得四个内角都相等的四边形是矩形,故正确;
    D、四条边都相等的四边形是菱形,说法正确.
    故选A.
    本题主要考查了命题与定理的知识,解答本题的关键是熟练掌握平行四边形、菱形以及矩形的性质,此题难度不大.
    5、B
    【解析】
    先求出满足分式方程条件存立时a的值,再求出使直线y=3x+8a﹣17不经过第二象限时a的值,进而求出同时满足条件a的值.
    【详解】
    解:解分式方程得:
    x=﹣,
    ∵x是整数,
    ∴a=﹣3,﹣2,1,3;
    ∵分式方程有意义,
    ∴x≠0或2,
    ∴a≠﹣3,
    ∴a=﹣2,1,3,
    ∵直线y=3x+8a﹣17不经过第二象限,
    ∴8a﹣17≤0
    ∴a≤,
    ∴a的值为:﹣3、﹣2、﹣1、1、2,
    综上,a=﹣2,1,
    和为﹣2+1=﹣1,
    故选:B.
    本题主要考查了一次函数的性质以及分式方程的解的知识,解题的关键是掌握根的个数与系数的关系以及分式有意义的条件,此题难度不大.
    6、C
    【解析】
    试题分析:移项得,,两边同时除以2得,.故选C.
    考点:解一元一次不等式.
    7、A
    【解析】
    分析:根据勾股定理和正方形的面积公式可以得到A+B=C+D.
    详解:如图,∵a2+b2=e2,c2+d2=e2,∴a2+b2=c2+d2,∴A+B=C+D.
    故选A.

    点睛:本题考查了勾股定理.勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
    8、C
    【解析】
    根据平行四边形的对角相等求出∠BCD的度数,再根据平角等于180°列式计算即可得解.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴∠BCD=∠A=110°,
    ∴∠1=180°﹣∠BCD=180°﹣110°=70°,
    故选C.
    本题考查了平行四边形的对角相等的性质,是基础题,比较简单,熟记性质是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、75°、75°或30°、120°.
    【解析】
    分为两种情况讨论,①30°是顶角;②30°是底角;结合三角形内角和定理计算即可
    【详解】
    ①30°是顶角,则底角= (180°﹣30°)=75°;
    ②30°是底角,则顶角=180°﹣30°×2=120°.
    ∴另两个角的度数分别是75°、75°或30°、120°.
    故答案是75°、75°或30°、120°.
    此题考查等腰三角形的性质,难度不大
    10、
    【解析】
    根据勾股定理得出S2+S1=S3,求出S3,即可求出AB.
    【详解】
    解:∵由勾股定理得:AC2+BC2=AB2,
    ∴S2+S1=S3,
    ∵S1=5,S2=6,
    ∴S3=11,
    ∴AB=,
    故答案为:.
    本题考查了勾股定理和正方形的性质,能求出S3的值是解此题的关键.
    11、
    【解析】
    二次函数图象平移规律:“上加下减,左加右减”,据此求解即可.
    【详解】
    将抛物线先向左平移个单位,再向下平移个单位后的解析式为:,
    故答案为.
    12、52
    【解析】
    解:已知AC=10cm,BD=24cm,菱形对角线互相垂直平分,
    ∴AO=5,BO=12cm,
    ∴AB==13cm,
    ∴BC=CD=AD=AB=13cm,
    ∴菱形的周长为4×13=52cm
    13、乙
    【解析】
    方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
    【详解】
    解:∵,
    方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
    ∴乙最稳定.
    故答案为:乙.
    本题考查了方差,正确理解方差的意义是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)8;4;;(1)①线段AD的长为2;②点P的坐标为(0,3)或(0,-3)或(0,1)或(0,8)或(0,).
    【解析】
    (1)利用一次函数图象上点的坐标特征可求出点A,C的坐标,利用矩形的性质及勾股定理,可得出AB,BC,AC的长;
    (1)①设AD=a,则CD=a,BD=8-a,在Rt△BCD中,利用勾股定理可求出a的值,进而可得出线段AD的长;
    ②设点P的坐标为(0,t),利用两点间的距离公式可求出AD1,AP1,DP1的值,分AP=AD,AD=DP及AP=DP三种情况,可得出关于t的一元二次方程(或一元一次方程),解之即可得出t的值,进而可得出点P的坐标.
    【详解】
    解:(1)如图:
    当x=0时,y=-1x+8=8,
    ∴点C的坐标为(0,8);
    当y=0时,-1x+8=0,解得:x=4,
    ∴点A的坐标为(4,0).
    由已知可得:四边形OABC为矩形,
    ∴AB=OC=8,BC=OA=4,AC=.
    故答案为:8;4;.
    (1)①设AD=a,则CD=a,BD=8-a.
    在Rt△BCD中,CD1=BC1+BD1,即a1=3+(8-a)1,
    解得:a=2,
    ∴线段AD的长为2.
    ②存在,如图:
    设点P的坐标为(0,t).
    ∵点A的坐标为(4,0),点D的坐标为(4,2),
    ∴AD1=12,AP1=(0-4)1+(t-0)1=t1+16,DP1=(0-4)1+(t-2)1=t1-10t+3.
    当AP=AD时,t1+16=12,
    解得:t=±3,
    ∴点P的坐标为(0,3)或(0,-3);
    当AD=DP时,12=t1-10t+3,
    解得:t1=1,t1=8,
    ∴点P的坐标为(0,1)或(0,8);
    当AP=DP时,t1+16=t1-10t+3,
    解得:t=,
    ∴点P的坐标为(0,).
    综上所述:在y轴上存在点P,使得△APD为等腰三角形,点P的坐标为(0,3)或(0,-3)或(0,1)或(0,8)或(0,).
    本题考查了一次函数图象上点的坐标特征、矩形的性质、勾股定理、等腰三角形的性质、两点间的距离以及解一元二次方程(或解一元一次方程),解题的关键是:(1)利用一次函数图象上点的坐标特征求出点A,C的坐标;(1)①通过解直角三角形,求出AD的长;②分AP=AD,AD=DP及AP=DP三种情况,找出关于t的一元二次方程(或一元一次方程).
    15、(1);(2)拉手部分移动的距离为或.
    【解析】
    (1)根据拉手部分每移动,吸水部分角度变化,在拉手向上运动时,吸水部分弯曲所成的角度由180°到0°变化,拉手再向下时,吸水部分弯曲所成的角度由°到180°变化,由此即可求出关于的函数解析式;
    (2)把代入(1)中所求的函数解析式,求出的值即可.
    【详解】
    解:(1)当在拉手向上运动时,拉手部分最大移动的距离为9cm,,
    当拉手由顶端向下运动时即返回时,.
    综上所述:
    (2)由题意可知:当
    ①,
    ②,
    当吸水部分弯曲的角度为时,
    拉手部分移动的距离为或
    本题考查了一次函数的应用,理解题意得出关于的函数解析式是解题的关键.
    16、(1)90°;(2);(3)△BGC的周长为
    【解析】
    (1)先利用正方形的性质和SAS证明△BCE≌△CDF,可得∠CBE=∠DCF,再利用角的等量代换即可求出结果;
    (2)先根据勾股定理求出BF的长,再利用直角三角形的性质求解即可;
    (3)根据题意可得△BCG的面积与四边形DEGF的面积相等,进一步依据△BCG的面积以及勾股定理,得出BG+CG的长,进而求出其周长.
    【详解】
    解:(1)∵四边形ABCD是正方形,
    ∴BC=CD,∠BCD=∠CDF=90°,
    在△BCE和△CDF中,∵BC=CD,∠BCD=∠CDF,CE=DF,
    ∴△BCE≌△CDF(SAS),
    ∴∠CBE=∠DCF,
    又∵∠BCG+∠DCF=90°,
    ∴∠BCG+∠CBE=90°,
    ∴∠BGC=90°;
    (2)如图,∵CE=1,∴DF=1,∴AF=2,
    在直角△ABF中,由勾股定理得:,
    ∵H为BF的中点,∠BGF=90°,
    ∴;
    (3)∵阴影部分的面积与正方形ABCD的面积之比为2:3,
    ∴阴影部分的面积为×9=6,
    ∴空白部分的面积为9-6=3,
    ∵△BCE≌△CDF,
    ∴△BCG的面积与四边形DEGF的面积相等,均为×3=,
    设BG=a,CG=b,则ab=,∴ab=3,
    又∵a2+b2=32,
    ∴a2+2ab+b2=9+6=15,
    即(a+b)2=15,
    ∴a+b=,即BG+CG=,
    ∴△BCG的周长=+3.
    此题考查了正方形的性质、全等三角形的判定与性质、勾股定理、直角三角形的性质以及三角形面积问题,解题时注意数形结合思想与整体思想的应用.
    17、四边形是菱形,证明见解析
    【解析】
    根据直角三角形的性质可证得DE=BE,再利用平行四边形的性质证明四边形BFDE是平行四边形,从而可得到结论.
    【详解】
    证明:∵,
    ∴是直角三角形,且是斜边(或),
    ∵是的中点,
    ∴,
    ∵在平行四边形ABCD中,E、F分别为边AB、CD的中点,
    ∴且,
    ∴四边形是平行四边形,
    ∴四边形是菱形.
    本题考查了平行四边形的判定与性质、直角三角形的性质及菱形的判定,熟记各性质与判定定理是解题的关键.
    18、(1),理由见解析;(2);(3).
    【解析】
    (1)BG=EG,根据已知条件易证△BAG≌△EFG,根据全等三角形的对应边相等即可得结论;(2)①方法一:过点G作GM∥BH,交DH于点M,证明ΔGME∽ΔBHE,即可得,再证明是等边三角形,可得 ,由此可得;方法二:延长,交于点,证明ΔHBM为等边三角形,再证明∽ ,即可得结论;②如图3,连接EC交DF于O根据三角函数定义得csα=,则OF=bcsα,DG=a+2bcsα,同理表示AH的长,代入计算即可.
    【详解】
    (1),
    理由如下:
    ∵四边形是平行四边形,
    ∴∥,.
    ∵四边形是菱形,

    ∴∥,.
    ∴∥,.
    ∴.
    又∵,
    ∴≌ .
    ∴.
    (2)方法1:过点作∥,交于点,
    ∴.
    ∵,
    ∴∽.
    ∴.
    由(1)结论知.
    ∴.
    ∴.
    ∵四边形为菱形,
    ∴.
    ∵四边形是平行四边形,
    ∴∥.
    ∴.
    ∵∥,
    ∴.
    ∴,
    即.
    ∴是等边三角形。
    ∴.
    ∴.
    方法2:延长,交于点,
    ∵四边形为菱形,
    ∴.
    ∵四边形为平形四边形,
    ∴,∥.
    ∴.
    ,
    即.
    ∴为等边三角形.
    ∴.
    ∵∥,
    ∴,.
    ∴∽ ,
    ∴.
    由(1)结论知
    ∴.
    ∴.
    ∵,
    ∴ .
    (3). 如图3,连接EC交DF于O,
    ∵四边形CFED是菱形,
    ∴EC⊥AD,FD=2FO,
    设FG=a,AB=b,则FG=a,EF=ED=CD=b,
    Rt△EFO中,csα=,
    ∴OF=bcsα,
    ∴DG=a+2bcsα,
    过H作HM⊥AD于M,
    ∵∠ADC=∠HAD=∠ADH=α,
    ∴AH=HD,
    ∴AM=AD=(2a+2bcsα)=a+bcsα,
    Rt△AHM中,csα=,
    ∴AH=,
    ∴==csα.
    本题是四边形综合题,其中涉及到菱形的性质,等边三角形、全等三角形、平行四边形的判定与性质,综合性较强,难度适中.利用数形结合及类比思想是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、x≠1
    【解析】
    根据分母不等于0,可以求出x的范围;
    【详解】
    解:(1)x-1≠0,解得:x≠1;
    故答案是:x≠1,
    考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:
    (1)当函数表达式是整式时,自变量可取全体实数;
    (2)当函数表达式是分式时,考虑分式的分母不能为0;
    (3)当函数表达式是二次根式时,被开方数非负.
    20、2
    【解析】
    先解出关于x的不等式,由数轴上表示的解集求出的范围即可.
    【详解】
    解:,
    不等式组整理得:,
    由数轴得:,可得,
    解得:,
    故答案为2
    此题考查了一元一次不等式组的整数解,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.
    21、或
    【解析】
    根据黄金矩形的定义,列出方程进行解题即可
    【详解】
    ∵矩形ABCD是黄金矩形
    ∴或
    ∴得到方程或
    解得AB=2或AB=
    本题考查黄金分割比的应用,本题的关键在于能够读懂黄金矩形的定义,对两边的关系进行分情况讨论
    22、
    【解析】
    设=m,则有x=3m,y=4m,z=5m,代入原式即可得出答案.
    【详解】
    解:设=m,
    ∴x=3m,y=4m,z=5m,
    代入原式得:.
    故答案为.
    本题考查了代数式求值和等比例的性质,掌握并灵活运用等比例性质是解答本题的关键.
    23、1
    【解析】
    从俯视图中可以看出最底层方便面的个数及摆放的形状,从主视图可以看出每一层方便面的层数和个数,从左视图可看出每一行方便面的层数和个数,从而算出总的个数.所以三摞方便面是桶数之和为:3+1+2=1.
    二、解答题(本大题共3个小题,共30分)
    24、(1)=﹣200+15000(20≤m<30);(2) 购进A型电动自行车20辆,购进B型10辆,最大利润是11000元.
    【解析】
    (1)利润=一辆A型电动自行车的利润×A型电动自行车的数量+一辆B型电动自行车的利润×B型电动自行车的数量,依此列式化简即可;
    (2)根据一次函数的性质,结合自变量的取值范围即可求解;
    【详解】
    解:(1)计划购进A型电动自行车辆,B型电动自行车(30-)辆,
    =(2800-2500)m+(3500﹣3000)(30﹣m),
    =﹣200+15000(20≤m<30),
    (2)∵20≤<30,且随的增大而减小可得,=20时,有最大值,
    =﹣200×20+15000=11000,
    购进A型电动自行车20辆,购进B型10辆,最大利润是11000元.
    本题考查了一次函数的应用,解题的关键是求出y与m之间的函数关系式.
    25、(1);(2);(3);(4)
    【解析】
    (1)先提取公因式,然后用完全平方公式进行因式分解;(2)直接用平方差公式进行因式分解;(3)先提取公因式,然后用平方差公式进行因式分解;(4)先用平方差公式进行因式分解,然后再用完全平方公式进行因式分解
    【详解】
    解:(1)
    =
    =
    (2)
    =
    (3)
    =
    =
    (4)
    =
    =
    本题考查了因式分解方法、乘法公式应用,考查推理能力与计算能力,属于基础题.
    26、(1);(2) ①当m≤4时,S=-3m+12,②当m>4时,S=3m-12(3)(0,)
    【解析】
    (1)根据OA、OC的长度求出A、C坐标,再利用待定系数法求解即可;
    (2)根据点B的坐标可得出BC的长,结合平行四边形的面积公式求出S与m的关系式,再根据AD∥y轴即可求出当BD最短时m的值,将其代入解析式即可;
    (3)根据菱形的性质找出m的值,从而根据勾股定理求解即可.
    【详解】
    解:(1)∵OA=3,OC=4,
    ∴A(-3,0)、C(0,4).
    设直线AC的函数解析式为y=kx+b,
    将点A(-3,0)、C(0,4)代入y=kx+b中,
    得:,解得:,
    ∴直线AC的函数解析式为:.
    (2)∵点B(0,m),四边形ABCD为以AC为对角线的平行四边形,
    ∴m≤4,BC=4-m,
    ∴S=BC•OA=-3m+12(m≤4).
    同法m>4时,S=3m-12(m>4).
    ∵四边形ABCD为平行四边形,
    ∴AD∥BC,
    ∴当BD⊥y轴时,BD最小(如图1).
    ∵AD∥OB,AO⊥OB,DA⊥OB,
    ∴四边形AOBD为矩形,
    ∴AD=OB=BC,
    ∴点B为OC的中点,即,
    此时S=-3×2+12=1.
    ∴S与m的函数关式为S=-3m+12(m<4),当BD取得最小值时的S的值为1.
    (3)存在
    当AB=CB时,平行四边形ABCD为菱形.
    理由如下:
    ∵平行四边形ABCD是菱形,
    ∴AB=BC.


    解得:,

    本题考查了待定系数法求函数解析式、平行四边形的性质、菱形的性质以及等腰三角形的性质,解题的关键是:(1)利用待定系数法求出函数解析式;(2)根据平行四边形的面积公式找出S关于m的函数关系式;(3)学会构建方程解决问题;
    题号





    总分
    得分
    选手




    方差(S2)
    0.020
    0.019
    0.021
    0.022
    相关试卷

    2024年江苏省仪征市古井中学数学九上开学达标测试试题【含答案】: 这是一份2024年江苏省仪征市古井中学数学九上开学达标测试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年江苏省扬州市仪征市古井中学中考三模数学试题: 这是一份2024年江苏省扬州市仪征市古井中学中考三模数学试题,共6页。试卷主要包含了计算等内容,欢迎下载使用。

    2024年江苏省扬州市仪征市古井中学中考三模数学试题: 这是一份2024年江苏省扬州市仪征市古井中学中考三模数学试题,共6页。试卷主要包含了计算等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map