开学活动
搜索
    上传资料 赚现金
    英语朗读宝

    2025届河南省郑州一中九年级数学第一学期开学监测模拟试题【含答案】

    2025届河南省郑州一中九年级数学第一学期开学监测模拟试题【含答案】第1页
    2025届河南省郑州一中九年级数学第一学期开学监测模拟试题【含答案】第2页
    2025届河南省郑州一中九年级数学第一学期开学监测模拟试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届河南省郑州一中九年级数学第一学期开学监测模拟试题【含答案】

    展开

    这是一份2025届河南省郑州一中九年级数学第一学期开学监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)电影院里的座位按“×排×号”编排,小明的座位简记为(12,6),小菲的座位简记为(12,12),则小明与小菲坐的位置为( )
    A.同一排B.前后同一条直线上C.中间隔六个人D.前后隔六排
    2、(4分)已知一元二次方程2﹣5x+1=0的两个根为,,下列结论正确的是( )
    A.+=﹣B.•=1
    C.,都是正数D.,都是有理数
    3、(4分)学校举行演讲比赛,共有15名同学进入决赛,比赛将评出金奖1名,银奖3名,铜奖4名,某选手知道自己的分数后,要判断自己能否获奖,他应当关注有关成绩的( )
    A.平均数B.中位数C.众数D.方差
    4、(4分)如图,在菱形ABCD中,不一定成立的是
    A.四边形ABCD是平行四边形B.
    C.是等边三角形D.
    5、(4分)下列命题是假命题的是( )
    A.四个角相等的四边形是矩形B.对角线互相平分的四边形是平行四边形
    C.四条边相等的四边形是菱形D.对角线互相垂直且相等的四边形是正方形
    6、(4分)将五个边长都为 2 的正方形按如图所示摆放,点 分别是四个正方形的中心,则图中四块阴影面积的和为( )
    A.2B.4C.6D.8
    7、(4分)如图,正方形ABCD中,E、F是对角线AC上两点,连接BE、BF、DE、DF,则添加下列条件①∠ABE=∠CBF;②AE=CF;③AB=AF;④BE=BF.可以判定四边形BEDF是菱形的条件有( )
    A.1个B.2个C.3个D.4个
    8、(4分)四边形对角线、交于,若、,则四边形是( )
    A.平行四边形B.等腰梯形C.矩形D.以上都不对
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,正方形的边长为,点为边上一点,,点为的中点,过点作直线分别与,相交于点,.若,则长为______.
    10、(4分)方程=2的解是_________
    11、(4分)小明用S2= [(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2]计算一组数据的方差,那么x1+x2+x3+…+x10=______.
    12、(4分)如图,有一块菱形纸片ABCD,沿高DE剪下后拼成一个矩形,矩形的长和宽分别是5cm,3cm.EB的长是______.
    13、(4分)已知关于x的一次函数同时满足下列两个条件:函数y随x的增大而减小;当时,对应的函数值,你认为符合要求的一次函数的解析式可以是______写出一个即可.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在菱形ABCD中,∠ABC=60°,过点A作AE⊥CD于点E,交对角线BD于点F,过点F作FG⊥AD于点G.
    (1)若AB=2,求四边形ABFG的面积;
    (2)求证:BF=AE+FG.
    15、(8分)我市一水果销售公司,需将一批鲜桃运往某地,有汽车、火车、运输工具可供选择,两种运输工具的主要参考数据如下:
    若这批水果在运输过程中(含装卸时间)的损耗为150元/时,设运输路程为x()千米,用汽车运输所需总费用为y1元,用火车运输所需总费用为y2元.
    (1)分别求出y1、y2与x的关系式;
    (2)那么你认为采用哪种运输工具比较好?
    16、(8分)如图,在中,,于点,,.点从点出发,在线段上以每秒的速度向点匀速运动;与此同时,垂直于的直线从底边出发,以每秒的速度沿方向匀速平移,分别交、、于点、、,当点到达点时,点与直线同时停止运动,设运动时间为秒().
    (1)当时,连接、,求证:四边形为菱形;
    (2)当时,求的面积;
    (3)是否存在某一时刻,使为以点或为直角顶点的直角三角形?若存在,请求出此时刻的值;若不存在,请说明理由.
    17、(10分)如图所示,在平行四边形ABCD中,AD∥BC,过B作BE⊥AD交AD于点E,AB=13cm,BC=21cm,AE=5cm.动点P从点C出发,在线段CB上以每秒1cm的速度向点B运动,动点Q同时从点A出发,在线段AD上以每秒2cm的速度向点D运动,当其中一个动点到达端点时另一个动点也随之停止运动,设运动的时间为t(秒)
    (1)当t为何值时,四边形PCDQ是平行四边形?
    (2)当t为何值时,△QDP的面积为60cm2?
    (3)当t为何值时,PD=PQ?
    18、(10分)现代互联网技术的广泛应用,催生了快递行业的高速发展,小明计划给朋友快递一部分物品,经了解有甲乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费,乙公司表示:按每千克16元收费,另加包装费3元,设小明快递物品x千克.
    (1)根据题意,填写下表:
    (2)设甲快递公司收费y1元,乙快递公司收费y2元,分别写出y1,y2关于x的函数关系式;
    (3)当x>3时,小明应选择哪家快递公司更省钱?请说明理由.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,点A在线段BG上,四边形ABCD和四边形DEFG都是正方形,面积分别是10和19,则△CDE的面积为_____________.
    20、(4分)如图,AO=OC,BD=16cm,则当OB=___cm时,四边形ABCD是平行四边形.
    21、(4分)若实数a、b满足a2—7a+2=0和b2—7b+2=0,则式子的值是____.
    22、(4分)12位参加歌唱比赛的同学的成绩各不相同,按成绩取前6名进入决赛,如果小亮知道了自己的成绩后,要判断能否进入决赛,在平均数、众数、中位数和方差四个统计量中,小亮应该最关注的一个统计量是_____.
    23、(4分)若已知方程组的解是,则直线y=-kx+b与直线y=x-a的交点坐标是________。
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在中,延长至点,使,连接,作于点,交的延长线于点,且.
    (1)求证:;
    (2)如果,求的度数.
    25、(10分)在Rt△ABC中,∠C=90°,AC=6,BC=1.在CB上找一点E,使EB=EA(利用尺规作图,保留作图痕迹),并求出此时CE的长.
    26、(12分)先化简,再求值:,其中x是不等式的负整数解.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    ∵(12,6)表示12排6号,(12,12) 表示12排12号,
    ∴小明(12,6)与小菲(12,12)应坐的位置在同一排,中间隔5人.
    故选A.
    考查学生利用类比点的坐标解决实际问题的能力和阅读理解能力.
    2、C
    【解析】
    先利用根与系数的关系得到x1+x21,x1x21,然后利用有理数的性质可判定两根的符号.
    【详解】
    根据题意得x1+x21,x1x21,
    所以x1>1,x2>1.
    ∵x,故C选项正确.
    故选C.
    本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=1(a≠1)的两根,则x1+x2,x1x2.
    3、B
    【解析】
    根据进入决赛的15名学生所得分数互不相同,所以这15名学生所得分数的中位数即是获奖的学生中的最低分,所以某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是中位数,据此解答即可.
    【详解】
    解:∵进入决赛的15名学生所得分数互不相同,共有1+3+4=8个奖项,
    ∴这15名学生所得分数的中位数即是获奖的学生中的最低分,
    ∴某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是中位数,
    如果这名学生的分数大于或等于中位数,则他能获奖,
    如果这名学生的分数小于中位数,则他不能获奖.
    故选B.
    此题主要考查了统计量的选择,要熟练掌握,解答此题的关键是要明确:数据的平均数、众数、中位数是描述一组数据集中趋势的特征量,属于基础题,难度不大.
    4、C
    【解析】
    菱形是特殊的平行四边形,菱形具有平行四边形的所有性质,菱形是特殊的平行四边形,具有特殊性质:(1)菱形的四条边都相等,(2)菱形的对角线互相平分且垂直,(3)菱形的对角线平分每一组对角,根据菱形的性质进行解答.
    【详解】
    A选项,因为菱形ABCD,所以四边形ABCD是平行四边形,因此A正确,
    B选项,因为AC,BD是菱形的对角线,所以, 因此B正确,
    C选项,根据菱形邻边相等可得: 是等腰三角形,但不一定是等边三角形,因此C选项错误,
    D选项,因为菱形的对角线平分每一组对角,所以,因此D正确,
    故选C.
    本题主要考查菱形的性质,解决本题的关键是要熟练掌握菱形的性质.
    5、D
    【解析】
    分析是否为真命题,需要分别分析各题设是否能推出结论,根据矩形,平行四边形,菱形,正方形的判定定理判断即可.
    【详解】
    解:A、正确,符合矩形的判定定理;
    B、正确,符合平行四边形的判定定理;
    C、正确,符合菱形的判定定理;
    D、错误,例如对角线互相垂直的等腰梯形.
    故选:D.
    本题考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
    6、B
    【解析】
    连接AP、AN,点A是正方形的对角线的交点,则AP=AN,∠APF=∠ANE=45°,易得PAF≌△NAE,进而可得四边形AENF的面积等于△NAP的面积,同理可得答案.
    【详解】
    解:如图,连接AP,AN,点A是正方形的对角线的交
    则AP=AN,∠APF=∠ANE=45°,
    ∵∠PAF+∠FAN=∠FAN+∠NAE=90°,
    ∴∠PAF=∠NAE,
    ∴△PAF≌△NAE,
    ∴四边形AENF的面积等于△NAP的面积,
    而△NAP的面积是正方形的面积的,而正方形的面积为4,
    ∴四边形AENF的面积为1cm1,四块阴影面积的和为4cm1.
    故选B.
    【点评】
    本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.
    7、C
    【解析】
    根据正方形的四条边都相等,对角线互相垂直平分且每一条对角线平分一组对角的性质,再加上各选项的条件,对各选项分析判断后即可得出正确选项的个数
    【详解】
    解:如图,连接BD,交AC于点O,
    在正方形ABCD中,AB=BC,∠BAC=∠ACB,AC⊥BD,AO=CO,BO=DO,
    ①在△ABE与△BCF中,

    ∴△ABE≌△BCF(ASA),
    ∴BE=BF,
    ∵AC⊥BD,
    ∴OE=OF,
    所以四边形BEDF是菱形,故①选项正确;
    ②在正方形ABCD中,AC=BD,
    ∴OA=OB=OC=OD,
    ∵AE=CF,
    ∴OE=OF,又EF⊥BD,BO=OD,
    ∴四边形BEDF是菱形,故②选项正确;
    ③AB=AF,不能推出四边形BEDF其它边的关系,故不能判定是菱形,本选项错误;
    ④BE=BF,同①的后半部分证明,故④选项正确.
    所以①②④共3个可以判定四边形BEDF是菱形.
    故选:C.
    本题主要考查菱形的判定定理,还综合考查了正方形的性质、全等三角形的判定和性质等,熟练掌握菱形的判定定理是解题的关键.
    8、D
    【解析】
    由四边形ABCD对角线AC、BD交于O,若AO=OD、BO=OC,易得AC=BD,AD∥BC,然后分别从AD=BC与AD≠BC去分析求解,即可求得答案.
    【详解】
    ∵AO=OD、BO=OC,
    ∴AC=BD,∠OAD=∠ODA=,∠OBC=∠OCB=,
    ∵∠AOD=∠BOC,
    ∴∠OAD=∠OCB,
    ∴AD∥BC,
    ①若AD=BC,则四边形ABCD是平行四边形,
    ∵AC=BD,
    ∴平行四边形ABCD是矩形;
    ②若AD≠BC,
    则四边形ABCD是梯形,
    ∵AC=BD,
    ∴四边形ABCD是等腰梯形.
    故答案选D.
    本题考查了平行四边形的性质和矩形与等腰梯形的判定,解题的关键是熟练的掌握平行四边形的性质和矩形与等腰梯形的判定.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1或2
    【解析】
    根据题意画出图形,过P作PN⊥BC,交BC于点N,由ABCD为正方形,得到AD=DC=PN,在直角三角形ADE中,利用锐角三角函数定义求出DE的长,进而利用勾股定理求出AE的长,根据M为AE中点求出AM的长,利用HL得到三角形ADE与三角形PQN全等,利用全等三角形对应边,对应角相等得到DE=NQ,∠DAE=∠NPQ=30°,再由PN与DC平行,得到∠PFA=∠DEA=60°,进而得到PM垂直于AE,在直角三角形APM中,根据AM的长,利用锐角三角函数定义求出AP的长,再利用对称性确定出AP′的长即可.
    【详解】
    根据题意画出图形,过点作,交于点,交于点,四边形为正方形,.
    在中,,cm,
    cm.
    根据勾股定理得cm.
    为的中点,cm,
    在和中,

    ,.
    ,,
    ,即.
    在中,, cm.
    由对称性得到 cm,
    综上,等于1cm或2cm.
    故答案为:1或2.
    此题考查了全等三角形的判定与性质,正方形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.
    10、
    【解析】
    【分析】方程两边平方可得到整式方程,再解之可得.
    【详解】方程两边平方可得
    x2-3x=4,
    即x2-3x-4=0,解得x1=-1,x2=4
    故答案为:
    【点睛】本题考核知识点:二次根式,无理方程. 解题关键点:化无理方程为整式方程.
    11、30
    【解析】
    根据计算方差的公式能够确定数据的个数和平均数,从而求得所有数据的和.
    【详解】
    解:∵S2= [(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2],
    ∴平均数为3,共10个数据,
    ∴x1+x2+x3+…+x10=10×3=30.
    故答案为30.
    本题考查了方差的知识,牢记方差公式是解答本题的关键,难度不大.
    12、1cm
    【解析】
    根据菱形的四边相等,可得AB=BC=CD=AD=5,在Rt△AED中,求出AE即可解决问题.
    【详解】
    解:∵四边形ABCD是菱形,
    ∴AB=BC=CD=AD=5(cm),
    ∵DE⊥AB,DE=3(cm),
    在Rt△ADE中,AE==4,
    ∴BE=AB−AE=5−4=1(cm),
    故答案为1cm.
    本题考查了菱形的性质、勾股定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题,试题难度不大.
    13、(答案不唯一)
    【解析】
    先设一次函数,由一次函数y随x的增大而减小可得:,由当时,对应的函数值可得:,故符合条件的一次函数中,即可.
    【详解】
    设一次函数,
    因为一次函数y随x的增大而减小,
    所以,
    因为当时,对应的函数值
    所以,
    所以符合条件的一次函数中,即可.
    故答案为:.
    本题主要考查一次函数图象和性质,解决本题的关键是要熟练掌握一次函数图象和性质.
    三、解答题(本大题共5个小题,共48分)
    14、(1) ;(2)证明见解析.
    【解析】
    (1)根据菱形的性质和垂线的性质可得∠ABD=30°,∠DAE=30°,然后再利用三角函数及勾股定理在Rt△ABF中,求得AF,在Rt△AFG中,求得FG和AG,再运用三角形的面积公式求得四边形ABFG的面积;
    (2)设菱形的边长为a,根据(1)中的结论在Rt△ABF、Rt△AFG、Rt△ADE 中分别求得BF、FG、AE,然后即可得到结论.
    【详解】
    解:(1)∵四边形ABCD是菱形,
    ∴AB∥CD,BD平分∠ABC,
    又∵AE⊥CD,∠ABC=60°,
    ∴∠BAE=∠DEA=90°,∠ABD=30°,
    ∴∠DAE=30°,
    在Rt△ABF中,tan30°=,即,解得AF=,
    ∵FG⊥AD,
    ∴∠AGF=90°,
    在Rt△AFG中,FG=AF=,
    ∴AG==1.
    所以四边形ABFG的面积=S△ABF+S△AGF=;
    (2)设菱形的边长为a,则在Rt△ABF中,BF=,AF=,
    在Rt△AFG中,FG=AF=,
    在Rt△ADE中,AE=,
    ∴AE+FG=,
    ∴BF=AE+FG.
    本题主要考查了菱形的性质、勾股定理、三角形的面积公式、利用三角函数值解直角三角形等知识,熟练掌握基础知识是解题的关键.
    15、(1),;(2)当两地路程大于520千米时,采用火车运输较好;当两地路程等于520千米时,两种运输工具一样;当两地路程小于520千米时,采用汽车运输较好.
    【解析】
    (1)根据表格的信息结合等量关系即可写出关系式;
    (2)根据题意列出不等式或等式进行求解,根据x的取值判断费用最少的情况.
    【详解】
    解:(1)设运输路程为x()千米,用汽车运输所需总费用为y1元,
    用火车运输所需总费用为y2元.根据题意得

    ∴,

    ∴;
    (2)当时,即,
    ∴;
    当时,即,
    ∴;
    当时,即,
    ∴.
    ∴当两地路程大于520千米时,采用火车运输较好;
    当两地路程等于520千米时,两种运输工具一样;
    当两地路程小于520千米时,采用汽车运输较好.
    此题主要考查一次函数的应用,解题的关键是根据题意找到等量关系列出关系式.
    16、(1)见解析;(2);(3)存在以点为直角顶点的直角三角形.此时,.
    【解析】
    (1)根据菱形的判定定理即可求解;
    (2)由(1)知,故,故 ,可求得,
    , 再根据三角形的面积公式即可求解;
    (3)根据题意分①若点为直角顶点, ②若点为直角顶点, 根据相似三角形的性质即可求解.
    【详解】
    (1)证明:如图1,当时,,
    则为的中点,又∵,
    ∴为的垂直平分线,∴,.
    ∵,∴.
    ∵,∴,,
    ∴,∴,
    ∴,即四边形为菱形.
    (2)如图2,由(1)知,
    ∴,
    ∴,即,解得:,


    (3)①若点为直角顶点,如图3①,
    此时,,.
    ∵,∴,
    即:,此比例式不成立,故不存在以点为直角顶点的直角三角形;
    ②若点为直角顶点,如图3②,
    此时,,,.
    ∵,∴,即:,
    解得.故存在以点为直角顶点的直角三角形.此时,.
    【点睛】此题主要考查三角形的动点问题,解题的关键是熟知相似三角形的判定与性质.
    17、 (1)当t=7时,四边形PCDQ是平行四边形;(2)当t=时,△QDP的面积为60cm2;(3)当t=时,PD=PQ.
    【解析】
    (1)根据题意用t表示出CP=t,AQ=2t,根据平行四边形的判定定理列出方程,解方程即可;
    (2)根据三角形的面积公式列方程,解方程得到答案;
    (3)根据等腰三角形的三线合一得到DH=DQ,列方程计算即可.
    【详解】
    (1)由题意得,CP=t,AQ=2t,
    ∴QD=21﹣2t,
    ∵AD∥BC,
    ∴当DQ=PC时,四边形PCDQ是平行四边形,
    则21﹣2t=t,
    解得,t=7,
    ∴当t=7时,四边形PCDQ是平行四边形;
    (2)在Rt△ABE中,BE==12,
    由题意得,×(21﹣2t)×12=60,
    解得,t=,
    ∴当t=时,△QDP的面积为60cm2;
    (3)作PH⊥DQ于H,DG⊥BC于G,则四边形HPGD为矩形,
    ∴PG=HD,
    由题意得,CG=AE=5,
    ∴PG=t﹣5,
    当PD=PQ,PH⊥DQ时,DH=DQ,即t﹣5=(21﹣2t),
    解得,t=,
    则当t=时,PD=PQ.
    本题考查的是平行四边形的性质和判定、等腰三角形的性质,掌握平行四边形的判定定理和性质定理是解题的关键.
    18、(1)11,19,52,1;(2);y2=16x+3;(3)当3<x<3时,小明应选择乙公司省钱;当x=3时,两家公司费用一样;当x>3,小明应选择甲公司省钱.
    【解析】
    (1)根据甲、乙公司的收费方式,求出y值即可;
    (2)根据甲、乙公司的收费方式结合数量关系,找出y1、y2(元)与x(千克)之间的函数关系式;
    (3)x>3,分别求出y1>y2、y1=y2、y1<y2时x的取值范围,综上即可得出结论.
    【详解】
    解:(1)当x=0.5时,y甲=22×0.5=11;
    当x=1时,y乙=16×1+3=19;
    当x=3时,y甲=22+15×2=52;
    当x=3时,y甲=22+15×3=1.
    故答案为:11;19;52;1.
    (2)当0<x≤1时,y1=22x;
    当x>1时,y1=22+15(x-1)=15x+2.

    y2=16x+3(x>0);
    (3)当x>3时,
    当y1>y2时,有15x+2>16x+3,
    解得:x<3;
    当y2=y2时,有15x+2=16x+3,
    解得:x=3;
    当y1<y2时,有15x+2<16x+3,
    解得:x>3.
    ∴当3<x<3时,小明应选择乙公司省钱;当x=3时,两家公司费用一样;当x>3,小明应选择甲公司省钱.
    本题考查了一次函数的应用,解题的关键是:(1)根据甲、乙公司的收费方式求出y值;(2)根据甲、乙公司的收费方式结合数量关系,找出、(元)与x(千克)之间的函数关系式;(3)分情况考虑>、=、<时x的取值范围.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    根据三角形的面积公式,已知边CD的长,求出CD边上的高即可.过E作EH⊥CD,易证△ADG与△HDE全等,求得EH,进而求△CDE的面积.
    【详解】
    过E作EH⊥CD于点H.
    ∵∠ADG+∠GDH=∠EDH+∠GDH,
    ∴∠ADG=∠EDH.
    又∵DG=DE,∠DAG=∠DHE.
    ∴△ADG≌△HDE.
    ∴HE=AG.
    ∵四边形ABCD和四边形DEFG都是正方形,面积分别是5和1.即AD2=5,DG2=1.
    ∴在直角△ADG中,
    AG=,
    ∴EH=AG=2.
    ∴△CDE的面积为CD·EH=××2=.
    故答案为.
    考查了勾股定理、全等三角形的判定与性质、正方形的性质,正确作出辅助线,构造全等三角形是解决本题的关键.
    20、1
    【解析】
    根据对角线互相平分的四边形是平行四边形可得OB=1cm时,四边形ABCD是平行四边形.
    【详解】
    当OB=1cm时,四边形ABCD是平行四边形,
    ∵BD=16cm,OB=1cm,
    ∴BO=DO,
    又∵AO=OC,
    ∴四边形ABCD是平行四边形,
    故答案为1.
    本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.
    21、.
    【解析】
    由实数a,b满足条件a2-7a+2=0,b2-7b+2=0,可把a,b看成是方程x2-7x+2=0的两个根,再利用根与系数的关系求解即可.
    【详解】
    解:由实数a,b满足条件a2-7a+2=0,b2-7b+2=0,
    ∴可把a,b看成是方程x2-7x+2=0的两个根,
    ∴a+b=7,ab=2,
    ∴===.
    故答案为:.
    本题考查了根与系数的关系,属于基础题,根据题意把a,b看成是方程的两个根后根据根与系数的关系求出a+b,ab是解题的关键.
    22、中位数
    【解析】
    参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩与全部成绩的中位数的大小即可.
    【详解】
    解:由于总共有12个人,且他们的分数互不相同,要判断是否进入前6名,只要把自己的成绩与中位数进行大小比较.故应知道中位数的多少即可,故答案为:中位数.
    本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.
    23、(-1,3)
    【解析】
    利用一次函数与二元一次方程组的关系,可知两一次函数的交点坐标就是两函数解析式所组成的方程组的解,可得结果.
    【详解】
    解:∵ 方程组 的解是 ,
    ∴直线y=kx−b与直线y=−x+a的交点坐标为(−1,3),
    ∴ 直线y=-kx+b与直线y=x-a的交点坐标为(-1,3).
    故答案为:(-1,3)
    本题考查了一次函数与二元一次方程(组):两一次函数的交点坐标是两函数解析式所组成的方程组的解.
    二、解答题(本大题共3个小题,共30分)
    24、(1)详见解析;(2)40°
    【解析】
    (1)先由HL判定Rt△BCE≌Rt△CDF,得到∠ABC=∠DCF,然后由对顶角相等可得:∠DCF=∠ACB,进而可得∠ABC=∠ACB,然后由等角对等边,可得AB=AC;
    (2)由CD=BC,可得∠CBD=∠CDB,然后由三角形的外角的性质可得:∠ACB=∠CBD+∠CDB=2∠CBD,由∠ABC=∠ACB,进而可得:∠ABC=2∠CBD,然后由∠ABD=∠ABC+∠CBD=3∠CBD=105,进而可求:∠CBD的度数及∠ABC的度数,然后由三角形的内角和定理即可求∠A的度数.
    【详解】
    解:(1)证明:∵,,
    ∴.
    又∵,,
    ∴,
    ∴,
    又∵,
    ∴,
    ∴.
    (2)∵,
    ∴.
    ∵,
    ∴.
    ∵,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴.
    此题考查了直角三角形全等的判定与性质,及等腰三角形判定与性质,解题的关键是:熟记三角形全等的判定与性质.
    25、CE=
    【解析】
    作AB的垂直平分线交BC于E,则根据线段垂直平分线的性质得到EA=EB,设CE=x,则EA=EB=1-x,利用勾股定理得到62+x2=(1-x)2,然后解方程即可.
    【详解】
    如图,点E为所作;
    设CE=x,则EA=EB=1-x,
    在Rt△AEC中,∵AC2+CE2=AE2,
    ∴62+x2=(1-x)2,解得x=,
    即CE=.
    本题考查了作图,线段垂直平分线的性质,勾股定理,熟练掌握线段垂直平分线的性质以及勾股定理的内容是解题的关键.
    26、;3
    【解析】
    先将括号里面的通分后,将除法转换成乘法,约分化简.然后解一元一次不等式求出负整数解,代x的值求值.
    【详解】
    解:原式=
    解得,负整数解为
    将代入原式=
    题号





    总分
    得分
    批阅人
    运输工具
    途中平均速度(单位:千米/时)
    途中平均费用(单位:元/千米)
    装卸时间(单位:小时)
    装卸费用(单位:元)
    汽车
    75
    8
    2
    1000
    火车
    100
    6
    4
    2000
    快递物品重量(千克)
    0.5
    1
    3
    4

    甲公司收费(元)
    22

    乙公司收费(元)
    11
    51
    67

    相关试卷

    2025届河南省郑州汝州区五校联考九年级数学第一学期开学质量检测模拟试题【含答案】:

    这是一份2025届河南省郑州汝州区五校联考九年级数学第一学期开学质量检测模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届河南省汝州市数学九年级第一学期开学学业质量监测模拟试题【含答案】:

    这是一份2025届河南省汝州市数学九年级第一学期开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届河南省巩义市九年级数学第一学期开学监测模拟试题【含答案】:

    这是一份2025届河南省巩义市九年级数学第一学期开学监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map