2025届江苏省扬州教育院附属中学数学九上开学监测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图在5×5的正方形网格中(每个小正方形的边长为1个单位长度),格点上有A、B、C、E五个点,若要求连接两个点所成线段的长度大于3且小于4,则可以连接( )
A.AEB.ABC.ADD.BE
2、(4分)二次根式中字母a的取值范围是( )
A.a≥0B.a≤0C.a<0D.a≤﹣2
3、(4分)如图,等腰三角形的底边长为,面积是, 腰的垂直平分线分别交边于点.若点为边的中点,点为线段EF上一动点,则周长的最小值为( )
A.B.C.D.
4、(4分)如果用总长为60m的篱笆围成一个长方形场地,设长方形的面积为S(m2)周长为p(m),一边长为a(m),那么S、p、a中,常量是( )
A.aB.pC.SD.p,a
5、(4分)已知a是方程2x2﹣4x﹣2019=0的一个解,则a2﹣2a=( )
A.2019B.4038C.D.
6、(4分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,且OA=OD,∠OAD=50°,则∠OAB的度数为( )
A.40°B.50°C.60°D.70°
7、(4分) “的3倍与3的差不大于8”,列出不等式是( )
A.B.
C.D.
8、(4分)如图,正方形在平面直角坐标系中的点和点的坐标为、,点在双曲线上.若正方形沿轴负方向平移个单位长度后,点恰好落在该双曲线上,则的值是( )
A.1B.2C.3D.4
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知点(-4,y1),(2,y2)都在直线y=ax+2(a<0)上,则y1, y2的大小关系为_________ .
10、(4分)因式分解:x2﹣x=______.
11、(4分)如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为_______cm.
12、(4分)在数轴上表示实数a的点如图所示,化简+|a-2|的结果为____________.
13、(4分)若二次根式有意义,则的取值范围是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.
(1)今年5月份A款汽车每辆售价多少万元?
(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?
(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?
15、(8分)某工厂准备购买A、B两种零件,已知A种零件的单价比B种零件的单价多20元,而用800元购买A种零件的数量和用600元购买B种零件的数量相等
(1)求A、B两种零件的单价;
(2)根据需要,工厂准备购买A、B两种零件共200件,工厂购买两种零件的总费用不超过14700元,求工厂最多购买A种零件多少件?
16、(8分)先化简,再求值:÷(a+),其中a=﹣1.
17、(10分)解不等式组
请结合题意填空,完成本题的解答.
(Ⅰ)解不等式(1),得 .
(Ⅱ)解不等式(2),得 .
(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:
(Ⅳ)原不等式组的解集为 .
18、(10分)(1)因式分解:x3﹣8x2+16x.
(2)解方程:2﹣=.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)计算:_____.
20、(4分)已知直线y=﹣3x+b与直线y=﹣kx+1在同一坐标系中交于点,则关于x的方程﹣3x+b=﹣kx+1的解为x=_____.
21、(4分)设m,n分别为一元二次方程x2+2x﹣1=0的两个实数根,则m+n+mn=_____.
22、(4分)甲、乙二人在相同情况下,各射靶次,两人命中环数的方差分别是,,则射击成绩较稳定的是_________.(填“甲”或“乙")
23、(4分)如图①,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B.图②是点F运动时,△FBC的面积y(cm)随时间x(s)变化的关系图象,则a的值是__
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,△ABC中,AB=AC.求作一点D,使得以A、B、C、D为顶点的四边形是菱形,并证明你作图的正确性.(要求:尺规作图,保留作图痕迹,不写作法)
25、(10分)如图,矩形中,、的平分线、分别交边、于点、。求证;四边形是平行四边形。
26、(12分)如图,在▱ABCD中,E,F分别是边AB,CD的中点,求证:AF=CE.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据勾股定理求出AD,BE,根据算术平方根的大小比较方法解答.
【详解】
AE=4,
AB=3,
由勾股定理得AD=,3<<4,
BE==1.
故选C.
本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.
2、B
【解析】
根据被开方数是非负数,可得答案.
【详解】
由题意,得
﹣2a≥1,解得a≤1.
故选B.
本题考查了二次根式有意义的条件,熟知二次根式的被开方数是是非负数是解题的关键.
3、C
【解析】
连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.
【详解】
解:连接AD,
∵△ABC是等腰三角形,点D是BC边的中点,
∴AD⊥BC,
∴S△ABC=BC•AD=×4×AD=16,解得AD=8,
∵EF是线段AC的垂直平分线,
∴点C关于直线EF的对称点为点A,
∴AD的长为CM+MD的最小值,
∴△CDM的周长最短=(CM+MD)+CD
故选:C.
本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.
4、B
【解析】
根据常量的定义判断即可,常量就是不变的量,不随自变量的变化而变化.
【详解】
解:根据题意长方形的周长p=60m,
所以常量是p,
故选:B.
本题主要考查常量的定义,是函数的基本知识点,应当熟练掌握.
5、C
【解析】
根据“a是方程2x2﹣4x﹣2019=0的一个解”得出,即,则答案可求.
【详解】
∵a是方程2x2﹣4x﹣2019=0的一个根,
∴,
∴ ,
故选:C.
本题主要考查整体代入法和方程的根,掌握整体的思想和方程的根的概念是解题的关键.
6、A
【解析】
首先根据题意得出平行四边形ABCD是矩形,进而求出∠OAB的度数.
【详解】
∵平行四边形ABCD的对角线AC,BD相交于点O,OA=OD,
∴四边形ABCD是矩形,
∵∠OAD=50°,
∴∠OAB=40°.
故选:A.
本题主要考查了平行四边形的性质,矩形的判定与性质,解题的关键是判断出四边形ABCD是矩形,此题难度不大.
7、A
【解析】
直接利用已知得出3x-3小于等于1即可.
【详解】
根据题意可得:3x-3≤1.
故选A.
此题主要考查了由实际问题抽象出一元一次不等式,正确理解题意是解题关键.
8、B
【解析】
过点作轴的垂线交轴于点,过点作的垂线交轴于点,过点作的垂线交于,根据全等三角形的判定和性质,可得到点坐标和点坐标,从而求得双曲线函数未知数和平移距离.
【详解】
过点作轴的垂线交轴于点,过点作的垂线交轴于点,过点作的垂线交于.
,,,.
又,,,点坐标为
将点坐标为代入,可得=4.
与同理,可得到,,点坐标为,正方形沿轴负方向平移个单位长度后,点坐标为
将点坐标为代入,可得=2. 故选B.
本题综合考查反比例函数中未知数的求解、全等三角形的性质与判定、图形平移等知识.涉及图形与坐标系结合的问题,要学会通过辅助线进行求解.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、y1>y2
【解析】
∵k=a<0,
∴y随x的增大而减小.
∵−4<2,∴y1>y2.
故答案为y1>y2.
10、x(x﹣1)
【解析】分析:提取公因式x即可.
详解:x2−x=x(x−1).
故答案为:x(x−1).
点解:本题主要考查提公因式法分解因式,准确找出公因式是解题的关键.
11、1.
【解析】
∵将△ABC绕点B顺时针旋转60°,得到△BDE,
∴△ABC≌△BDE,∠CBD=60°,
∴BD=BC=12cm,
∴△BCD为等边三角形,
∴CD=BC=BD=12cm,
在Rt△ACB中,AB===13,
△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=1(cm),
故答案为1.
考点:旋转的性质.
12、3.
【解析】
试题分析:由数轴得知,a>2,且a<5,所以a-5<0,a-2>0,原式化简=5-a+a-2=3.故答案为3.
考点:绝对值意义与化简.
13、
【解析】
根据二次根式有意义的条件即可求解.
【详解】
依题意得a+1≥0,解得
故填:
此题主要考查二次根式的定义,解题的关键是熟知被开方数为非负数.
三、解答题(本大题共5个小题,共48分)
14、(1)1万元 (2)共有5种进货方案 (3)购买A款汽车6辆,B款汽车1辆时对公司更有利
【解析】
分析:(1)求单价,总价明显,应根据数量来列等量关系.等量关系为:今年的销售数量=去年的销售数量.
(2)关系式为:公司预计用不多于2万元且不少于11万元的资金购进这两款汽车共15辆.
(3)方案获利相同,说明与所设的未知数无关,让未知数x的系数为0即可;多进B款汽车对公司更有利,因为A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,所以要多进B款.
详解:(1)设今年5月份A款汽车每辆售价m万元.则:
,
解得:m=1.
经检验,m=1是原方程的根且符合题意.
答:今年5月份A款汽车每辆售价1万元;
(2)设购进A款汽车x辆,则购进B款汽车(15﹣x)辆,根据题意得:
11≤7.5x+6(15﹣x)≤2.
解得:6≤x≤3.
∵x的正整数解为6,7,8,1,3,∴共有5种进货方案;
(3)设总获利为W万元,购进A款汽车x辆,则:
W=(1﹣7.5)x+(8﹣6﹣a)(15﹣x)=(a﹣0.5)x+30﹣15a.
当a=0.5时,(2)中所有方案获利相同.
此时,购买A款汽车6辆,B款汽车1辆时对公司更有利.
点睛:本题考查了分式方程和一元一次不等式组的综合应用,找到合适的等量关系及不等关系是解决问题的关键.
15、(1)A种零件的单价为1元,B种零件的单价为60元;(2)最多购进A种零件2件.
【解析】
(1)设A种零件的单价是x元,则B种零件的单价是(x-20)元,根据“用10元购买A种零件的数量和用600元购买B种零件的数量相等”列出方程并解答;
(2)设购买A种零件a件,则购买B种零件(200-a)件,根据“购买两种零件的总费用不超过14700元”列出不等式并解答.
【详解】
解:(1)设B种零件的单价为x元,则A零件的单价为(x+20)元,
则
解得:x=60
经检验:x=60 是原分式方程的解, x+20=1.
答:A种零件的单价为1元,B种零件的单价为60元.
(2)设购进A种零件m件,则购进B种零件(200﹣m)件,则有
1m+60(200﹣m)≤14700,
解得:m≤2,
m在取值范围内,取最大正整数, m=2.
答:最多购进A种零件2件.
考查了分式方程的应用,一元一次不等式的应用,分析题意,找到合适的数量关系是解决问题的关键.
16、,
【解析】
先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算.
【详解】
解:
将代入上式有
原式=.
故答案为:;.
本题主要考查了分式的化简求值和二次根式的运算,其中熟练掌握分式混合运算法则是解题的关键.
17、解:(Ⅰ);(Ⅱ);(Ⅲ) (Ⅳ).
【解析】
分析:分别求出每一个不等式的解集,根据不等式在数轴上的表示,由公共部分即可确定不等式组的解集.
详解:(Ⅰ)解不等式(1),得x≥-2;
(Ⅱ)解不等式(2),得x≤1;
(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:
(Ⅳ)原不等式组的解集为:-2≤x≤1.
点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是解答此题的关键.
18、(1)x(x﹣4)1;(1)x=
【解析】
(1)此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.
(1)观察可得最简公分母是(x﹣1),方程两边乘最简公分母,把分式方程转化为整式方程,解方程并检验即得结果.
【详解】
解:(1)x3﹣8x1+16x
=x(x1﹣8x+16)
=x(x﹣4)1.
(1)1﹣=,
方程的两边同乘(x﹣1),得:1(x﹣1)﹣x=﹣1x,
解得:x=.
检验:把x=代入x﹣1≠2.
故原方程的解为:x=.
本题考查了多项式的因式分解和分式方程的解法,属于常考题型,熟练掌握上述基本知识是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
【分析】根据同分母分式加减法的法则进行计算即可得.
【详解】
=
=1,
故答案为1.
【点睛】本题考查了同分母分式的加减法,熟练掌握同分母分式加减法的法则是解题的关键.
20、1
【解析】
由题意可知当x=1时,函数y=﹣1x+b的值与函数y=﹣kx+1的值相等,由此即可得答案.
【详解】
∵直线y=﹣1x+b与直线y=﹣kx+1在同一坐标系中交于点,
∴当x=1时,函数y=﹣1x+b的值与函数y=﹣kx+1的值相等,
∴关于x的方程﹣1x+b=﹣kx+1的解为x=1,
故答案为:1.
本题考查了一次函数与一元一次方程,熟知两条直线交点的横坐标使两个函数的值相等是解题的关键.
21、-1
【解析】
根据一元二次方程根与系数的关系即可得出m+n=﹣2,mn=﹣1,将其代入m+n+mn中即可求出结论.
【详解】
∵m,n分别为一元二次方程x2+2x﹣1=0的两个实数根,
∴m+n=﹣2,mn=﹣1,
则m+n+mn=﹣2﹣1=﹣1.
故答案为:﹣1.
本题考查了一元二次方程根与系数的关系,熟练运用一元二次方程根与系数的关系是解决问题的关键.
22、乙
【解析】
根据方差的意义解答即可.
【详解】
方差反映了数据的离散程度,方差越小,成绩越稳定,故射击成绩比较稳定的是乙.
故答案为:乙.
本题主要考查了方差的意义,清楚方差反映了数据的离散程度,方差越小,数据越稳定是解题的关键.
23、
【解析】
过点D作DE⊥BC于点E,通过分析图象,点F从点A到D用a s,此时,△FBC的面积为a,依此可求菱形的高DE;再由图象可知,BD=,在Rt△DBE中应用勾股定理求BE的值,进而在Rt△DEC应用勾股定理求a的值.
【详解】
过点D作DE⊥BC于点E.
由图象可知,点F由点A到点D用时为a s,△FBC的面积为a cm.
∴AD=a,
∴ DE·AD=a,
∴DE=2.
当点F从D到B时,用s,
∴BD=.
Rt△DBE中,
BE=.
∵ABCD是菱形,
∴EC=a-1,DC=a,
Rt△DEC中,a=2+(a-1) ,
解得a= .
此题考查菱形的性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系;
二、解答题(本大题共3个小题,共30分)
24、见解析
【解析】
分别以B,C为圆心,以AB长画弧,两弧相交一点,即为D点.
【详解】
如图即为所求作的菱形
理由如下:
∵AB=AC,BD=AB,CD=AC,
∴AB=BD=CD=AC,
∴四边形ABDC是菱形.
本题考查尺规作图和菱形的性质,解题的关键是掌握尺规作图和菱形的性质.
25、见解析
【解析】
由矩形的性质可得AB∥CD,BC∥AD,由平行线的性质和角平分线的性质可得∠EBD=∠FDB,可证BE∥DF,且BC∥DE,可得四边形BEDF是平行四边形.
【详解】
解:∵四边形ABCD是矩形,
∴AB∥CD,BC∥AD,
∴∠ABD=∠BDC,
∵BE平分∠ABD,DF平分∠BDC,
∴∠EBD=∠ABD,∠FDB=∠BDC,
∴∠EBD=∠FDB,
∴BE∥DF,且BC∥DE,
∴四边形BEDF是平行四边形.
本题考查了矩形的性质,平行四边形的判定,角平分线的性质,熟练运用矩形的性质是本题的关键.
26、见解析.
【解析】
方法一:先根据平行四边形的性质及中点的定义得出AE=FC,AE∥FC,再根据一组对边平行且相等的四边形是平行四边形证出四边形AECF是平行四边形,然后根据平行四边形的对边相等得出AF=CE;
方法二:先利用“边角边”证明△ADF≌△CBE,再根据全等三角形的对应边相等得出AF=CE.
【详解】
证明:(证法一):
∵四边形ABCD为平行四边形,
∴AB∥CD,AB=CD,
又∵E、F是AB、CD的中点,
∴AE=AB,CF=CD,
∴AE=CF,AE∥CF,
∴四边形AECF是平行四边形,
∴AF=CE.
(证法二):
∵四边形ABCD为平行四边形,
∴AB=CD,AD=BC,∠B=∠D,
又∵E、F是AB、CD的中点,
∴BE=AB,DF=CD,
∴BE=DF,
∴△ADF≌△CBE(SAS),
∴AF=CE.
本题考查了证明两条线段相等的方法,一般来说,可以证明这两条线段是一个平行四边形的一组对边,也可以证明这两条线段所在的三角形全等.注意根据题目的已知条件,选择合理的判断方法.
题号
一
二
三
四
五
总分
得分
2024年山东省济宁市济宁院附属中学数学九上开学学业质量监测模拟试题【含答案】: 这是一份2024年山东省济宁市济宁院附属中学数学九上开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年江苏省扬州市教育科研究院九上数学开学达标检测模拟试题【含答案】: 这是一份2024年江苏省扬州市教育科研究院九上数学开学达标检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省扬州市教院数学九上开学调研试题【含答案】: 这是一份2024-2025学年江苏省扬州市教院数学九上开学调研试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。