2025届河南省洛阳李村一中学数学九年级第一学期开学质量跟踪监视试题【含答案】
展开
这是一份2025届河南省洛阳李村一中学数学九年级第一学期开学质量跟踪监视试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)将多项式-6a3b2-3a2b2+12a2b3分解因式时,应提取的公因式是( )
A.-3a2b2 B.-3ab C.-3a2b D.-3a3b3
2、(4分)如图所示,E、F分别是□ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=2cm2,S△BQC=4cm2,则阴影部分的面积为( )
A.6 cm2B.8 cm2C.10 cm2D.12 cm2
3、(4分)已知n是正整数,是整数,则n的最小值是( )
A.1B.2C.3D.4
4、(4分)如图,第一个正方形的顶点A1(﹣1,1),B1(1,1);第二个正方形的顶点A2(﹣3,3),B2(3,3);第三个正方形的顶点A3(﹣6,6),B3(6,6)按顺序取点A1,B2,A3,B4,A5,B6…,则第12个点应取点B12,其坐标为( )
A.(12,12)B.(78,78)C.(66,66)D.(55,55)
5、(4分)如图,设线段AC=1.过点C作CD⊥AC,并且使CD=AC:连结AD,以点D为圆心,DC的长为半径画弧,交AD于点E;再以点A为圆心,AE的长为半径画弧,交AC于点B,则AB的长为( )
A.B.C.D.
6、(4分)若成立,则下列不等式成立的是( )
A.B.
C.D.
7、(4分)在,,,,,中分式的个数有( )
A.2个B.3个C.4个D.5个
8、(4分)如果,则a的取值范围是( )
A. B. C. D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,小芳和爸爸正在散步,爸爸身高1.8m,他在地面上的影长为2.1m.若小芳比他爸爸矮0.3m,则她的影长为________m.
10、(4分)已知一次函数,当时,对应的函数的取值范围是,的值为__.
11、(4分)如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为______.
12、(4分)在等腰△ABC中,三边分别为a、b、c,其中a=4,b、c恰好是方程的两个实数根,则△ABC的周长为__________.
13、(4分)如图,直线y=kx+b(k≠0)与x轴交于点(﹣4,0),则关于x的方程kx+b=0的解为x=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)为深化课程改革,某校为学生开设了形式多样的社团课程,为了解部分社团课程在学生中最受欢迎的程度,学校随机抽取七年级部分学生进行调查,从A:文学签赏,B:科学探究,C:文史天地,D:趣味数学四门课程中选出你喜欢的课程(被调查者限选一项),并将调查结果绘制成两个不完整的统计图,如图所示,根据以上信息,解答下列问题:
(1)本次调查的总人数为多少人,扇形统计图中A部分的圆心角是多少度.
(2)请补全条形统计图.
(3)根据本次调查,该校七年级840名学生中,估计最喜欢“科学探究”的学生人数为多少?
15、(8分)甲乙两人同时登山,甲乙两人距地面的高度(米与登山时间(分之间的函数图象如图所示,根据图象所提供的信息解答下列问题:
(1)甲登山的速度是 米分钟,乙在地提速时距地面的高度为 米;
(2)直接写出甲距地面高度(米和(分之间的函数关系式;
(3)若乙提速后,乙的速度是甲登山速度的3倍.请问登山多长时间时,乙追上了甲,此时乙距地的高度为多少米?
16、(8分)计算:(2-)×
17、(10分)先化简,再求值: 其中a=
18、(10分)商场代售某品牌手机,原来每台的售价是3000元,一段时间后为了清库存,连续两次降价出售,现在的售价是1920元,求两次降价的平均降价率是多少?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)当x_____时,分式有意义.
20、(4分)如图,矩形ABCD中,已知AB=6,BC=8,BD的垂直平分线交AD于点E,交BC于点F,则BF的长为______.
21、(4分)定义新运算:对于任意实数a,b都有:a⊕b=a(a﹣b)+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么不等式3⊕x<13的解集为 ________.
22、(4分)在一个不透明的口袋中,装有4个红球和1个白球,这些球除颜色之外其余都相同,那么摸出1个球是红球的概率为________.
23、(4分)若,,则的值是__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在平面直角坐标系中,直线y=2x+b(b<0)与坐标轴交于A,B两点,与双曲线(x>0)交于D点,过点D作DC⊥x轴,垂足为G,连接OD.已知△AOB≌△ACD.
(1)如果b=﹣2,求k的值;
(2)试探究k与b的数量关系,并写出直线OD的解析式.
25、(10分)如图,在中,,点、分别是、边上的中点,过点作,交的延长线于点.
(1)求证:四边形是平行四边形;
(2)若,,求四边形的周长.
26、(12分)(1)请计算一组数据的平均数;
(2)一组数据的众数为,请计算这组数据的方差;
(3)用适当的方法解方程.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
在找公因式时,一找系数的最大公约数,二找相同字母的最低次幂.同时注意首项系数通常要变成正数.
2、A
【解析】
连接E、F两点,由三角形的面积公式我们可以推出S△EFC=S△BCF,S△EFD=S△ADF,所以S△EFG=S△BCQ,S△EFP=S△ADP,因此可以推出阴影部分的面积就是S△APD+S△BQC.
【详解】
连接E、F两点,
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴△EFC的FC边上的高与△BCF的FC边上的高相等,
∴S△EFC=S△BCF,
∴S△EFQ=S△BCQ,
同理:S△EFD=S△ADF,
∴S△EFP=S△ADP,
∵S△APD=1cm1,S△BQC=4cm1,
∴S四边形EPFQ=6cm1,
故阴影部分的面积为6cm1.
故选A.
本题主要考查平行四边形的性质,三角形的面积,解题的关键在于求出各三角形之间的面积关系.
3、C
【解析】
先分解质因式,再根据二次根式的性质判断即可.
【详解】
解:∵48=42×3,
又∵n是正整数,是整数,
∴符合n的最小值是3,
故选:C.
本题考查了二次根式的性质和定义,能熟记二次根式的性质是解此题的关键.
4、B
【解析】
根据选点的规律,罗列出部分点的坐标,根据这些点的坐标找出规律“An(-, ),Bn(,)(n为正整数)”,再根据该规律解决问题.
【详解】
解:观察,发现规律:A1(-1,1),B1(1,1),A2(-3,3),B2(3,3),A3(-6,6),B3(6,6),B4(10,10),A5(-15,15),…,∴An(-, ),Bn(,)(n为正整数).∴B12(,),即(78,78).
故选B
本题考查了规律型中的点的坐标,解题的关键是找出规律“An(-, ),Bn(,)(n为正整数)”.本题属于中档题,难度不大,解决该题型题目时,根据选点的规律列出部分点的坐标,根据这些点的坐标发现规律是关键.
5、B
【解析】
根据勾股定理求得AD的长度,则AB=AE=AD-CD.
【详解】
解:如图,AC=1,CD= AC=,CD⊥AC,
∴由勾股定理,得
AD=,
又∵DE=DC=,
∴AB=AE=AD-CD=-=,
故选:B.
本题考查了勾股定理.根据勾股定理求得斜边AD的长度是解题的关键.
6、D
【解析】
根据不等式的性质解答即可.
【详解】
A. ∵,∴,故不正确;
B. ∵,∴,∴ ,故不正确;
C. ∵,∴ ,∴,故不正确;
D. ∵,∴,正确;
故选D.
本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变
7、B
【解析】
根据分式的定义进行判断;
【详解】
,,,,中分式有:,,共计3个.
故选:B.
考查了分式的定义,解题关键抓住分式中分母含有字母.
8、B
【解析】
试题分析:根据二次根式的性质1可知:,即故答案为B..
考点:二次根式的性质.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1.2.
【解析】
根据实物与影子的比相等可得小芳的影长.
【详解】
∵爸爸身高1.8m,小芳比他爸爸矮0.3m,
∴小芳高1.5m,
设小芳的影长为xm,
∴1.5:x=1.8:2.1,
解得x=1.2,
小芳的影长为1.2m.
本题考查了平行投影的知识,解题的关键是理解阳光下实物的影长与影子的比相等.
10、4.
【解析】
根据题意判断函数是减函数,再利用特殊点代入解答即可.
【详解】
当时,随的增大而减小,即一次函数为减函数,
当时,,当时,,
代入一次函数解析式得:,
解得,
故答案为:4.
本题考查求一次函数的解析式,掌握求解析式的待定系数法是解题关键.
11、3;
【解析】
根据矩形是中心对称图形寻找思路:△OBF≌△ODE,图中阴影部分的面积就是△ADC的面积.
【详解】
根据矩形的性质得△OBF≌△ODE,
属于图中阴影部分的面积就是△ADC的面积.
S△ADC=CD×AD=×2×3=3.
故图中阴影部分的面积是3.
本题考查全等三角形的判定与性质、矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质.
12、9或10.1
【解析】
根据等腰△ABC中,当a为底,b,c为腰时,b=c,得出△=[-(2k+1)]2-4×1(k-)=4k2+4k+1-20k+11=4k2-16k+16=0,解方程求出k=2,则b+c=2k+1=1;当a为腰时,则b=4或c=4,然后把b或c的值代入计算求出k的值,再解方程进而求解即可.
【详解】
等腰△ABC中,当a为底,b,c为腰时,b=c,若b和c是关于x的方程x2-(2k+1)x+1(k-)=0的两个实数根,
则△=[-(2k+1)]2-4×1(k-)=4k2+4k+1-20k+11=4k2-16k+16=0,
解得:k=2,
则b+c=2k+1=1,
△ABC的周长为4+1=9;
当a为腰时,则b=4或c=4,
若b或c是关于x的方程x2-(2k+1)x+1(k-)=0的根,
则42-4(2k+1)+1(k-)=0,
解得:k=,
解方程x2-x+10=0,
解得x=2.1或x=4,
则△ABC的周长为:4+4+2.1=10.1.
13、-1
【解析】
方程kx+b=0的解其实就是当y=0时一次函数y=kx+b与x轴的交点横坐标.
【详解】
由图知:直线y=kx+b与x轴交于点(-1,0),
即当x=-1时,y=kx+b=0;
因此关于x的方程kx+b=0的解为:x=-1.
故答案为:-1
本题主要考查了一次函数与一次方程的关系,关键是根据方程kx+b=0的解其实就是当y=0时一次函数y=kx+b与x轴的交点横坐标解答.
三、解答题(本大题共5个小题,共48分)
14、(1)160,54;(2)补全如图所示见解析;(3)该校七年级840名学生中,估计最喜欢“科学探究”的学生人数为294名.
【解析】
(1)根据:该项所占的百分比=×100%,圆心角该项的百分比×360°.两图给出了D的数据,代入即可算出调查的总人数,然后再算出A的圆心角;
(2)根据条形图中数据和调查总人数,先计算出喜欢“科学探究”的人数,再补全条形图;
(3)根据:喜欢某项人数总人数该项所占的百分比,计算即得.
【详解】
(1)由条形图、扇形图知:喜欢趣味数学的有48人,占调查总人数的30%.
所以调查总人数:48÷30%=160(人)
图中A部分的圆心角为:×360°=54°
(2)喜欢“科学探究”的人数:160﹣24﹣32﹣48
=56(人)
补全如图所示
(3)840×=294(名)
答:该校七年级840名学生中,估计最喜欢“科学探究”的学生人数为294名.
本题考查了条形图和扇形图及用样本估计总体等知识,难度不大,综合性较强.注意三个公式:①该项所占的百分比=×100%,②圆心角该项的百分比×360°,③喜欢某项人数总人数该项所占的百分比.
15、(1)10;30;(2);(3)135米.
【解析】
(1)甲的速度=(300-100)÷20=10,根据图象知道一分的时间,走了15米,然后即可求出A地提速时距地面的高度;
(2)根据甲登山的速度以及图象直接写出甲距地面高度y(米)和x(分)之间的函数关系式;
(3)求出乙提速后y和x之间的函数关系式,再与(2)联立组成方程组解答即可.
【详解】
解:(1)甲的速度为:米分,
根据图中信息知道乙一分的时间,走了15米,
那么2分时,将走30米;
故答案为:10;30;
(2);
(3)乙提速后速度为:(米秒),
由,得,
设乙提速后与的函数关系是,
把,代入得,
解得,
乙提速后与的函数关系是,
由,
解得,
(米,
答:登山6.5分钟时,乙追上了甲,此时乙距地的高度为135米.
本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题,关键是正确理解题意.
16、.
【解析】
试题分析:原式利用乘法分配律计算即可得到结果.
试题解析:原式=2
=
=.
考点:二次根式的混合运算.
17、-2.
【解析】
先根据分式的运算法则进行计算化简,再把a=代入化简后的式中求值即可。
【详解】
解:原式
当a=时, = = -2
本题主要考查了分式的化简求值,解题的关键是正确的化简.
18、20%
【解析】
设平均每次降价率为x,那么原价格×(1-x)2=两次降价后的现价,把相应数值代入即可求解.
【详解】
解:设平均每次降价率为x,依题意得:
,
解得:,(不合题意舍去),
答:平均每次的降价率为20%.
本题考查一元二次方程的应用,要掌握求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、≠.
【解析】
要使分式有意义,分式的分母不能为1.
【详解】
因为4x+5≠1,所以x≠-.
故答案为≠−.
解此类问题,只要令分式中分母不等于1,求得x的取值范围即可.
20、
【解析】
根据矩形的性质和勾股定理求出BD,证明△BOF∽△BCD,根据相似三角形的性质得到比例式,求出BF即可.
【详解】
解:四边形ABCD是矩形,
∴∠A=90°, AB=6,AD=BC=8,
∴BD= =10,
又∵EF是BD的垂直平分线,
∴OB=OD=5,∠BOF=90°,
又∵∠C=90°,
∴△BOF∽△BCD,
∴ ,即:,解得:BF=
本题考查的是矩形的性质、线段垂直平分线的性质、相似三角形的性质和判定以及勾股定理的应用,掌握矩形的四个角是直角、对边相等以及线段垂直平分线的定义是解题的关键.
21、x>﹣1
【解析】
解:3⊕x<13,
3(3-x)+1<13,
解得:x>-1.
故答案为:x>﹣1
本题考查一元一次不等式的应用,正确理解题意进行计算是本题的解题关键.
22、0.8
【解析】
由一个不透明的口袋中,装有4个红球,1个白球,这些球除颜色外其余都相同,直接利用概率公式求解即可求得答案.
【详解】
解:∵一个不透明的口袋中,装有4个红球,1个白球,这些球除颜色外其余都相同,
∴从口袋中随机摸一个球,则摸到红球的概率为:
故答案为:0.8
此题考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.
23、2
【解析】
提取公因式因式分解后整体代入即可求解.
【详解】
.
故答案为:2.
此题考查因式分解的应用,解题关键在于分解因式.
二、解答题(本大题共3个小题,共30分)
24、解:(1)当b=﹣2时,直线y=2x﹣2与坐标轴交点的坐标为A(1,0),B(0,﹣2),
∵△AOB≌△ACD,∴CD=DB=2,AO=AC=1。∴点D的坐标为(2,2)。
∵点D在双曲线( x>0)的图象上,∴k=2×2=4。
(2)直线y=2x+b与坐标轴交点的坐标为A(,0),B(0,b),
∵△AOB≌△ACD,∴CD=OB= b,AO=AC=,
∴点D的坐标为(﹣b,﹣b)。
∵点D在双曲线( x>0)的图象上,
∴,即k与b的数量关系为:。
直线OD的解析式为:y=x。
【解析】
试题分析:(1)首先求出直线y=2x﹣2与坐标轴交点的坐标,然后由△AOB≌△ACD得到CD=DB,AO=AC,即可求出D坐标,由点D在双曲线( x>0)的图象上求出k的值。
(2)首先直线y=2x+b与坐标轴交点的坐标为A(,0),B(0,b),再根据△AOB≌△ACD得到CD=DB,AO=AC,即可求出D坐标,把D点坐标代入反比例函数解析式求出k和b之间的关系,进而也可以求出直线OD的解析式。
25、(1)见解析;(2)
【解析】
(1)根据三角形中位线的性质得到DE∥AB,根据平行四边形的判定定理即可得到结论;
(2)连接AE,根据直角三角形的性质得到∠ABE=30°,解直角三角形即可得到结论
【详解】
(1)证明:如图,
∵ 点E、F分别是BC、AC边上的中点
又
四边形是平行四边形
(2)解:连接 ,
,点是边上的中点
,
在中,
由(1)知,四边形是平行四边形
四边形的周长
本题考查了平行四边形的判定和性质,等腰三角形的性质,正确的识别图形是解题的关键.
26、(1)4;(2);(3)
【解析】
(1)根据算数平均数公式求解即可;
(2)根据众数的概念求得x的值,然后利用方差公式计算进行即可;
(3)用因式分解法解一元二次方程.
【详解】
解:(1)
∴这组数据的平均数为4;
(2)由题意可知:x=2
∴
∴这组数据的方差为;
(3)
或
∴
本题考查平均数,众数,方差的概念及计算,考查因式分解法解一元二次方程,掌握相关概念和公式,正确计算是解题关键.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份2025届福建省宁化城东中学数学九年级第一学期开学质量跟踪监视试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年新疆库尔勒市14中学数学九年级第一学期开学质量跟踪监视试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年河北省唐山市林西中学数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。