终身会员
搜索
    上传资料 赚现金
    2025届吉林省长春市新朝阳实验学校九年级数学第一学期开学考试试题【含答案】
    立即下载
    加入资料篮
    2025届吉林省长春市新朝阳实验学校九年级数学第一学期开学考试试题【含答案】01
    2025届吉林省长春市新朝阳实验学校九年级数学第一学期开学考试试题【含答案】02
    2025届吉林省长春市新朝阳实验学校九年级数学第一学期开学考试试题【含答案】03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届吉林省长春市新朝阳实验学校九年级数学第一学期开学考试试题【含答案】

    展开
    这是一份2025届吉林省长春市新朝阳实验学校九年级数学第一学期开学考试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时出现了一处错误:将最高成绩写得更高了,则计算结果不受影响的是( )
    A.中位数B.平均数C.方差D.极差
    2、(4分)下列函数中,表示y是x的正比例函数的是( )
    A.y=﹣0.1xB.y=2x2C.y2=4xD.y=2x+1
    3、(4分)小明在画函数(>0)的图象时,首先进行列表,下表是小明所列的表格,由于不认真列错了一个不在该函数图象上的点,这个点是
    A.B.C.D.
    4、(4分)下列各组线段中,能够组成直角三角形的一组是( )
    A.1,2,3B.2,3,4C.4,5,6D.1,,2
    5、(4分)下列各式中,是最简二次根式的是( )
    A.B.C.D.
    6、(4分)据统计,湘湖景区跨湖桥遗址参观人数2016年为10.8万人次,2018年为16.8万人次,设该景点年参观人次的年平均增长率为x,则可列方程( )
    A.10.8(1+x)=16.8B.10.8(1+2x)=16.8
    C.10.8(1+x)=16.8D.10.8[(1+x)+(1+x)]=16.8
    7、(4分)如图,在△ABC中,点D、E分别是AB、AC的中点,下列结论不正确的是( )
    A.DE∥BCB.BC=2DEC.DE=2BCD.∠ADE=∠B
    8、(4分)下面四个图案分别是步行标志、禁止行人通行标志、禁止驶入标志和直行标志,其中是中心对称图形的是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)某花木场有一块如等腰梯形ABCD的空地(如图),各边的中点分别是E、F、G、H,用篱笆围成的四边形EFGH场地的周长为40cm,则对角线________.
    10、(4分)中国象棋在中国有着三千多年的历史,它难易适中,趣味性强,变化丰富细腻,棋盘棋子文字都体现了中国文化.如图,如果所在位置的坐标为(﹣1,﹣1),所在位置的坐标为(2,﹣1),那么,所在位置的坐标为__________.
    11、(4分)如图,直线l1:y=x+1与直线l2:y=kx+b相交于点P(m,3),则关于x的不等式x+1≤kx+b的解集为__________.
    12、(4分)已知某汽车油箱中的剩余油量(升)是该汽车行驶时间(小时)的一次函数,其关系如下表:
    由此可知,汽车行驶了__________小时, 油箱中的剩余油量为升.
    13、(4分)若一组数据4,a,7,8,3的平均数是5,则这组数据的中位数是________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题对全校学生进行了抽样调查,根据调查结果绘制成如图所示的两个不完整的统计图,请结合图中信息解决下列问题:
    (1)请将条形统计图补充完整,本次调查所得数据的众数是_______,中位数是________;
    (2)请通过计算估计全校学生平均每人大约阅读多少部四大古典名著.
    15、(8分)某市教育局为了了解初二学生每学期参加综合实践活动的情况,随机抽样调查了某校初二学生一个学期参加综合实践活动的天数,并用得到的数据绘制了两幅不完整的统计图.请你根据图中提供的信息,解答下列问题:
    (1)扇形统计图中的值为______,的值为______.
    (2)扇形统计图中参加综合实践活动天数为6天的扇形的圆心角大小为______.
    (3)请你估计该市初二学生每学期参加综合实践活动的平均天数大约是多少天(精确到个位)?
    (4)若全市初二学生共有90000名学生,估计有多少名学生一个学期参加综合社会活动的天数不少于5天?
    16、(8分)为了把巴城建成省级文明城市,特在每个红绿灯处设置了文明监督岗,文明劝导员老张某天在市中心的一十字路口,对闯红灯的人数进行统计.根据上午7:00~12:00中各时间段(以1小时为一个时间段),对闯红灯的人数制作了如图所示的扇形统计图和条形统计图,但均不完整.请你根据统计图解答下列问题:
    (1)问这一天上午7:00~12:00这一时间段共有多少人闯红灯?
    (2)请你把条形统计图补充完整,并求出扇形统计图中9~10点,10~11点所对应的圆心角的度数.
    (3)求这一天上午7:00~12:00这一时间段中,各时间段闯红灯的人数的众数和中位数.
    17、(10分)如图,在平面直角坐标系中,直线交轴于点,交轴于点.点在轴的负半轴上,且的面积为8,直线和直线相交于点.
    (1)求直线的解析式;
    (2)在线段上找一点,使得,线段与相交于点.
    ①求点的坐标;
    ②点在轴上,且,直接写出的长为 .
    18、(10分)(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.
    下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.
    证明:在边AB上截取AE=MC,连ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.
    ∴∠NMC=180°—∠AMN­—∠AMB=180°—∠B—∠AMB=∠MAB=∠MAE.
    (下面请你完成余下的证明过程)
    (2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则当∠AMN=60°时,结论AM=MN是否还成立?请说明理由.
    (3)若将(1)中的“正方形ABCD”改为“正边形ABCD……X”,请你作出猜想:当∠AMN=" " °时,结论AM=MN仍然成立.(直接写出答案,不需要证明)
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)双曲线,在第一象限的图象如图,过上的任意一点,作轴的平行线交于点,交轴于点,若,则的值为__________.
    20、(4分)如果直线l与直线y=﹣2x+1平行,与直线y=﹣x+2的交点纵坐标为1,那么直线l的函数解析式为__.
    21、(4分)化成最简二次根式后与最简二次根式的被开方数相同,则a的值为______.
    22、(4分)一个正多边形的每个外角等于72°,则它的边数是__________.
    23、(4分)如图,菱形的边长为2,点,分别是边,上的两个动点,且满足,设的面积为,则的取值范围是__.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)解不等式组:.
    25、(10分)某人购进一批琼中绿橙到市场上零售,已知卖出的绿橙数量x(千克)与售价y(元)的关系如下表:
    (1)写出售价y(元)与绿橙数量x(千克)之间的函数关系式;
    (2)这个人若卖出50千克的绿橙,售价为多少元?
    26、(12分)如图,在四边形中,,点为的中点,,交于点,,求的长.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    根据中位数的定义解答可得.
    【详解】
    解:因为中位数是将数据按照大小顺序重新排列,代表了这组数据值大小的“中点”,不受极端值影响,
    所以将最高成绩写得更高了,计算结果不受影响的是中位数,
    故选A.
    本题主要考查方差、极差、中位数和平均数,解题的关键是掌握中位数的定义.
    2、A
    【解析】
    A选项:y=-0.1x,符合正比例函数的含义,故本选项正确.
    B选项:y=2x2,自变量次数不为1,故本选项错误;
    C选项:y2=4x,y不是x的函数,故本选项错误;
    D选项:y=2x+1是一次函数,故本选项错误;
    故选A.
    3、D
    【解析】
    首先将各选项代入计算看是否在直线上即可.
    【详解】
    A 选项,当 代入 故在直线上.
    B 选项,当 代入 故在直线上.
    C选项,当 代入 故在直线上.
    D选项,当 代入 故不在直线上.
    故选D.
    本题主要考查直线上的点满足直线方程,是考试的基本知识,应当熟练掌握.
    4、D
    【解析】
    根据勾股定理的逆定理判断即可.
    【详解】
    解:1+2=3,A不能构成三角形;
    22+32≠42,B不能构成直角三角形;
    42+52≠62,C不能构成直角三角形;
    12+()2=22,D能构成直角三角形;
    故选:D.
    本题考查了能构成直角三角形的三边关系,解题的关键是掌握勾股定理.
    5、B
    【解析】
    根据最简二次根式的定义即可求解.
    【详解】
    A. ,分母出现根号,故不是最简二次根式;
    B. 为最简二次根式;
    C. =2,故不是最简二次根式;
    D. ,根号内含有小数,故不是最简二次根式,
    故选B.
    此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.
    6、C
    【解析】
    2016年为10.8万人次,平均增长率为x,17年就为10.8(1+x),则18年就为
    10.8(1+x)2即可得出
    【详解】
    2016年为10.8万人次,2018年为16.8万人次,,平均增长率为x,则10.8(1+x)2=16.8,故选C
    熟练掌握增长率的一元二次方程列法是解决本题的关键
    7、C
    【解析】
    根据三角形的中位线定理得出DE是△ABC的中位线,再由中位线的性质得出结论.
    【详解】
    解:∵在△ABC中,点D、E分别是边AB、AC的中点,
    ∴DE//BC,DE=BC,
    ∴BC=2DE,∠ADE=∠B,
    故选C.
    本题考查了三角形的中位线定理,根据三角形的中位线的定义得出DE是△ABC的中位线是解答此题的关键.
    8、C
    【解析】
    试题解析:A、不是轴对称图形,也不是中心对称图形;
    B、不是轴对称图形,不是中心对称图形;
    C、是轴对称图形,也是中心对称图形;
    D、是轴对称图形,不是中心对称图形.
    故选C.
    点睛:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、20cm
    【解析】
    根据等腰梯形的性质及三角形中位线的性质可推出四边形EFGH为菱形,根据菱形的性质可求得其边长,再根据三角形中位线的性质即可求得梯形对角线AC的长度.
    【详解】
    连接BD
    ∵四边形ABCD是等腰梯形
    ∴AC=BD
    ∵各边的中点分别是E. F. G、H
    ∴HG=AC=EF,EH=BD=FG
    ∴HG=EH=EF=FG,
    ∴四边形EFGH是菱形
    ∵四边形EFGH场地的周长为40cm
    ∴EF=10cm
    ∴AC=20cm
    本题考查菱形的判定及等腰梯形的性质,熟练掌握菱形的基本性质是解题关键.
    10、(﹣3,2)
    【解析】
    由“士”的位置向右平移减1个单位,在向上平移1个单位,得
    所在位置的坐标为 (-3,2),
    故答案是:(-3,2).
    11、x≤1
    【解析】
    首先把P(m,3)代入y=x+1可得m的值,进而得到P点坐标,然后再利用图象写出不等式的解集即可.
    【详解】
    解:把P(m,3)代入y=x+1得:m=1,
    则P(1,3),
    根据图象可得不等式x+1≤kx+b的解集是x≤1.
    故答案为:x≤1.
    本题主要考查一次函数和一元一次不等式,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.
    12、11.5
    【解析】
    根据剩余油量(升)、汽车行驶时间(小时),可求出每千米用油量,根据题意可写出函数式.
    【详解】
    根据题意得每小时的用油量为,
    ∴剩余油量(升)与汽车行驶时间(小时)的函数关系式:,
    当y=8时,x=11.5.
    故答案为:11.5.
    此题考查一次函数,解题关键在于结合实际列出一次函数关系式求解即可.
    13、1
    【解析】
    先根据平均数的定义求出x的值,然后根据中位数的定义求解.
    【详解】
    由题意可知,(1+a+7+8+3)÷5=5,
    a=3,
    这组数据从小到大排列3,3,1,7,8,
    所以,中位数是1.
    故答案是:1.
    考查平均数与中位数的意义.
    平均数是指在一组数据中所有数据之和再除以数据的个数.
    中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.
    三、解答题(本大题共5个小题,共48分)
    14、(1)图见解析,1部,2部;(2)2部
    【解析】
    (1)先利用阅读数量为2的人数及所占的百分比即可求出总人数,用总人数减去阅读数量不是1部的人数和即可得出阅读数量是1部的人数,从而可补全条形统计图,然后利用众数和中位数的定义即可求解;
    (2)利用平均数的求法计算即可.
    【详解】
    (1)总人数为(人),
    ∴阅读数量为1部的人数为(人),
    条形统计图如图:
    ∵阅读1部的人数最多,为14人,
    ∴所得数据的众数为1部;
    ∵总人数是40人,处于中间的是第20,21个数据,而第20,21个数据都是2部,
    ∴中位数为(部).
    (2)(部)
    ∴全校学生平均每人大约阅读2部四大古典名著.
    本题主要考查数据的分析与整理,掌握平均数,众数,中位数的求法是解题的关键.
    15、解:(1);;(2);(3)估计该市初二学生每学期参加综合实践活动的平均天数约是4天;(4)估计有31500名学生一个学期参加综合社会活动的天数不少于5天.
    【解析】
    (1)结合两图,先求出被调查的总人数,再求出各部分的百分比,从而得出答案;
    (2)用360°乘以活动时间为6天的百分比即可;
    (3)根据加权平均数公式求解可得.
    (4)用样本估计总体,即可计算.
    【详解】
    解:(1)∵被调查的总人数为30÷15%=200人
    ∴活动天数为4天的百分比b=60÷200=30% ,
    活动天数为6天的百分比=20÷200=10% ,
    活动天数为5天的百分比a=1-(20%+15%+5%+10%+30%)=1-80%=20%
    故答案为:20%;30% ,
    (2)∵活动天数为6天的百分比是10%,
    ∴活动天数为6天的扇形的圆心角= 360°×10%=36°.
    故答案为:36°
    (3)以各部分的百分比为权,得

    ∴估计该市初二学生每学期参加综合实践活动的平均天数约是4天.
    (4),
    ∴估计有31500名学生一个学期参加综合社会活动的天数不少于5天.
    本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    16、(1)100人闯红灯(2)见解析;(3)众数为15人,中位数为20人
    【解析】
    (1)根据11﹣12点闯红灯的人数除以所占的百分比即可求出7﹣12这一时间段共有的人数.
    (2)根据7﹣8点所占的百分比乘以总人数即可求出7﹣8点闯红灯的人数,同理求出8﹣9点的人数,然后可计算出10﹣11点的人数,补全条形统计图即可;求出9﹣10及10﹣11点的百分比,分别乘以360度即可求出圆心角的度数.
    (3)找出这一天上午7:00~12:00这一时间段中,各时间段闯红灯的人数的众数和中位数即可.
    【详解】
    解:(1)根据题意得:40÷40%=100(人),
    ∴这一天上午7:00~12:00这一时间段共有100人闯红灯.
    (2)根据题意得:7﹣8点的人数为100×20%=20(人),
    8﹣9点的人数为100×15%=15(人),
    9﹣10点占=10%,
    10﹣11点占1﹣(20%+15%+10%+40%)=15%,人数为100×15%=15(人).
    补全图形,如图所示:
    9~10点所对的圆心角为10%×360°=36°,10~11点所对应的圆心角的度数为15%×360°=54°.
    (3)根据图形得:这一天上午7:00~12:00这一时间段中,各时间段闯红灯的人数的众数为15人,中位数为20人.
    17、(1)直线的解析式为;(2)①,,②满足条件的的值为8或.
    【解析】
    (1)求出B,C两点坐标,利用待定系数法即可解决问题.
    (2)①连接AD,利用全等三角形的性质,求出直线DF的解析式,构建方程组确定交点E坐标即可.
    ②如图1中,将线段FD绕点F顺时针旋转90°得到FG,作DE⊥y轴于E,GH⊥y轴于F.根据全等三角形,分两种情形分别求解即可.
    【详解】
    (1)直线交轴于点,交轴于点,
    ,,
    点在轴的负半轴上,且的面积为8,

    ,则,
    设直线的解析式为即,
    解得,
    故直线的解析式为.
    (2)①连接.
    点是直线和直线的交点,故联立,
    解得,即.
    ,故,且,
    ,,

    ,,
    即,可求直线的解析式为,
    点是直线和直线的交点,
    故联立,解得,
    即,.
    ②如图1中,将线段绕点顺时针旋转得到,作轴于,轴于.
    则,
    ,,
    ,,
    直线的解析式为,
    设直线交轴于,则,


    作,则,
    可得直线的解析式为,


    综上所述,满足条件的的值为8或.
    本题考查用待定系数法求一次函数的解析式,两条直线的交点,利用坐标求线段长度证全等,灵活运用一次函数以及全等是解题的关键.
    18、(1)见详解;(2)见详解;(3)
    【解析】
    (1)要证明AM=MN,可证AM与MN所在的三角形全等,为此,可在AB上取一点E,使AE=CM,连接ME,利用ASA即可证明△AEM≌△MCN,然后根据全等三角形的对应边成比例得出AM=MN.
    (2)同(1),要证明AM=MN,可证AM与MN所在的三角形全等,为此,可在AB上取一点E,使AE=CM,连接ME,利用ASA即可证明△AEM≌△MCN,然后根据全等三角形的对应边成比例得出AM=MN.
    (3)由(1)(2)可知,∠AMN等于它所在的正多边形的一个内角即等于时,结论AM=MN仍然成立.
    【详解】
    (1)证明:在边AB上截取AE=MC,连接ME.
    ∵正方形ABCD中,∠B=∠BCD=90°,AB=BC.
    ∴∠NMC=180°−∠AMN−∠AMB=180°−∠B−∠AMB=∠MAB=∠MAE,
    BE=AB−AE=BC−MC=BM,
    ∴∠BEM=45°,
    ∴∠AEM=135°.
    ∵N是∠DCP的平分线上一点,
    ∴∠NCP=45°,
    ∴∠MCN=135°.
    在△AEM与△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN,
    ∴△AEM≌△MCN(ASA),
    ∴AM=MN.
    (2)结论AM=MN还成立
    证明:在边AB上截取AE=MC,连接ME.
    在正△ABC中,∠B=∠BCA=60°,AB=BC.
    ∴∠NMC=180°−∠AMN−∠AMB=180°−∠B−∠AMB=∠MAE,
    BE=AB−AE=BC−MC=BM,
    ∴∠BEM=60°,
    ∴∠AEM=120°.
    ∵N是∠ACP的平分线上一点,
    ∴∠ACN=60°,
    ∴∠MCN=120°.
    在△AEM与△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN,
    ∴△AEM≌△MCN(ASA),
    ∴AM=MN.
    (3)若将(1)中的“正方形ABCD”改为“正n边形ABCD…X,则当∠AMN=时,结论AM=MN仍然成立.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    根据S△AOC-S△BOC=S△AOB,列出方程,求出k的值.
    【详解】
    由题意得:S△AOC-S△BOC=S△AOB,
    =1,
    解得,k=1,
    故答案为:1.
    此题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.根据面积关系得出方程是解题的关键.
    20、答案为:y=﹣2x+3.
    【解析】【分析】设直线l的函数解析式为y=kx+b,先由平行关系求k,再根据交点求出b.
    【详解】设直线l的函数解析式为y=kx+b,
    因为,直线l与直线y=﹣2x+1平行,
    所以,y=﹣2x+b,
    因为,与直线y=﹣x+2的交点纵坐标为1,
    所以,1=﹣x+2,x=1
    所以,把(1,1)代入y=-2x+b,解得b=3.
    所以,直线l的函数解析式为:y=﹣2x+3.
    故答案为:y=﹣2x+3.
    【点睛】本题考核知识点:一次函数解析式. 解题关键点:熟记一次函数的性质.
    21、1.
    【解析】
    先将化成最简二次根式,然后根据同类二次根式得到被开方数相同可得出关于a的方程,解出即可.
    【详解】
    ∵与最简二次根式是同类二次根式,且=1,
    ∴a+1=3,解得:a=1.
    故答案为1.
    本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.
    22、1
    【解析】
    根据题意利用多边形的外角和是360°,这个正多边形的每个外角相等,因而用360°除以外角的度数,就得到外角的个数,外角的个数就是多边形的边数.
    【详解】
    解:360÷72=1.
    故它的边数是1.
    故答案为:1.
    本题考查多边形内角与外角,根据正多边形的外角和求多边形的边数是解题的关键.
    23、.
    【解析】
    先证明为正三角形,根据直角三角形的特点和三角函数进行计算即可解答
    【详解】
    菱形的边长为2,,
    和都为正三角形,
    ,,
    ,而,


    ,,

    即,
    为正三角形;
    设,
    则,
    当时,最小,

    当与重合时,最大,


    故答案为.
    此题考查等边三角形的判定与性质和菱形的性质,解题关键在于证明为正三角形
    二、解答题(本大题共3个小题,共30分)
    24、2<x≤1
    【解析】
    分别计算出各不等式的解集,再求出其公共解集即可.
    【详解】
    解:解①得:x>2
    解②得:x≤1
    不等式组的解集是2<x≤1.
    本题考查的是解一元一次不等式组,解答此类题目要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
    25、 (1)y=2.1x;(2)这个人若卖出50千克的绿橙,售价为1元.
    【解析】
    (1)根据表中所给信息,判断出y与x的数量关系,列出函数关系式即可;
    (2)把x=50代入函数关系式即可.
    【详解】
    (1)设售价为y(元)与绿橙数量x(千克)之间的函数关系式为y=kx+b,由已知得,

    解得k=2.1,b=0;
    ∴y与x之间的函数关系式为y=2.1x;
    (2)当x=50时,
    y=2.1×50=1.
    答:这个人若卖出50千克的绿橙,售价为1元.
    本题考查一次函数的应用,解题的关键是明确题意可以列出相应的函数关系式,并且可以求在x一定时的函数值.
    26、
    【解析】
    连接BD,作CF⊥AB于F,由线段垂直平分线的性质得出BD=AD,AE=BE,得出∠DBE=∠DAB=30°,由直角三角形的性质得出BD=AD=2DE=2,AE=BE=DE=3,证出△BCD是直角三角形,∠CBD=90°,得出∠BCF=30°,得出BF=BC=,CF=BF=,求出EF=BE+BF=,在Rt△CEF中,由勾股定理即可得出结果.
    【详解】
    解:连接,作于,如图所示:
    则,点为的中点,,

    ,,
    ,,
    ,是直角三角形,
    ,,
    ,,,

    在中,由勾股定理得:;
    【点睛】本题考查勾股定理,解题关键在于求得EF=BE+BF.
    题号





    总分
    得分
    (小时)

    (升)

    数量x(千克)
    1
    2
    3
    4
    5

    售价y(元)
    2+0.1
    4+0.2
    6+0.3
    8+0.4
    10+0.5

    相关试卷

    2025届吉林省长春市朝阳区新朝阳实验学校数学九年级第一学期开学监测试题【含答案】: 这是一份2025届吉林省长春市朝阳区新朝阳实验学校数学九年级第一学期开学监测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    吉林省长春市朝阳区新朝阳实验学校2023-2024学年九上数学期末学业水平测试试题含答案: 这是一份吉林省长春市朝阳区新朝阳实验学校2023-2024学年九上数学期末学业水平测试试题含答案,共10页。试卷主要包含了下列实数中,介于与之间的是等内容,欢迎下载使用。

    2023-2024学年吉林省长春市新朝阳实验学校数学九上期末统考模拟试题含答案: 这是一份2023-2024学年吉林省长春市新朝阳实验学校数学九上期末统考模拟试题含答案,共7页。试卷主要包含了如果反比例函数的图像经过点,已知点A,在平面直角坐标系中,点P等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map