搜索
    上传资料 赚现金
    英语朗读宝

    2025届湖北省随州市随县数学九上开学考试试题【含答案】

    2025届湖北省随州市随县数学九上开学考试试题【含答案】第1页
    2025届湖北省随州市随县数学九上开学考试试题【含答案】第2页
    2025届湖北省随州市随县数学九上开学考试试题【含答案】第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届湖北省随州市随县数学九上开学考试试题【含答案】

    展开

    这是一份2025届湖北省随州市随县数学九上开学考试试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如果,那么代数式的值为( )
    A.B.C.D.
    2、(4分)下列植物叶子的图案中既是轴对称,又是中心对称图形的是( )
    A.B.C..D.
    3、(4分)如图,在四边形ABCD中,∠A=60°,∠B=∠D=90°,AD=8,AB=7,则BC+CD等于( )
    A.6B.5C.4D.3
    4、(4分)一名射击运动员连续打靶10次,命中的环数如图所示,这位运动员命中环数的众数与中位数分别为( )
    A.7与7B.7与7.5C.8与7.5D.8与7
    5、(4分)如图l1:y=x+3与l2:y=ax+b相交于点P(m,4),则关于x的不等式x+3≤ax+b的解为( )
    A.x≥4B.x<mC.x≥mD.x≤1
    6、(4分)下列关于x的方程是一元二次方程的是( )
    A.B.C.D.
    7、(4分)如图,已知四边形ABCD是边长为4的正方形,E为CD上一点,且DE=1,F为射线BC上一动点,过点E作EG⊥AF于点P,交直线AB于点G.则下列结论中:①AF=EG;②若∠BAF=∠PCF,则PC=PE;③当∠CPF=45°时,BF=1;④PC的最小值为﹣1.其中正确的有( )
    A.1个B.1个C.3个D.4个
    8、(4分)若,则下列不等式中成立的是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,将矩形ABCD沿直线BD折叠,使C点落在C′处,BC′交边AD于点E,若∠ADC′=40°,则∠ABD的度数是_____.
    10、(4分)如图,将矩形绕点顺时针旋转度,得到矩形.若,则此时的值是_____.
    11、(4分)在菱形ABCD中,E为AB的中点,OE=3,则菱形ABCD的周长为.
    12、(4分)某一时刻,身高1.6m的小明在阳光下的影长是0.4m,同一时刻同一地点测得旗杆的影长是5m,则该旗杆的高度是_________m.
    13、(4分)在正方形中,在上,,,是上的动点,则的最小值是_____________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)(1)--;(2)
    15、(8分)如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于E.
    (1)求证:△AFE≌△CDF;
    (2)若AB=4,BC=8,求图中阴影部分的面积.
    16、(8分)如图,AD是△ABC的高,CE是△ABC的中线.
    (1)若AD=12,BD=16,求DE;
    (2)已知点F是中线CE的中点,连接DF,若∠AEC=57°,∠DFE=90°,求∠BCE的度数.
    17、(10分)某商店第一次用6000元购进了练习本若干本,第二次又用6000元购进该款练习本,但这次每本进货的价格是第一次进货价格的1.2倍,购进数量比第一次少了1000本.
    (1)问:第一次每本的进货价是多少元?
    (2)若要求这两次购进的练习本按同一价格全部销售完毕后获利不低于4500元,问每本售价至少是多少元?
    18、(10分)如图,一次函数的图象分别与x轴,y轴交于A、B两点,正比例函数的图象与交于点.
    (1)求m的值及的解析式;
    (2)求得的值为______;
    (3)一次函数的图象为,且,,可以围成三角形,直接写出k的取值范围.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,点D是Rt△ABC斜边AB的中点,AC=1,CD=1.5,那么BC=_____.
    20、(4分)若关于x的方程产生增根,那么 m的值是______.
    21、(4分)如图,将两条宽度为3的直尺重叠在一起,使∠ABC=60°,则四边形ABCD的面积是_____________
    22、(4分)计算:的结果是_____.
    23、(4分)请观察一列分式:﹣,﹣,…则第11个分式为_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)解方程:
    (1);
    (2).
    25、(10分)如图,在等腰△ABC中,AC=BC,D在BC上,P是射线AD上一动点.
    (1)如图①,若∠ACB=90°,AC=8,CD=6,当点P在线段AD上,且△PCD是等腰三角形时,求AP长.
    (2)如图②,若∠ACB=90°,∠APC=45°,当点P在AD延长线上时,探究PA,PB,PC的数量关系,并说明理由.
    (3)类比探究:如图③,若∠ACB=120°,∠APC=30°,当点P在AD延长线上时,请直接写出表示PA,PB,PC的数量关系的等式.
    26、(12分)已知四边形,,与互补,以点为顶点作一个角,角的两边分别交线段,于点,,且,连接,试探究:线段,,之间的数量关系.
    (1)如图(1),当时,,,之间的数量关系为___________.
    (2)在图(2)的条件下(即不存在),线段,,之间的数量关系是否仍然成立?若成立,请完成证明;若不成立,请说明理由.
    (3)如图(3),在腰长为的等腰直角三角形中,,,均在边上,且,若,求的长.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    先把分母因式分解,再约分得到原式=,然后把x=3y代入计算即可.
    【详解】
    原式=•(x-y)=,
    ∵x-3y=0,
    ∴x=3y,
    ∴原式==.
    故选:D.
    本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.
    2、D
    【解析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    A. 是轴对称图形,不是中心对称图形。故选项错误;
    B. 是轴对称图形,不是中心对称图形。故选项错误;
    C. 不是轴对称图形,也不是中心对称图形。故选项错误;
    D. 是轴对称图形,也是中心对称图形。故选项正确。
    故选D.
    此题考查中心对称图形,轴对称图形,解题关键在于掌握其概念
    3、B
    【解析】
    延长DC至E,构建直角△ADE,解直角△ADE求得DE,BE,根据BE解直角△CBE可得BC,CE,进而求解.
    【详解】
    如图,延长AB、DC相交于E,
    在Rt△ADE中,可求得AE2-DE2=AD2,且AE=2AD,
    计算得AE=16,DE=8,
    于是BE=AE-AB=9,
    在Rt△BEC中,可求得BC2+BE2=CE2,且CE=2BC,
    ∴BC=3,CE=6,
    于是CD=DE-CE=2,
    BC+CD=5.
    故选B.
    本题考查了勾股定理的运用,考查了30°角所对的直角边是斜边的一半的性质,本题中构建直角△ADE求BE,是解题的关键.
    4、A
    【解析】
    根据众数的定义找出出现次数最多的数;根据中位数的定义求出最中间两个数的平均数即可.
    【详解】
    解:根据统计图可得:
    7出现了4次,出现的次数最多,
    则众数是7;
    ∵共有10个数,
    ∴中位数是第5和6个数的平均数,
    ∴中位数是(7+7)÷2=7;
    故选:A.
    此题考查了众数和中位数,用到的知识点是众数和中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),众数是一组数据中出现次数最多的数,注意众数不止一个.
    5、D
    【解析】
    试题分析:首先把P(m,4)代入y=x+3可得m的值,进而得到P点坐标,然后再利用图象写出不等式的解集即可.
    解:把P(m,4)代入y=x+3得:m=1,
    则P(1,4),
    根据图象可得不等式x+3≤ax+b的解集是x≤1,
    故选D.
    6、D
    【解析】
    根据一元二次方程的概念逐项进行判断即可.
    【详解】
    A、含有两上未知数,不符合一元二次方程的概念,故错误;
    B、不是整式方程,故错误;
    C、最高次数为3次,不符合一元二次方程的概念,故错误;
    D、符合一元二次方程的概念,故正确,
    故选D.
    本题考查了一元二次方程的概念,熟练掌握“一元二次方程是指含有一个未知数,并且含有未知数的项的最高次数为2次的整式方程”是解题的关键.
    7、C
    【解析】
    连接AE,过E作EH⊥AB于H,则EH=BC,根据全等三角形的判定和性质定理即可得到AF=EG,故①正确;根据平行线的性质和等腰三角形的性质即可得到PE=PC;故②正确;连接EF,推出点E,P,F,C四点共圆,根据圆周角定理得到∠FEC=∠FPC=45°,于是得到BF=DE=1,故③正确;取AE 的中点O,连接PO,CO,根据直角三角形的性质得到AO=PO=AE,推出点P在以O为圆心,AE为直径的圆上,当O、C、P共线时,CP的值最小,根据三角形的三边关系得到PC≥OC﹣OP,根据勾股定理即可得到结论.
    【详解】
    连接AE,过E作EH⊥AB于H,
    则EH=BC,
    ∵AB=BC,
    ∴EH=AB,
    ∵EG⊥AF,
    ∴∠BAF+∠AGP=∠BAF+∠AFB=90°,
    ∴∠EGH=∠AFB,
    ∵∠B=∠EHG=90°,
    ∴△HEG≌△ABF(AAS),
    ∴AF=EG,故①正确;
    ∵AB∥CD,
    ∴∠AGE=∠CEG,
    ∵∠BAF+∠AGP=90°,∠PCF+∠PCE=90°,
    ∵∠BAF=∠PCF,
    ∴∠AGE=∠PCE,
    ∴∠PEC=∠PCE,
    ∴PE=PC;故②正确;
    连接EF,
    ∵∠EPF=∠FCE=90°,
    ∴点E,P,F,C四点共圆,
    ∴∠FEC=∠FPC=45°,
    ∴EC=FC,
    ∴BF=DE=1,
    故③正确;
    取AE 的中点O,连接PO,CO,
    ∴AO=PO=AE,
    ∵∠APE=90°,
    ∴点P在以O为圆心,AE为直径的圆上,
    ∴当O、C、P共线时,CP的值最小,
    ∵PC≥OC﹣OP,
    ∴PC的最小值=OC﹣OP=OC﹣AE,
    ∵OC==,AE==,
    ∴PC的最小值为﹣,故④错误,
    故选:C.
    此题考查了正方形的性质、全等三角形的判定和性质、直角三角形的性质、圆的综合等知识,借助圆的性质解决线段的最小值是解答的关键.
    8、C
    【解析】
    根据不等式的性质分析判断.
    【详解】
    A、在不等式的两边同时减去1,即a-1>b-1.故本选项错误;
    B、在不等式的两边同时乘以1,即1a>1b.故本选项错误;
    C、在不等式的两边同时乘以-1,不等号的方向发生改变,即-1a2.故本选项错误.
    本题主要考查了不等式的基本性质.在解答不等式的问题时,应密切关注符号的方向问题.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、65°
    【解析】
    直接利用翻折变换的性质得出∠2=∠3=25°,进而得出答案.
    【详解】
    解:由题意可得:∠A=∠C′=90°,∠AEB=∠C′ED,
    故∠1=∠ADC′=40°,
    则∠2+∠3=50°,
    ∵将矩形ABCD沿直线BD折叠,使C点落在C′处,
    ∴∠2=∠3=25°,
    ∴∠ABD的度数是:∠1+∠2=65°,
    故答案为65°.
    本题考查了矩形的性质、翻折变换的性质,正确得出∠2=∠3=25°是解题关键.
    10、60°或300°
    【解析】
    由“SAS”可证△DCG≌△ABG,可得CG=BG,由旋转的性质可得BG=BC,可得△BCG是等边三角形,即可求解.
    【详解】
    解:如图,连接,
    ∵四边形ABCD是矩形,
    ∴CD=AB,∠DAB=∠ADC=90°,
    ∵DG=AG,
    ∴∠ADG=∠DAG,
    ∴∠CDG=∠GAB,且CD=AB,DG=AG,
    ∴△DCG≌△ABG(SAS),
    ∴CG=BG,
    ∵将矩形ABCD绕点B顺时针旋转α度(0°<α<360°),得到矩形BEFG,
    ∴BC=BG,∠CBG=α,
    ∴BC=BG=CG,
    ∴△BCG是等边三角形,
    ∴∠CBG=α=60°,
    同理当G点在AD的左侧时,
    △BCG仍是等边三角形,
    Α=300°
    故答案为60°或300°.
    本题考查了旋转的性质,全等三角形的判定和性质,等边三角形的判定和性质,证明△BCG是等边三角形是本题的关键.
    11、1.
    【解析】
    试题分析:根据菱形的对角线互相平分可得OB=OD,然后判断出OE是△ABD的中位线,再根据三角形的中位线等于第三边的一半求出AD,然后根据菱形的周长进行计算即可得解.
    解:在菱形ABCD中,OB=OD,
    ∵E为AB的中点,
    ∴OE是△ABD的中位线,
    ∵OE=3,
    ∴AD=2OE=2×3=6,
    ∴菱形ABCD的周长为4×6=1.
    故答案为1.
    考点:菱形的性质.
    12、20
    【解析】
    试题分析:设该旗杆的高度为xm,根据三角形相似的性质得到同一时刻同一地点物体的高度与其影长的比相等,即有1.6:0.4=x:5,然后解方程即可.
    解:设该旗杆的高度为xm,根据题意得,1.6:0.4=x:5,
    解得x=20(m).
    即该旗杆的高度是20m.
    13、
    【解析】
    根据题意画出图形,连接AC、AE,由正方形的性质可知A、C关于直线BD对称,故AE的长即为PE+PC的最小值,再根据勾股定理求出AE的长即可.
    【详解】
    如图所示:连接AC、AE,
    ∵四边形ABCD是正方形,
    ∴A、C关于直线BD对称,
    ∴AE的长即为PE+PC的最小值,
    ∵BE=2,CE=1,
    ∴BC=AB=2+1=3,
    在Rt△ABE中,
    ∵AE=,
    ∴PE与PC的和的最小值为.
    故答案为:.
    本题考查的是轴对称-最短路线问题及正方形的性质,熟知“两点之间,线段最短”是解决问题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)- (2)
    【解析】
    【分析】(1)把每一个二次根式都化成最简二次根式,然后再对同类二次根式进行合并即可得;
    (2)根据二次根式乘除法的法则进行计算即可.
    【详解】(1)原式=-=- ;
    (2)原式== =.
    【点睛】本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键.
    15、(1)证明见解析;(2)1.
    【解析】
    试题分析:(1)根据矩形的性质得到AB=CD,∠B=∠D=90°,根据折叠的性质得到∠E=∠B,AB=AE,根据全等三角形的判定定理即可得到结论;
    (2)根据全等三角形的性质得到AF=CF,EF=DF,根据勾股定理得到DF=3,根据三角形的面积公式即可得到结论.
    试题解析:(1)∵四边形ABCD是矩形,∴AB=CD,∠B=∠D=90°,∵将矩形ABCD沿对角线AC翻折,点B落在点E处,∴∠E=∠B,AB=AE,∴AE=CD,∠E=∠D,在△AEF与△CDF中,∵∠E=∠D,∠AFE=∠CFD,AE=CD,∴△AEF≌△CDF;
    (2)∵AB=4,BC=8,∴CE=AD=8,AE=CD=AB=4,∵△AEF≌△CDF,∴AF=CF,EF=DF,∴DF2+CD2=CF2,即DF2+42=(8﹣DF)2,∴DF=3,∴EF=3,∴图中阴影部分的面积=S△ACE﹣S△AEF=×4×8﹣×4×3=1.
    点睛:本题考查了翻折变换﹣折叠的性质,熟练掌握折叠的性质是解题的关键.
    16、(1)DE=10;(2)∠BCE=19°.
    【解析】
    (1)根据勾股定理和直角三角形斜边上的中线等于斜边的一半即可得到结论;
    (2)由DE=DC得到∠DEC=∠DCE,由DE=BE得到∠B=∠EDB,由此根据外角的性质来求∠BCE的度数.
    【详解】
    (1)∵AD⊥BC,
    ∴∠ADB=90°,
    ∴AB==20,
    ∵CE是中线,
    ∴DE是斜边AB上的中线,
    ∴DE=AB=10;
    (2)∵DF⊥CF,F是CF的中点,
    ∴DE=DC,
    ∴∠DEC=∠DCE,
    ∴∠EDB=∠DEC+∠DCE=2∠BCE,
    ∵DE=BE,
    ∴∠B=∠EDB,
    ∴∠B=2∠BCE,
    ∴∠AEC=3∠BCE=57°,则∠BCE=19°.
    本题考查了勾股定理,也考查了直角三角形斜边上的中线性质,熟练掌握勾股定理是解题的关键.
    17、(1)第一次每本的进货价是1元;(2):每本售价为1.2元.
    【解析】
    (1)设第一次每本的进货价是x元,根据提价之后用6000元购进数量比第一次少了1000本,列方程求解;
    (2)设售价为y元,根据获利不低于4200元,列不等式求解
    【详解】
    解:(1)设第一次每本的进货价是x元, 由题意得:=1000, 解得:x=1.
    答:第一次每本的进货价是1元;
    (2)设售价为y元, 由题意得,(6000+2000)y﹣12000≥4200, 解得:y≥1.2.
    答:每本售价为1.2元.
    考点:分式方程的应用;一元一次不等式的应用
    18、 (1);;(2);(3)且且.
    【解析】
    (1)由求出点C坐标,待定系数法可得的解析式;
    (2)分别求出的面积即可;
    (3) 或过点C时围不成三角形,由此可知k的取值范围.
    【详解】
    解:(1)∵点在一次函数的图象上
    ∴把代入得,解得
    设的解析式为,将点代入得,解得
    ∴的解析式为
    (2) 时,,所以,即,由可知点C到x轴的距离为,到y轴的距离为.
    (3)由题意可得或过点C时围不成三角形
    当时,,当时,,当过点C时,将点C代入得,解得
    所以当,,可以围成三角形时k的取值范围为且且.
    本题考查了一次函数,包括待定系数法求解析式及函数图像围成三角形的面积,正确理解题意,做到数形结合是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、2
    【解析】
    首先根据直角三角形斜边中线定理得出AB,然后利用勾股定理即可得出BC.
    【详解】
    ∵在Rt△ABC中,∠ACB=90°,D是AB的中点,
    ∴AB=2CD=17,
    ∴BC===2,
    故答案为:2.
    此题主要考查直角三角形斜边中线定理以及勾股定理的运用,熟练掌握,即可解题.
    20、1
    【解析】
    分式方程去分母转化为整式方程,根据分式方程有增根得到x-2=0,将x=2代入整式方程计算即可求出m的值.
    【详解】
    分式方程去分母得:x−1=m+2x−4,
    由题意得:x−2=0,即x=2,
    代入整式方程得:2−1=m+4−4,
    解得:m=1.
    故答案为:1.
    此题考查分式方程的增根,解题关键在于掌握分式方程中增根的意义.
    21、6
    【解析】
    分析:先根据两组对边分别平行证明四边形ABCD是平行四边形,再根据两张纸条的宽度相等,利用面积求出AB=BC,然后根据邻边相等的平行四边形是菱形;根据宽度是3与∠ABC=60°求出菱形的边长,然后利用菱形的面积=底×高计算即可.
    详解:纸条的对边平行 , 即 AB ∥ CD,AD ∥ BC ,
    ∴ 四边形 ABCD 是平行四边形,
    ∵ 两张纸条的宽度都是 3 ,
    ∴S四边形ABCD=AB×3=BC×3 ,
    ∴AB=BC ,
    ∴ 平行四边形 ABCD 是菱形,即四边形 ABCD 是菱形.
    如图 , 过 A 作 AE⊥BC, 垂足为 E,
    ∵∠ABC=60∘ ,
    ∴∠BAE=90°−60°=30°,
    ∴AB=2BE ,
    在 △ABE 中 ,AB2=BE2+AE2 ,
    即 AB2=AB2+32 ,
    解得 AB=,
    ∴S四边形ABCD=BC⋅AE=×3=.
    故答案是:.
    点睛:本题考查了平行四边形的判定与性质,含30°角的直角三角形的性质,勾股定理,菱形的判定与性质,熟练掌握菱形的判定与性质是解答本题的关键.
    22、1
    【解析】
    根据算术平方根的定义,直接得出表示21的算术平方根,即可得出答案.
    【详解】
    解:∵表示21的算术平方根,且

    故答案是:1.
    此题主要考查了算术平方根的定义,必须注意算术平方根表示的是一个正数的平方等于某个数.
    23、
    【解析】
    分母中y的次数是分式的序次的2倍加1,分子中x的次数与序次一致,分式的序次为奇数时,分式的符合为负,分式的序次为偶数时,分式的符合为正,由此即可解决问题.
    【详解】
    根据规律可知:则第11个分式为﹣.
    故答案为﹣.
    本题考查了分式的定义:叫分式,其中A、B都是整式,并且B中含有字母.也考查了从特殊到一般的规律的探究.
    二、解答题(本大题共3个小题,共30分)
    24、或;
    【解析】
    移项后,提取公因式,进一步求解可得;
    方程整理成一般式后利用求根公式计算可得.
    【详解】
    解:,

    则,
    或,
    解得:或;
    原方程整理成一般式为,
    、、,

    则.
    此题考查了解一元二次方程因式分解法,配方法,以及公式法,熟练掌握各种解法是解本题的关键.
    25、(1)满足条件的AP的值为2.8或4或2;(2)PA﹣PB=PC.理由见解析;(3)PA﹣PB=PC.理由见解析.
    【解析】
    (1)如图①中,作CH⊥AD于H.利用面积法求出CH,利用勾股定理求出DH,再求出PD,接下来分三种情形解决问题即可;
    (2)结论:PA﹣PB=PC.如图②中,作EC⊥PC交AP于E.只要证明△ACE≌△BCP即可解决问题;
    (3)结论:PA﹣PB=PC.如图③中,在AP上取一点E,使得∠ECP=∠ACB=120°.只要证明△ACE≌△BCP即可解决问题;
    【详解】
    (1)如图①中,作CH⊥AD于H.
    在Rt△ACD中,AD==10,
    ∵×AC×DC=×AD×CH,
    ∴CH=,
    ∴DH==,
    ①当CP=CD,∵CH⊥PD,
    ∴PH=DH=,
    ∴PD=,
    ∴PA=AD﹣PD=10﹣=.
    ②当CD=DP时,DP=1.AP=10﹣1=4,
    ③当CP=PD时,易证AP=PD=2,
    综上所述,满足条件的AP的值为2.8或4或2.
    (2)结论:PA﹣PB=PC.
    理由:如图②中,作EC⊥PC交AP于E.
    ∵∠PCE=90°,∠CPE=42°,
    ∴∠CEP=∠CPE=42°,
    ∴CE=CP,PE=PC,
    ∵∠ACB=∠ECP=90°,
    ∴∠ACE=∠BCP,
    ∵CA=CB,
    ∴△ACE≌△BCP,
    ∴AE=PB,
    ∴PA﹣PB=PA﹣EA=PE=PC,
    ∴PA﹣PB=PC.
    (3)结论:PA﹣PB=PC.
    理由:如图③中,在AP上取一点E,使得∠ECP=∠ACB=120°.
    ∵∠CEP=180°﹣120°﹣30°=30°,
    ∴∠CEP=∠CPE,
    ∴CE=CP.作CH⊥PE于H,则PE=PC,
    ∵∠ACB=∠ECP,
    ∴∠ACE=∠BCP,
    ∵CA=CB,
    ∴△ACE≌△BCP,
    ∴AE=PB,
    ∴PA﹣PB=PA﹣EA=PE=PC.
    本题考查三角形综合题、等腰三角形的性质、全等三角形的判定和性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
    26、(1);(2)成立;证明见解析;(3).
    【解析】
    (1)将△ABE绕点A逆时针旋转90°,得到△ADG,据此知AE=AG,BE=DG,∠BAE=∠DAG,证明△AFE≌△AFG可得EF=FG,从而得出答案.
    (2)将△ABE绕点A逆时针旋转得到△ADH,知∠ABE=∠ADH,∠BAE=∠DAH,AE=AH,BE=DH,证明△AEF≌△AHF得.
    (3)将△AEC绕点A顺时针旋转90°,得到△,连接,据此知,,∠C=∠,,由知,即,从而得到,易证得,根据可得答案.
    【详解】
    (1)延长到,使,连接,
    在正方形中,

    在和中,

    ,,


    在和中,




    (2)延长交点,使,连接,

    ,,
    ,,



    (3)将绕点旋转至,连接,


    ,,


    设,
    ,,



    本题考查了全等三角形的综合问题,掌握全等三角形的性质以及判定定理、勾股定理是解题的关键.
    题号





    总分
    得分
    批阅人

    相关试卷

    2024年湖北省随州市曾都区九上数学开学统考模拟试题【含答案】:

    这是一份2024年湖北省随州市曾都区九上数学开学统考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年湖北省随州随县联考九上数学开学质量跟踪监视模拟试题【含答案】:

    这是一份2024-2025学年湖北省随州随县联考九上数学开学质量跟踪监视模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年湖北省随州市随县九年级(上)联考数学试卷(12月份)(含解析):

    这是一份2023-2024学年湖北省随州市随县九年级(上)联考数学试卷(12月份)(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map