2025届江苏省仪征市古井中学九年级数学第一学期开学复习检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若二次根式在实数范围内有意义,则a的取值范围是( )
A.B.C.a>1D.a<1
2、(4分)若在实数范围内有意义,则x的取值范围是( )
A.B.C.D.x<3
3、(4分)将抛物线y=2(x﹣4)2﹣1先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为( )
A.y=2x2+1B.y=2x2﹣3
C.y=2(x﹣8)2+1D.y=2(x﹣8)2﹣3
4、(4分)下列说法中错误的是 ( )
A.一组对边平行且一组对角相等的四边形是平行四边形
B.对角线互相垂直的平行四边形是正方形
C.四个角相等的四边形是矩形
D.每组邻边都相等的四边形是菱形
5、(4分)从﹣3、﹣2、﹣1、1、2、3这六个数中,随机抽取一个数记作a,使关于x的分式方程有整数解,且使直线y=3x+8a﹣17不经过第二象限,则符合条件的所有a的和是( )
A.﹣4B.﹣1C.0D.1
6、(4分)不等式的解集是( )
A.B.C.D.
7、(4分)如图,图中的四边形都是正方形,三角形都是直角三角形,其中正方形的面积分别记为A,B,C,D,则它们之间的关系为 ( )
A.A+B=C+DB.A+C=B+D
C.A+D=B+CD.以上都不对
8、(4分)如图,将□ABCD的一边BC延长至点E,若∠A=110°,则∠1等于( )
A.110°B.35°C.70°D.55°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)等腰三角形的一个内角是30°,则另两个角的度数分别为___.
10、(4分) 如图,以Rt△ABC的三边为边向外作正方形,其面积分别为S1、S2、S3,且S1=5,S2=6,则AB的长为_____.
11、(4分)将抛物线先向左平移个单位,再向下平移个单位,所得抛物线的解析式为______.
12、(4分)已知一个菱形的两条对角线的长分别为10和24,则这个菱形的周长为 .
13、(4分)甲、乙、丙、丁四人进行100m短跑训练,统计近期10次测试的平均成绩都是13.2s,10次测试成绩的方差如下表:则这四人中发挥最稳定的是_________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图1,在平面直角坐标系中,一次函数的图象与轴,轴分别交于点,点,过点作轴,垂足为点,过点作轴,垂足为点,两条垂线相交于点.
(1)线段,,的长分别为_______,_________,_________;
(1)折叠图1中的,使点与点重合,再将折叠后的图形展开,折痕交于点,交于点,连接,如图1.
①求线段的长;
②在轴上,是否存在点,使得为等腰三角形?若存在,请直接写出符合条件的所有点的坐标;若不存在,请说明理由.
15、(8分)如图所示为一种吸水拖把,它由吸水部分、拉手部分和主干部分构成.小明在拖地中发现,拉手部分在一拉一放的过程中,吸水部分弯曲的角度会发生变化。设拉手部分移动的距离为吸水部分弯曲所成的角度为,经测量发现:拉手部分每移动,吸水部分角度变化.请回答下列问题:
(1)求出关于的函数解析式;
(2)当吸水部分弯曲所成的角度为时,求拉手部分移动的距离.
16、(8分)如图,在正方形ABCD中,AB=3,点E,F分别在CD,AD上,CE=DF,BE,CF相交于点G.
(1)求BGC的度数;
(2)若CE=1,H为BF的中点时,求HG的长度;
(3)若图中阴影部分的面积与正方形ABCD的面积之比为2:3,求△BCG的周长.
17、(10分)如图,在ABCD中,E、F分别为边AB、CD的中点,连接DE、BF、BD.若AD⊥BD,则四边形BFDE是什么特殊四边形?请证明你的结论.
18、(10分)如图1,以□ABCD的较短边CD为一边作菱形CDEF,使点F落在边AD上,连接BE,交AF于点G.
(1)猜想BG与EG的数量关系.并说明理由;
(2)延长DE,BA交于点H,其他条件不变,
①如图2,若∠ADC=60°,求的值;
②如图3,若∠ADC=α(0°<α<90°),直接写出的值.(用含α的三角函数表示)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)函数中,自变量x的取值范围是_____.
20、(4分)已知不等式组的解集如图所示(原点没标出,数轴长度为1,黑点和圆圈均在整数的位置),则a的值为______.
21、(4分)我们把“宽与长的比等于黄金比的矩形称为黄金矩形”,矩形是黄金矩形,且,则__________.
22、(4分)若,则=_____.
23、(4分)若干桶方便面摆放在桌子上.实物图片左边所给的是它的三视图.则这一堆方便面共有 桶.
二、解答题(本大题共3个小题,共30分)
24、(8分)某商店计划购进A、B两种型号的电动自行车共30辆,其中A型电动自行车不少于20辆,A、B两种型号电动自行车的进货单价分别为2500元、3000元,售价分别为2800元、3500元,设该商店计划购进A型电动自行车m辆,两种型号的电动自行车全部销售后可获利润y元.
(1)求出y与m之间的函数关系式;
(2)该商店如何进货才能获得最大利润?此时最大利润是多少元?
25、(10分)因式分解
(1)
(2)
(3)
(4)
26、(12分)如图,在直角坐标系中,OA=3,OC=4,点B是y轴上一动点,以AC为对角线作平行四边形ABCD.
(1)求直线AC的函数解析式;
(2)设点B(0,m),记平行四边形ABCD的面积为S,请写出S与m的函数关系式,并求当BD取得最小值时,函数S的值;
(3)当点B在y轴上运动,能否使得平行四边形ABCD是菱形?若能,求出点B的坐标;若不能,说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
分析:根据二次根式有意义的条件可得a-1≥0,再解不等式即可.
详解:由题意得:a-1≥0,
解得:a≥1,
故选A.
点睛:此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.
2、B
【解析】
根据二次根式有意义的条件列出不等式,解不等式即可.
【详解】
解:由题意得,3-x≥0,
解得,x≤3,
故选:B.
本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.
3、A
【解析】
【分析】根据平移的规律即可得到平移后函数解析式.
【详解】抛物线y=2(x-4)2-1先向左平移4个单位长度,得到的抛物线解析式为y=2(x-4+4)2-1,即y=2x2-1,再向上平移2个单位长度得到的抛物线解析式为y=2x2-1+2,即y=2x2+1;
故选A
【点睛】本题考查的是二次函数图象与几何变换,熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式是解题的关键.
4、A
【解析】
根据矩形、菱形、平行四边形的知识可判断出各选项,从而得出答案.
【详解】
A、一组对边平行的四边形是平行四边形,说法错误,有可能是梯形,应该是一组对边平行且相等的四边形是平行四边形;
B、对角线互相垂直且相等的平行四边形是正方形,此说法正确;
C、根据四边形的内角和为360°,可得四个内角都相等的四边形是矩形,故正确;
D、四条边都相等的四边形是菱形,说法正确.
故选A.
本题主要考查了命题与定理的知识,解答本题的关键是熟练掌握平行四边形、菱形以及矩形的性质,此题难度不大.
5、B
【解析】
先求出满足分式方程条件存立时a的值,再求出使直线y=3x+8a﹣17不经过第二象限时a的值,进而求出同时满足条件a的值.
【详解】
解:解分式方程得:
x=﹣,
∵x是整数,
∴a=﹣3,﹣2,1,3;
∵分式方程有意义,
∴x≠0或2,
∴a≠﹣3,
∴a=﹣2,1,3,
∵直线y=3x+8a﹣17不经过第二象限,
∴8a﹣17≤0
∴a≤,
∴a的值为:﹣3、﹣2、﹣1、1、2,
综上,a=﹣2,1,
和为﹣2+1=﹣1,
故选:B.
本题主要考查了一次函数的性质以及分式方程的解的知识,解题的关键是掌握根的个数与系数的关系以及分式有意义的条件,此题难度不大.
6、C
【解析】
试题分析:移项得,,两边同时除以2得,.故选C.
考点:解一元一次不等式.
7、A
【解析】
分析:根据勾股定理和正方形的面积公式可以得到A+B=C+D.
详解:如图,∵a2+b2=e2,c2+d2=e2,∴a2+b2=c2+d2,∴A+B=C+D.
故选A.
点睛:本题考查了勾股定理.勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
8、C
【解析】
根据平行四边形的对角相等求出∠BCD的度数,再根据平角等于180°列式计算即可得解.
【详解】
∵四边形ABCD是平行四边形,
∴∠BCD=∠A=110°,
∴∠1=180°﹣∠BCD=180°﹣110°=70°,
故选C.
本题考查了平行四边形的对角相等的性质,是基础题,比较简单,熟记性质是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、75°、75°或30°、120°.
【解析】
分为两种情况讨论,①30°是顶角;②30°是底角;结合三角形内角和定理计算即可
【详解】
①30°是顶角,则底角= (180°﹣30°)=75°;
②30°是底角,则顶角=180°﹣30°×2=120°.
∴另两个角的度数分别是75°、75°或30°、120°.
故答案是75°、75°或30°、120°.
此题考查等腰三角形的性质,难度不大
10、
【解析】
根据勾股定理得出S2+S1=S3,求出S3,即可求出AB.
【详解】
解:∵由勾股定理得:AC2+BC2=AB2,
∴S2+S1=S3,
∵S1=5,S2=6,
∴S3=11,
∴AB=,
故答案为:.
本题考查了勾股定理和正方形的性质,能求出S3的值是解此题的关键.
11、
【解析】
二次函数图象平移规律:“上加下减,左加右减”,据此求解即可.
【详解】
将抛物线先向左平移个单位,再向下平移个单位后的解析式为:,
故答案为.
12、52
【解析】
解:已知AC=10cm,BD=24cm,菱形对角线互相垂直平分,
∴AO=5,BO=12cm,
∴AB==13cm,
∴BC=CD=AD=AB=13cm,
∴菱形的周长为4×13=52cm
13、乙
【解析】
方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
【详解】
解:∵,
方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
∴乙最稳定.
故答案为:乙.
本题考查了方差,正确理解方差的意义是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)8;4;;(1)①线段AD的长为2;②点P的坐标为(0,3)或(0,-3)或(0,1)或(0,8)或(0,).
【解析】
(1)利用一次函数图象上点的坐标特征可求出点A,C的坐标,利用矩形的性质及勾股定理,可得出AB,BC,AC的长;
(1)①设AD=a,则CD=a,BD=8-a,在Rt△BCD中,利用勾股定理可求出a的值,进而可得出线段AD的长;
②设点P的坐标为(0,t),利用两点间的距离公式可求出AD1,AP1,DP1的值,分AP=AD,AD=DP及AP=DP三种情况,可得出关于t的一元二次方程(或一元一次方程),解之即可得出t的值,进而可得出点P的坐标.
【详解】
解:(1)如图:
当x=0时,y=-1x+8=8,
∴点C的坐标为(0,8);
当y=0时,-1x+8=0,解得:x=4,
∴点A的坐标为(4,0).
由已知可得:四边形OABC为矩形,
∴AB=OC=8,BC=OA=4,AC=.
故答案为:8;4;.
(1)①设AD=a,则CD=a,BD=8-a.
在Rt△BCD中,CD1=BC1+BD1,即a1=3+(8-a)1,
解得:a=2,
∴线段AD的长为2.
②存在,如图:
设点P的坐标为(0,t).
∵点A的坐标为(4,0),点D的坐标为(4,2),
∴AD1=12,AP1=(0-4)1+(t-0)1=t1+16,DP1=(0-4)1+(t-2)1=t1-10t+3.
当AP=AD时,t1+16=12,
解得:t=±3,
∴点P的坐标为(0,3)或(0,-3);
当AD=DP时,12=t1-10t+3,
解得:t1=1,t1=8,
∴点P的坐标为(0,1)或(0,8);
当AP=DP时,t1+16=t1-10t+3,
解得:t=,
∴点P的坐标为(0,).
综上所述:在y轴上存在点P,使得△APD为等腰三角形,点P的坐标为(0,3)或(0,-3)或(0,1)或(0,8)或(0,).
本题考查了一次函数图象上点的坐标特征、矩形的性质、勾股定理、等腰三角形的性质、两点间的距离以及解一元二次方程(或解一元一次方程),解题的关键是:(1)利用一次函数图象上点的坐标特征求出点A,C的坐标;(1)①通过解直角三角形,求出AD的长;②分AP=AD,AD=DP及AP=DP三种情况,找出关于t的一元二次方程(或一元一次方程).
15、(1);(2)拉手部分移动的距离为或.
【解析】
(1)根据拉手部分每移动,吸水部分角度变化,在拉手向上运动时,吸水部分弯曲所成的角度由180°到0°变化,拉手再向下时,吸水部分弯曲所成的角度由°到180°变化,由此即可求出关于的函数解析式;
(2)把代入(1)中所求的函数解析式,求出的值即可.
【详解】
解:(1)当在拉手向上运动时,拉手部分最大移动的距离为9cm,,
当拉手由顶端向下运动时即返回时,.
综上所述:
(2)由题意可知:当
①,
②,
当吸水部分弯曲的角度为时,
拉手部分移动的距离为或
本题考查了一次函数的应用,理解题意得出关于的函数解析式是解题的关键.
16、(1)90°;(2);(3)△BGC的周长为
【解析】
(1)先利用正方形的性质和SAS证明△BCE≌△CDF,可得∠CBE=∠DCF,再利用角的等量代换即可求出结果;
(2)先根据勾股定理求出BF的长,再利用直角三角形的性质求解即可;
(3)根据题意可得△BCG的面积与四边形DEGF的面积相等,进一步依据△BCG的面积以及勾股定理,得出BG+CG的长,进而求出其周长.
【详解】
解:(1)∵四边形ABCD是正方形,
∴BC=CD,∠BCD=∠CDF=90°,
在△BCE和△CDF中,∵BC=CD,∠BCD=∠CDF,CE=DF,
∴△BCE≌△CDF(SAS),
∴∠CBE=∠DCF,
又∵∠BCG+∠DCF=90°,
∴∠BCG+∠CBE=90°,
∴∠BGC=90°;
(2)如图,∵CE=1,∴DF=1,∴AF=2,
在直角△ABF中,由勾股定理得:,
∵H为BF的中点,∠BGF=90°,
∴;
(3)∵阴影部分的面积与正方形ABCD的面积之比为2:3,
∴阴影部分的面积为×9=6,
∴空白部分的面积为9-6=3,
∵△BCE≌△CDF,
∴△BCG的面积与四边形DEGF的面积相等,均为×3=,
设BG=a,CG=b,则ab=,∴ab=3,
又∵a2+b2=32,
∴a2+2ab+b2=9+6=15,
即(a+b)2=15,
∴a+b=,即BG+CG=,
∴△BCG的周长=+3.
此题考查了正方形的性质、全等三角形的判定与性质、勾股定理、直角三角形的性质以及三角形面积问题,解题时注意数形结合思想与整体思想的应用.
17、四边形是菱形,证明见解析
【解析】
根据直角三角形的性质可证得DE=BE,再利用平行四边形的性质证明四边形BFDE是平行四边形,从而可得到结论.
【详解】
证明:∵,
∴是直角三角形,且是斜边(或),
∵是的中点,
∴,
∵在平行四边形ABCD中,E、F分别为边AB、CD的中点,
∴且,
∴四边形是平行四边形,
∴四边形是菱形.
本题考查了平行四边形的判定与性质、直角三角形的性质及菱形的判定,熟记各性质与判定定理是解题的关键.
18、(1),理由见解析;(2);(3).
【解析】
(1)BG=EG,根据已知条件易证△BAG≌△EFG,根据全等三角形的对应边相等即可得结论;(2)①方法一:过点G作GM∥BH,交DH于点M,证明ΔGME∽ΔBHE,即可得,再证明是等边三角形,可得 ,由此可得;方法二:延长,交于点,证明ΔHBM为等边三角形,再证明∽ ,即可得结论;②如图3,连接EC交DF于O根据三角函数定义得csα=,则OF=bcsα,DG=a+2bcsα,同理表示AH的长,代入计算即可.
【详解】
(1),
理由如下:
∵四边形是平行四边形,
∴∥,.
∵四边形是菱形,
∴∥,.
∴∥,.
∴.
又∵,
∴≌ .
∴.
(2)方法1:过点作∥,交于点,
∴.
∵,
∴∽.
∴.
由(1)结论知.
∴.
∴.
∵四边形为菱形,
∴.
∵四边形是平行四边形,
∴∥.
∴.
∵∥,
∴.
∴,
即.
∴是等边三角形。
∴.
∴.
方法2:延长,交于点,
∵四边形为菱形,
∴.
∵四边形为平形四边形,
∴,∥.
∴.
,
即.
∴为等边三角形.
∴.
∵∥,
∴,.
∴∽ ,
∴.
由(1)结论知
∴.
∴.
∵,
∴ .
(3). 如图3,连接EC交DF于O,
∵四边形CFED是菱形,
∴EC⊥AD,FD=2FO,
设FG=a,AB=b,则FG=a,EF=ED=CD=b,
Rt△EFO中,csα=,
∴OF=bcsα,
∴DG=a+2bcsα,
过H作HM⊥AD于M,
∵∠ADC=∠HAD=∠ADH=α,
∴AH=HD,
∴AM=AD=(2a+2bcsα)=a+bcsα,
Rt△AHM中,csα=,
∴AH=,
∴==csα.
本题是四边形综合题,其中涉及到菱形的性质,等边三角形、全等三角形、平行四边形的判定与性质,综合性较强,难度适中.利用数形结合及类比思想是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x≠1
【解析】
根据分母不等于0,可以求出x的范围;
【详解】
解:(1)x-1≠0,解得:x≠1;
故答案是:x≠1,
考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.
20、2
【解析】
先解出关于x的不等式,由数轴上表示的解集求出的范围即可.
【详解】
解:,
不等式组整理得:,
由数轴得:,可得,
解得:,
故答案为2
此题考查了一元一次不等式组的整数解,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.
21、或
【解析】
根据黄金矩形的定义,列出方程进行解题即可
【详解】
∵矩形ABCD是黄金矩形
∴或
∴得到方程或
解得AB=2或AB=
本题考查黄金分割比的应用,本题的关键在于能够读懂黄金矩形的定义,对两边的关系进行分情况讨论
22、
【解析】
设=m,则有x=3m,y=4m,z=5m,代入原式即可得出答案.
【详解】
解:设=m,
∴x=3m,y=4m,z=5m,
代入原式得:.
故答案为.
本题考查了代数式求值和等比例的性质,掌握并灵活运用等比例性质是解答本题的关键.
23、1
【解析】
从俯视图中可以看出最底层方便面的个数及摆放的形状,从主视图可以看出每一层方便面的层数和个数,从左视图可看出每一行方便面的层数和个数,从而算出总的个数.所以三摞方便面是桶数之和为:3+1+2=1.
二、解答题(本大题共3个小题,共30分)
24、(1)=﹣200+15000(20≤m<30);(2) 购进A型电动自行车20辆,购进B型10辆,最大利润是11000元.
【解析】
(1)利润=一辆A型电动自行车的利润×A型电动自行车的数量+一辆B型电动自行车的利润×B型电动自行车的数量,依此列式化简即可;
(2)根据一次函数的性质,结合自变量的取值范围即可求解;
【详解】
解:(1)计划购进A型电动自行车辆,B型电动自行车(30-)辆,
=(2800-2500)m+(3500﹣3000)(30﹣m),
=﹣200+15000(20≤m<30),
(2)∵20≤<30,且随的增大而减小可得,=20时,有最大值,
=﹣200×20+15000=11000,
购进A型电动自行车20辆,购进B型10辆,最大利润是11000元.
本题考查了一次函数的应用,解题的关键是求出y与m之间的函数关系式.
25、(1);(2);(3);(4)
【解析】
(1)先提取公因式,然后用完全平方公式进行因式分解;(2)直接用平方差公式进行因式分解;(3)先提取公因式,然后用平方差公式进行因式分解;(4)先用平方差公式进行因式分解,然后再用完全平方公式进行因式分解
【详解】
解:(1)
=
=
(2)
=
(3)
=
=
(4)
=
=
本题考查了因式分解方法、乘法公式应用,考查推理能力与计算能力,属于基础题.
26、(1);(2) ①当m≤4时,S=-3m+12,②当m>4时,S=3m-12(3)(0,)
【解析】
(1)根据OA、OC的长度求出A、C坐标,再利用待定系数法求解即可;
(2)根据点B的坐标可得出BC的长,结合平行四边形的面积公式求出S与m的关系式,再根据AD∥y轴即可求出当BD最短时m的值,将其代入解析式即可;
(3)根据菱形的性质找出m的值,从而根据勾股定理求解即可.
【详解】
解:(1)∵OA=3,OC=4,
∴A(-3,0)、C(0,4).
设直线AC的函数解析式为y=kx+b,
将点A(-3,0)、C(0,4)代入y=kx+b中,
得:,解得:,
∴直线AC的函数解析式为:.
(2)∵点B(0,m),四边形ABCD为以AC为对角线的平行四边形,
∴m≤4,BC=4-m,
∴S=BC•OA=-3m+12(m≤4).
同法m>4时,S=3m-12(m>4).
∵四边形ABCD为平行四边形,
∴AD∥BC,
∴当BD⊥y轴时,BD最小(如图1).
∵AD∥OB,AO⊥OB,DA⊥OB,
∴四边形AOBD为矩形,
∴AD=OB=BC,
∴点B为OC的中点,即,
此时S=-3×2+12=1.
∴S与m的函数关式为S=-3m+12(m<4),当BD取得最小值时的S的值为1.
(3)存在
当AB=CB时,平行四边形ABCD为菱形.
理由如下:
∵平行四边形ABCD是菱形,
∴AB=BC.
,
,
解得:,
.
本题考查了待定系数法求函数解析式、平行四边形的性质、菱形的性质以及等腰三角形的性质,解题的关键是:(1)利用待定系数法求出函数解析式;(2)根据平行四边形的面积公式找出S关于m的函数关系式;(3)学会构建方程解决问题;
题号
一
二
三
四
五
总分
得分
选手
甲
乙
丙
丁
方差(S2)
0.020
0.019
0.021
0.022
2024年江苏省仪征市古井中学数学九上开学达标测试试题【含答案】: 这是一份2024年江苏省仪征市古井中学数学九上开学达标测试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年江苏省扬州市仪征市古井中学中考三模数学试题: 这是一份2024年江苏省扬州市仪征市古井中学中考三模数学试题,共6页。试卷主要包含了计算等内容,欢迎下载使用。
2024年江苏省扬州市仪征市古井中学中考三模数学试题: 这是一份2024年江苏省扬州市仪征市古井中学中考三模数学试题,共6页。试卷主要包含了计算等内容,欢迎下载使用。