搜索
    上传资料 赚现金
    英语朗读宝

    2025届河北省沧州市孟村回族自治县数学九年级第一学期开学学业质量监测试题【含答案】

    2025届河北省沧州市孟村回族自治县数学九年级第一学期开学学业质量监测试题【含答案】第1页
    2025届河北省沧州市孟村回族自治县数学九年级第一学期开学学业质量监测试题【含答案】第2页
    2025届河北省沧州市孟村回族自治县数学九年级第一学期开学学业质量监测试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届河北省沧州市孟村回族自治县数学九年级第一学期开学学业质量监测试题【含答案】

    展开

    这是一份2025届河北省沧州市孟村回族自治县数学九年级第一学期开学学业质量监测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)以下列长度(单位:cm)为边长的三角形是直角三角形的是( )
    A.3,4,5B.1,2,3C.5,7,9D.6,10,12
    2、(4分)如图,矩形ABCD中,点E,F分别是AB、CD的中点,连接DE和BF,分别取DE、BF的中点M、N,连接AM,CN,MN,若,,则图中阴影部分的面积为( )
    A.4B.6C.12D.24
    3、(4分)二次根式中x的取值范围是( )
    A.x≥5B.x≤5C.x≥﹣5D.x<5
    4、(4分)如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为( )
    A.24B.18C.12D.9
    5、(4分)若代数式在实数范围内有意义,则x的取值范围是( )
    A.x<3B.x≤3C.x>3D.x≥3
    6、(4分)下列几个二次根式 , ,,,中是最简二次根式的有( )
    A.个B.个C.个D.个
    7、(4分)在平行四边形ABCD中,对角线AC,BD相交于点O. 下列条件不能判定平行四边形ABCD为矩形的是( )
    A.∠ABC=90°B.AC=BD
    C.AC⊥BDD.∠BAD=∠ADC
    8、(4分).函数的自变量x的取值范围是( )
    A.B.且C.D.且
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)四边形ABCD为菱形,该菱形的周长为16,面积为8,则∠ABC为_____度.
    10、(4分)如图,在△ABC中,AC=BC=9,∠C=120°,D为AC边上一点,且AD=6,E是AB边上一动点,连接DE,将线段DE绕点D逆时针旋转30°得到DF,若F恰好在BC边上,则AE的长为_____.
    11、(4分)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是 .
    12、(4分)某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核,甲、乙、丙各项得分如下表:
    该公司规定:笔试、面试、体能得分分别不得低于80分、80分、70分,并按60%,30%,10%的比例计入总分,根据规定,可判定_____被录用.
    13、(4分)如图所示,为估计池塘两岸边,两点间的距离,在池塘的一侧选取点,分别取、的中点,,测的,则,两点间的距离是______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知关于的一元二次方程.
    (1)求证:方程总有两个实数根;
    (2)若方程两个根的绝对值相等,求此时的值.
    15、(8分)如图,一次函数的图象与轴交于点A,正方形ABCD的顶点B在轴上,点D在直线上,且AO=OB,反比例函数()经过点C.
    (1)求一次函数和反比例函数的解析式;
    (2)点P是轴上一动点,当的周长最小时,求出P点的坐标;
    (3)在(2)的条件下,以点C、D、P为顶点作平行四边形,直接写出第四个顶点M的坐标.
    16、(8分)蒙蒙和贝贝都住在M小区,在同一所学校读书.某天早上,蒙蒙7:30从M小区站乘坐校车去学校,途中停靠了两个站点才到达学校站点,且每个站点停留2分钟,校车在每个站点之间行驶速度相同;当天早上,贝贝7:38从M小区站乘坐出租车沿相同路线出发,出租车匀速行驶,结果比蒙蒙乘坐的校车早2分钟到学校站点.他们乘坐的车辆从M小区站出发所行驶路程y(千米)与校车离开M小区站的时间x(分)之间的函数图象如图所示.
    (1)求图中校车从第二个站点出发时点B的坐标;
    (2)求蒙蒙到达学校站点时的时间;
    (3)求贝贝乘坐出租车出发后经过多少分钟追上蒙蒙乘坐的校车,并求此时他们距学校站点的路程.
    17、(10分)如图,平行四边形的顶点分别在轴和轴上,顶点在反比例函数的图象上,求平行四边形的面积.
    18、(10分)如图所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动.点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.
    (1)经过多长时间,四边形PQCD是平行四边形?
    (2)经过多长时间,四边形PQBA是矩形?
    (3)经过多长时间,当PQ不平行于CD时,有PQ=CD.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若关于x的一次函数y=(m+1)x+2m﹣3的图象经过第一、三、四象限,则m的取值范围为_____.
    20、(4分)如图,点O是矩形ABCD的对角线AC的中点,M是AD的中点,若OM=3,BC=8,则OB的长为 ________。
    21、(4分)如图,在直角坐标系中,菱形ABCD的顶点坐标C(-1,0)、B(0,2)、D(n,2),点A在第二象限.直线y=-x+5与x轴、y轴分别交于点N、M.将菱形ABCD沿x轴向右平移m个单位.当点A落在MN上时,则m+n= ________
    22、(4分)已知函数y=(m﹣1)x+m2﹣1是正比例函数,则m=_____.
    23、(4分)已知四边形是矩形,点是边的中点,以直线为对称轴将翻折至,联结,那么图中与相等的角的个数为_____________
    二、解答题(本大题共3个小题,共30分)
    24、(8分)某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.
    设小明计划今年夏季游泳次数为x(x为正整数).
    (I)根据题意,填写下表:
    (Ⅱ)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?
    (Ⅲ)当x>20时,小明选择哪种付费方式更合算?并说明理由.
    25、(10分)问题背景
    如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形.
    类比探究
    如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)
    (1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明.
    (2)△DEF是否为正三角形?请说明理由.
    (3)进一步探究发现,△ABD的三边存在一定的等量关系,设BD=a,AD=b,AB=c,请探索a,b,c满足的等量关系.
    26、(12分)如图,四边形ABCD为平行四边形,AD=a,BE∥AC,DE交AC的延长线于F点,交BE于E点.
    (1)求证:DF=FE;
    (2)若AC=2CF,∠ADC=60°,AC⊥DC,求BE的长.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.
    【详解】
    A. 因为3+4=5,所以三条线段能组成直角三角形;
    B. 因为1+2≠3,所以三条线段不能组成直角三角形;
    C. 因为5+7≠9,所以三条线段不能组成直角三角形;
    D. 因为6+10≠12,所以三条线段不能组成直角三角形;
    故选:A.
    此题考查勾股定理的逆定理,难度不大
    2、C
    【解析】
    由题意可知,,
    ,所以阴影部分的面积就等于矩形面积的一半.
    【详解】
    解:由题意可知,,
    故答案为:C
    本题考查了与矩形有关的面积问题,确定所求面积与矩形面积的数量关系是解题的关键.
    3、B
    【解析】
    根据二次根式有意义的条件列出不等式,再求解即可.
    【详解】
    解:由题意,得:5-x≥0,解得x≤5.
    故答案为B.
    本题考查了二次根式有意义的条件,明确二次根式中的被开方数a≥0是解题的关键.
    4、A
    【解析】
    【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解.
    【详解】∵E是AC中点,
    ∵EF∥BC,交AB于点F,
    ∴EF是△ABC的中位线,
    ∴BC=2EF=2×3=6,
    ∴菱形ABCD的周长是4×6=24,
    故选A.
    【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.
    5、B
    【解析】
    根据二次根式的被开方数是非负数列出不等式,解不等式即可.
    【详解】
    由题意得,3﹣x≥0,解得,x≤3,故选:B.
    本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.
    6、A
    【解析】
    利用最简二次根式定义判断即可.
    【详解】
    是最简二次根式,
    则最简二次根式的有2个,
    故选:A.
    此题考查了最简二次根式,以及二次根式的定义,熟练掌握各自的性质是解本题的关键.
    7、C
    【解析】
    根据平行四边形的性质、矩形的判定定理对各项进行判断分析即可.
    【详解】
    A. 有一个角为直角的平行四边形是矩形,正确;
    B. 对角线相等的平行四边形是矩形,正确;
    C. 并不能判定平行四边形ABCD为矩形,错误;
    D.∵四边形ABCD是平行四边形,∠BAD=∠ADC∴∠BAD=∠ADC=90°,根据有一个角为直角的平行四边形是矩形,正确;
    故答案为:C.
    本题考查了矩形的判定问题,掌握平行四边形的性质、矩形的判定定理是解题的关键.
    8、A
    【解析】
    根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.
    【详解】
    根据题意得:且x−3≠0,
    解得:且x≠3,
    自变量的取值范围,
    故选:A.
    考查自变量的取值范围,熟练掌握分式以及二次根式有意义的条件是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、30或150
    【解析】
    如图1所示:当∠A为钝角,过A作AE⊥BC,
    ∵菱形ABCD的周长为l6,∴AB=4,∵面积为8,∴AE=2,∴∠ABE=30°,
    ∴∠ABC=60°,
    当∠A为锐角时,如图2,过D作DE⊥AB,
    ∵菱形ABCD的周长为l6,∴AD=4,∵面积为8,∴DE=2,
    ∴∠A=30°,∴∠ABC=150°,故答案为30或150.
    10、3+
    【解析】
    由,可知,又有,联想一线三等角模型,延长到,使,得,进而可得,,由于,即可得是直角三角形,易求,由即可解题.
    【详解】
    解:如图,延长到,使,连接,
    ,,
    ,,

    又,

    在和中,

    ,,


    设,则,由得:

    解得,(不合题意舍去),


    故答案为:.
    本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了全等三角形的判定与性质和等腰直角三角形的性质.本题解题关键是通过一线三等角模型构造全等三角形,从而得到.
    11、1.
    【解析】
    利用勾股定理列式求出BC的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EH=FG=AD,EF=GH=BC,然后代入数据进行计算即可得解:
    ∵BD⊥CD,BD=4,CD=3,∴.
    ∵E、F、G、H分别是AB、AC、CD、BD的中点,∴EH=FG=AD,EF=GH=BC.
    ∴四边形EFGH的周长=EH+GH+FG+EF=AD+BC.
    又∵AD=6,∴四边形EFGH的周长=6+5=1.
    12、乙
    【解析】
    由于甲的面试成绩低于80分,根据公司规定甲被淘汰;再将乙与丙的总成绩按比例求出测试成绩,比较得出结果.
    【详解】
    解:∵该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,
    ∴甲淘汰;
    乙成绩=85×60%+80×30%+75×10%=82.5,
    丙成绩=80×60%+90×30%+73×10%=82.3,
    乙将被录取.
    故答案为:乙.
    本题考查了加权平均数的计算.平均数等于所有数据的和除以数据的个数.
    13、36
    【解析】
    根据E、F是CA、CB的中点,即EF是△CAB的中位线,根据三角形的中位线定理:三角形的中位线平行于第三边且等于第三边的一半,即可求解.
    【详解】
    解:据E、F是CA、CB的中点,即EF是△CAB的中位线,
    ∴EF=AB,
    ∴AB=2EF=2×18=36.
    故答案为36.
    本题考查了三角形的中位线定理应用,灵活应用三角形中位线定理是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)见解析;(2)或-1.
    【解析】
    (1)先求出判别式△的值,再对“△”利用完全平方公式变形即可证明;
    (2)根据求根公式得出x1=m+2,x2=1,再由方程两个根的绝对值相等即可求出m的值.
    【详解】
    解:(1)∵,
    ∴方程总有两个实数根;
    (2)∵,
    ∴,.
    ∵方程两个根的绝对值相等,
    ∴.
    ∴或-1.
    本题考查的是根的判别式及一元二次方程的解的定义,在解答(2)时得到方程的两个根是解题的关键.
    15、(1)y=x+1,;(1)P(,0);(3)M的坐标为(,1),(,6)或(,﹣1).
    【解析】
    (1)设一次函数y=kx+1的图象与x轴交于点E,连接BD,利用一次函数图象上点的坐标特征、正方形的性质以及等腰三角形的性质可得出点E的坐标,由点E的坐标利用待定系数法可求出一次函数解析式,由BD∥OA,OE=OB可求出BD的长,进而可得出点D的坐标,由正方形的性质可求出点C的坐标,再利用反比例函数图象上点的坐标特征可求出反比例函数解析式;
    (1)作点D关于x轴的对称点D',连接CD'交x轴于点P,此时△PCD的周长取最小值,由点D的坐标可得出点D'的坐标,由点C,D'的坐标,利用待定系数法可求出直线CD'的解析式,再利用一次函数图象上点的坐标特征可求出点P的坐标;
    (3)设点M的坐标为(x,y),分DP为对角线、CD为对角线及CP为对角线三种情况,利用平行四边形的性质(对角线互相平分)可求出点M的坐标,此题得解.
    【详解】
    (1)设一次函数y=kx+1的图象与x轴交于点E,连接BD,如图1所示.
    当x=0时,y=kx+1=1,∴OA=1.
    ∵四边形ABCD为正方形,OA=OB,∴∠BAE=90°,∠OAB=∠OBA=45°,∴∠OAE=∠OEA=45°,∴OE=OA=1,点E的坐标为(﹣1,0).
    将E(﹣1,0)代入y=kx+1,得:﹣1k+1=0,解得:k=1,∴一次函数的解析式为y=x+1.
    ∵∠OBD=∠ABD+∠OBA=90°,∴BD∥OA.
    ∵OE=OB=1,∴BD=1OA=4,∴点D的坐标为(1,4).
    ∵四边形ABCD为正方形,∴点C的坐标为(1+1﹣0,0+4﹣1),即(4,1).
    ∵反比例函数y(x>0)经过点C,∴n=4×1=8,∴反比例函数解析式为y.
    (1)作点D关于x轴的对称点D',连接CD'交x轴于点P,此时△PCD的周长取最小值,如图1所示.
    ∵点D的坐标为(1,4),∴点D'的坐标为(1,﹣4).
    设直线CD'的解析式为y=ax+b(a≠0),将C(4,1),D'(1,﹣4)代入y=ax+b,得:,解得:,∴直线CD'的解析式为y=3x﹣2.
    当y=0时,3x﹣2=0,解得:x,∴当△PCD的周长最小时,P点的坐标为(,0).
    (3)设点M的坐标为(x,y),分三种情况考虑,如图3所示.
    ①当DP为对角线时,,解得:,∴点M1的坐标为(,1);
    ②当CD为对角线时,,解得:,∴点M1的坐标为(,6);
    ③当CP为对角线时,,解得:,∴点M3的坐标为(,﹣1).
    综上所述:以点C、D、P为顶点作平行四边形,第四个顶点M的坐标为(,1),(,6)或(,﹣1).
    本题考查了待定系数法求一次函数解析式、反比例函数图象上点的坐标特征、正方形的性质、等腰三角形的性质、三角形中位线、反比例函数图象上点的坐标特征、一次函数图象上点的坐标特征以及平行四边形的性质,解题的关键是:(1)利用等腰三角形的性质及正方形的性质,求出点E,C的坐标;(1)利用两点之间线段最短,确定点P的位置;(3)分DP为对角线、CD为对角线及CP为对角线三种情况,利用平行四边形的对角线互相平分求出点M的坐标.
    16、(1)(14,1);(2)7点12分;(3)8分钟追上,路程3千米;
    【解析】
    (1)首先求出校车的速度,因为校车在每个站点之间行驶速度相同,得出点A的坐标,进而求出点B的坐标;
    (2)由速度和B点坐标,求出BC的表达式,得知C点纵坐标为9,则横坐标为22,即蒙蒙到学校用了22分;
    (3)贝贝比蒙蒙乘坐的校车早2分钟到学校站点,则贝贝到学校用了20分,即E(20,9)
    又F(8,0),求出EF的表达式,贝贝乘坐出租车出发后追上蒙蒙乘坐的校车,即BC和EF的交点G(16,6),即可得知贝贝乘坐出租车出发后经过8分钟追上蒙蒙乘坐的校车,此时他们距学校站点的路程是3千米.
    【详解】
    解:(1)校车的速度为3÷6=0.1(千米/分钟),
    点A的纵坐标的值为3+0.1×(12-8)=1.
    故点B的坐标(14,1).
    (2)由(1)中得知,B(14,1),
    设BC的表达式为,
    将B代入,得
    C点纵坐标为9,则横坐标为22,即蒙蒙到学校用了22分,
    蒙蒙出发的时间为7:30,所以蒙蒙到达学校站点时的时间为7点12分.
    (3)贝贝比蒙蒙乘坐的校车早2分钟到学校站点,则贝贝到学校用了20分,即E(20,9)
    又F(8,0),设EF表达式为,
    解得
    贝贝乘坐出租车出发后追上蒙蒙乘坐的校车,即BC和EF的交点G,
    解得
    即G(16,6)
    故贝贝乘坐出租车出发后经过8分钟追上蒙蒙乘坐的校车,此时他们距学校站点的路程是3千米.
    (1)此题主要考查一次函数的实际应用,校车的速度即为直线的斜率,校车在每个站点之间行驶速度相同,即可得解;
    (2)已知点坐标求一次函数解析式,直接代入即可得解,得出坐标要联系实际应用回答;
    (3)将两个一次函数解析式联合得解,再联系实际应用.
    17、3
    【解析】
    根据题意可知B点的横坐标和纵坐标分别是平行四边形的底和高,根据平行四边形的面积公式及反比例函数系数的几何意义,即可得出.
    【详解】
    ∵平行四边形ABOC定点A、C分别在y轴和x轴上,顶点B在反比例函数y= 的图象上,设B点横坐标为a,则纵坐标为 ,
    ∴S平行四边形AB0C=AB∙OA=a∙=3,
    故本题答案为:3.
    本题考查了反比例函数系数k的几何意义以及平行四边形的面积公式,根据反比例函数系数k的几何意义找出S平行四边形 ABOC=|k|.
    18、 (1)1s;(2) s;(3)3s.
    【解析】
    (1)设经过ts时,四边形PQCD是平行四边形,根据DP=CQ,代入后求出即可;
    (2)设经过ts时,四边形PQBA是矩形,根据AP=BQ,代入后求出即可;
    (3)设经过t(s),四边形PQCD是等腰梯形,利用EP=2列出有关t的方程求解即可.
    【详解】
    (1)设经过t(s),四边形PQCD为平行四边形
    即PD=CQ
    所以24-t=3t,
    解得:t=1.
    (2)设经过t(s),四边形PQBA为矩形,
    即AP=BQ,
    所以t=21-3t,
    解得:t=.
    (3)设经过t(s),四边形PQCD是等腰梯形.
    过Q点作QE⊥AD,过D点作DF⊥BC,
    ∴∠QEP=∠DFC=90°
    ∵四边形PQCD是等腰梯形,
    ∴PQ=DC.
    又∵AD∥BC,∠B=90°,
    ∴AB=QE=DF.
    在Rt△EQP和Rt△FDC中,

    ∴Rt△EQP≌Rt△FDC(HL).
    ∴FC=EP=BC-AD=21-24=2.
    又∵AE=BQ=21-3t,
    ∴EP=AP-AE=t-(21-3t)=2.
    得:t=3.
    ∴经过3s,PQ=CD.
    此题主要考查平行四边形、矩形及等腰梯形的判定掌握情况,本题解题关键是找出等量关系即可得解.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、﹣1<m<
    【解析】
    根据一次函数y=kx+b(k≠0)的图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.
    【详解】
    解:由一次函数y=(m+1)x+2m﹣3的图象经过第一、三、四象限,知
    m+1>0,且2m﹣3<0,
    解得,﹣1<m<.
    故答案为:﹣1<m<.
    本题考查一次函数图象与系数的关系,解题的关键是掌握一次函数图象与系数的关系.
    20、5
    【解析】
    根据矩形的性质求出∠D=90°,OA=OB,AD=BC=8,求出AM,根据勾股定理求出OA即可.
    【详解】
    ∵四边形ABCD为矩形,点M为AD的中点
    ∴点O为AC的中点,BC=AD=8,AC=BD
    ∴MO为三角形ACD的中位线
    ∴MO=CD,即CD=6
    ∴在直角三角形ACD中,由勾股定理得,AC==10。
    ∴OB=BD=AC=5.
    本题考查了矩形的性质、勾股定理、三角形的中位线等知识点,能熟记矩形的性质是解此题的关键,注意:矩形的对边相等,矩形的对角线互相平分且相等,矩形的每个角都是直角.
    21、1.
    【解析】
    根据菱形的对角线互相垂直平分表示出点A、点D的坐标,再根据直线解析式求出点A移动到MN上时的x的值,从而得到m的取值,由此即可求得答案.
    【详解】
    ∵菱形ABCD的顶点C(-1,0),点B(0,2),
    ∴点A的坐标为(-1,4),点D坐标为(-2,2),
    ∵D(n,2),
    ∴n=-2,
    当y=4时,-x+5=4,
    解得x=2,
    ∴点A向右移动2+1=3时,点A在MN上,
    ∴m的值为3,
    ∴m+n=1,
    故答案为:1.
    本题考查了一次函数图象上点的坐标特征,菱形的性质,坐标与图形变化-平移,正确把握菱形的性质、一次函数图象上点的坐标特征是解题的关键.
    22、-2
    【解析】
    由正比例函数的定义可得m2﹣2=2,且m﹣2≠2.
    【详解】
    解:由正比例函数的定义可得:m2﹣2=2,且m﹣2≠2,
    解得:m=﹣2,
    故答案为:﹣2.
    本题考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠2.
    23、4
    【解析】
    由折叠的性质和等腰三角形的性质可得,∠EDF=∠EFD=∠BEF=∠AEB,由平行线的性质,可得∠AEB=∠CBE,进而得出结论.
    【详解】
    由折叠知,∠BEF=∠AEB,AE=FE,
    ∵点E是AD中点,
    ∴AE=DE,
    ∴ED=FE,
    ∴∠FDE=∠EFD,
    ∵∠AEF=∠EDF+∠DFE=∠AEB=∠BEF
    ∴∠AEB=∠EDF,
    ∵AD∥BC,
    ∴∠AEB=∠CBE,
    ∴∠EDF=∠EFD=∠BEF=∠AEB=∠CBE,
    故答案为:4
    本题属于折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决问题的关键是由等腰三角形的性质得出∠EDF=∠AEB.
    二、解答题(本大题共3个小题,共30分)
    24、(I)200,100+5x,180,9x;(II)选择方式一付费方式,他游泳的次数比较多(III)当20

    相关试卷

    2025届甘肃省临泽县数学九年级第一学期开学学业质量监测模拟试题【含答案】:

    这是一份2025届甘肃省临泽县数学九年级第一学期开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年河北省隆尧县联考数学九年级第一学期开学学业质量监测试题【含答案】:

    这是一份2024年河北省隆尧县联考数学九年级第一学期开学学业质量监测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年河北省保定曲阳县联考数学九年级第一学期开学学业质量监测模拟试题【含答案】:

    这是一份2024年河北省保定曲阳县联考数学九年级第一学期开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map