2025届海南省海口市名校九年级数学第一学期开学经典试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是( )
A.小丽从家到达公园共用时间20分钟B.公园离小丽家的距离为2000米
C.小丽在便利店时间为15分钟D.便利店离小丽家的距离为1000米
2、(4分)在平面直角坐标系中,若点与点关于原点对称,则点在( )
A.第一象限B.第二象限C.第三象限D.第四象限
3、(4分)点位于平面直角坐标系中的( ).
A.第一象限B.第二象限C.第三象限D.第四象限
4、(4分)函数与在同一平面直角坐标系中的大致图像是( )
A.B.C.D.
5、(4分)如图,在中,,,,点在上,若四边形DEBC为菱形,则的长度为( )
A.7B.9C.3D.4
6、(4分)一次函数的图象如图所示,将直线向下平移若干个单位后得直线,的函数表达式为.下列说法中错误的是( )
A.B.C.D.当时,
7、(4分)下列图标中,是中心对称图形的是( )
A.B.
C.D.
8、(4分)如图,点是正方形的边上一点,把绕点顺时针旋转到的位置.若四边形AECF的面积为20,DE=2,则AE的长为( )
A.4B.C.6D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在平面直角坐标系中,平行四边形OABC的边OA在x轴的正半轴上,A、C两点的坐标分别为(2,0)、(1,2),点B在第一象限,将直线y=-2x沿y轴向上平移m(m>0)个单位.若平移后的直线与边BC有交点,则m的取值范围是_____________.
10、(4分)如图,在中,,.对角线AC与BD相交于点O,,则BD 的长为____________.
11、(4分)如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=10,BC=16,则EF的长为___________.
12、(4分)若一组数据,,,,的众数是,则这组数据的方差是__________.
13、(4分)如图,四边形ABCD中,若去掉一个60°的角得到一个五边形,则∠1+∠2=_______度.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在矩形OABC中,点A在x轴上,点C在y轴上,点B的坐标是,将沿直线BD折叠,使得点C落在对角线OB上的点E处,折痕与OC交于点D.
(1)求直线OB的解析式及线段OE的长.
(2)求直线BD的解析式及点E的坐标.
15、(8分)某商店经销某种玩具,该玩具每个进价 20 元,为进行促销,商店制定如下“优惠” 方案:如果一次销售数量不超过 5 个,则每个按 50 元销售:如果一次销售数量超过 5 个,则每增加一个,所有玩具均降低 1 元销售,但单价不得低于 30 元,一次销售该玩具的单价 y(元)与销售数量 x(个)之间的函数关系如下图所示.
(1)结合图形,求出 m 的值;射线 BC 所表示的实际意义是什么;
(2)求线段 AB 满足的 y 与 x 之间的函数解析式,并直接写出自变量的取值范围;
(3)当销售 15 个时,商店的利润是多少元.
16、(8分) “雁门清高”苦荞茶,是大同左云的特产,享誉全国,某经销商计划购进甲、乙两种包装的苦荞茶500盒进行销售,这两种茶的进价、售价如下表所示:
设该经销离购进甲种包装的苦荞茶x盒,总进价为y元。
(1)求y与x的函数关系式
(2)为满足市场需求,乙种包装苦荞茶的数量不大于甲种包装数量的4倍,请你求出获利最大的进货方案,并求出最大利润。
17、(10分)(1)化简的结果正确的是( )
A.1 B. C. D.
(2)先化简,再求值:,其中.
18、(10分)某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又经过2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y(立方米)与时间x(分)之间的部分函数图象如图所示.
(1)求每分钟向储存罐内注入的水泥量.
(2)当3≤x≤5.5时,求y与x之间的函数关系式.
(3)储存罐每分钟向运输车输出的水泥量是 立方米,从打开输入口到关闭输出口共用的时间为 分钟.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在△ABC中,∠B=32°,∠BAC的平分线AD交BC于点D,若DE垂直平分AB,则∠C的度数为_____.
20、(4分)如图,已知函数y=2x+b与函数y=kx-3的图象交于点P(4,-6),则不等式kx-3>2x+b的解集是__________.
21、(4分)如图,小明作出了边长为2的第1个正△A1B1C1 , 算出了正△A1B1C1的面积. 然后分别取△A1B1C1的三边中点A2、B2、C2 , 作出了第2个正△A2B2C2 , 算出了正△A2B2C2的面积. 用同样的方法,作出了第3个正△A3B3C3 , 算出了正△A3B3C3的面积……,由此可得,第2个正△A2B2C2的面积是_______,第n个正△AnBnCn的面积是______
22、(4分)分解因式:5x3﹣10x2=_______.
23、(4分)如图,的周长为,与相交于点,交于,则的周长为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,点A在的边ON上,于点B,,于点E,,于点C.
求证:四边形ABCD是矩形.
25、(10分)(发现)如图①,在△ABC中,点D,E分别是AB,AC的中点,可以得到:DE∥BC,且DE=BC.(不需要证明)
(探究)如图②,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,判断四边形EFGH的形状,并加以证明.
(应用)在(探究)的条件下,四边形ABCD中,满足什么条件时,四边形EFGH是菱形?你添加的条件是: .(只添加一个条件)
26、(12分)如图1,一次函数的图象与反比例函数的图象交于)两点与x轴,y轴分别交于A、B(0,2)两点,如果的面积为6.
(1)求点A的坐标;
(2)求一次函数和反比例函数的解析式;
(3)如图2,连接DO并延长交反比例函数的图象于点E,连接CE,求点E的坐标和的面积
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
解:A.小丽从家到达公园共用时间20分钟,正确;
B.公园离小丽家的距离为2000米,正确;
C.小丽在便利店时间为15﹣10=5分钟,错误;
D.便利店离小丽家的距离为1000米,正确.
故选C.
2、C
【解析】
直接利用关于关于原点对称点的性质得出m,n的值,进而得出答案.
【详解】
解:∵点M(m,n)与点Q(−2,3)关于原点对称,
∴m=2,n=−3,
则点P(m+n,n)为(−1,−3),在第三象限.
故选:C.
此题主要考查了关于原点对称的点的性质,正确得出m,n的值是解题关键.
3、A
【解析】
本题根据各象限内点的坐标的特征即可得到答案
【详解】
解:∵点的横纵坐标都是正的
∴,点P在第一象限
故选A
本题考查平面直角坐标系中四个象限内点的横纵坐标的正负,准确区分为解题关键
4、A
【解析】
先根据反比例函数的性质判断出m的取值,再根据一次函数的性质判断出m取值,二者一致的即为正确答案.
【详解】
A、由双曲线在一、三象限,得m<1.由直线经过一、二、四象限得m<1.正确;
B、由双曲线在二、四象限,得m>1.由直线经过一、四、三象限得m>1.错误;
C、由双曲线在一、三象限,得m<1.由直线经过一、四、三象限得m>1.错误;
D、由双曲线在二、四象限,得m>1.由直线经过二、三、四象限得m<1.错误.
故选:A.
此题考查了反比例函数的图象性质和一次函数的图象性质,解题关键在于注意系数m的取值.
5、A
【解析】
根据勾股定理得到AC==25, 连接BD交AC于O,由菱形的性质得到BD⊥CE,BO=DO,EO=CO,求得CE=2OE=18,于是得到结论.
【详解】
解:连接BD,交AC于点O,
在△ABC中,∠ABC=90°,AB=20,BC=15,
∴AC==25,
连接BD交AC于O,
∵四边形BCDE为菱形,
∴BD⊥CE,BO=DO,EO=CO,
∴BO===12,
∴OC==9,
∴CE=2OE=18,
∴AE=7,
故选:A.
本题考查菱形的性质,三角形的面积公式,勾股定理,正确的识别图形是解题的关键.
6、B
【解析】
根据两函数图象平行k相同,以及平移规律“左加右减,上加下减”即可判断
【详解】
∵将直线向下平移若干个单位后得直线,
∴直线∥直线,
∴,
∵直线向下平移若干个单位后得直线,
∴,
∴当时,
故选B.
本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.
7、B
【解析】
根据中心对称图形的概念 对各选项分析判断即可得解.
【详解】
解:A、不是中心对称图形,故本选项错误;
B、是中心对称图形,故本选项正确;
C、不是中心对称图形,故本选项错误;
D、不是中心对称图形,故本选项错误.
故选B.
本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.
8、D
【解析】
利用旋转的性质得出四边形 AECF的面积等于正方形 ABCD的面积,进而可求
出正方形的边长,再利用勾股定理得出答案.
【详解】
绕点顺时针旋转到的位置.
四边形的面积等于正方形的面积等于20,
,
,
中,
故选:.
本题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应
边关系是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、4≤m≤1
【解析】
设平移后的直线解析式为y=-2x+m.根据平行四边形的性质结合点O、A、C的坐标即可求出点B的坐标,再由平移后的直线与边BC有交点,可得出关于m的一元一次不等式组,解不等式组即可得出结论.
【详解】
设平移后的直线解析式为y=-2x+m.
∵四边形OABC为平行四边形,且点A(2,0),O(0,0),C(1,2),
∴点B(3,2).
∵平移后的直线与边BC有交点,
∴,
解得:4≤m≤1.
本题考查了平行四边形的性质、平移的性质以及两条直线相交的问题,解题的关键是找出关于m的一元一次不等式组.
10、
【解析】
利用平行四边形的性质和勾股定理易求AC的长,进而可求出BD的长.
【详解】
解:∵AC⊥BC,AB=CD=10,AD=6,
∴AC===8,
∵▱ABCD的对角线AC与BD相交于点O,
∴BO=DO,AO=CO=AC=4,
∴OD===2 .
∴BD=4.
故答案为:4.
本题考查平行四边形的性质以及勾股定理的运用,熟练掌握平行四边形的性质,由勾股定理求出OD是解题关键.
11、1
【解析】
根据直角三角形斜边上的中线等于斜边的一半求出DF的长度,根据三角形的中位线平行于第三边并且等于第三边的一半求出DE的长,然后相减即可得到EF的长.
【详解】
∵DE为△ABC的中位线,∠AFB=90°,
∴DE=BC,DF=AB,
∵BC=16,AB=10,
∴DE=×16=8,DF=×10=5,
∴EF=DE-DF=8-5=1,
故答案为:1.
本题考查了三角形的中位线定理,直角三角形斜边上的中线等于斜边的一半的性质,熟记定理与性质是解题的关键.
12、13.1
【解析】
首先根据众数的定义求出的值,进而利用方差公式得出答案.
【详解】
解:数据0,,8,1,的众数是,
,
,
,
故答案为:13.1.
此题主要考查了方差以及众数的定义,正确记忆方差的定义是解题关键.
13、240°
【解析】
∵四边形的内角和为(4﹣2)×180°=360°,∴∠B+∠C+∠D=360°﹣60°=300°。
∵五边形的内角和为(5﹣2)×180°=540°,∴∠1+∠2=540°﹣300°=240°
三、解答题(本大题共5个小题,共48分)
14、(1)直线OB的解析式为,;(2)直线BD的解析式为,.
【解析】
(1)先利用待定系数法求直线OB的解析式,再利用两点间的距离公式计算出OB,然后根据折叠的性质得到BE=BC=6,从而可计算出OE=OB-BE=4;
(2)设D(0,t),则OD=t,CD=8-t,根据折叠的性质得到DE=DC=8-t,∠DEB=∠DCB=90°,根据勾股定理得(8-t)2+42=t2,求出t得到D(0,5),于是可利用待定系数法求出直线BD的解析式;设E(x,),利用OE=4得到x2+()2=42,然后解方程求出x即可得到E点坐标.
【详解】
解:(1)设直线OB的解析式为,
将点代入中,得,
∴,
∴直线OB的解析式为.
∵四边形OABC是矩形.且,
∴,,
∴,.
根据勾股定理得,
由折叠知,.
∴
(2)设D(0,t)
,
∴,
由折叠知,,,
在中,,
根据勾股定理得,
∴,
∴,
∴,.
设直线BD的解析式为.
∵,
∴,
∴,
∴直线BD的解析式为.
由(1)知,直线OB的解析式为.
设点,
根据的面积得,
∴,
∴.
本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.也考查了矩形的性质和折叠的性质.
15、(1)25、当一次销售数量超过 25 个时,每个均按 30 元销售;(2)线段 AB 满足的 y 与 x 之间的函数解析式是 y=-x+55(5≤x≤25);(3)此时商店的利润为300元.
【解析】
(1)根据单价不得低于30元,即可求出m,所以BC表示当销量超过 25 个时,每个均按 30 元销售,
(2)待定系数法即可求解,
(3)将x=15代入解析式中即可求解.
【详解】
(1)m=5+(50-30)÷1=25 ,
射线BC 所表示的实际意义为当一次销售数量超过25 个时,每个均按 30 元销售,
故答案为:25、当一次销售数量超过 25 个时,每个均按 30 元销售;
(2)设线段 AB 满足的 y 与 x 之间的函数解析式为 y=kx+b, ,得 ,
即线段 AB 满足的 y 与 x 之间的函数解析式是 y=-x+55(5≤x≤25);
(3)当 y=15 时,15=-x+55,得 x=40,
∴此时商店的利润为:15×[40 -20]=300(元)
本题考查了一次函数实际应用问题,属于简单题,注意分段考虑函数关系是解题关键.
16、 (1) y=-66x+53000;(2)购进甲种包装的苦荞茶100盒,购进乙种包装的苦荞茶400盒时,所获利润最大,最大利润为9600元
【解析】
(1)根据总进价=进价×数量列出函数关系式;
(2)根据题意可以得到利润和购买甲种商品数量的函数关系式,再根据乙种包装苦荞茶的数量不大于甲种包装数量的4倍和一次函数的性质即可解答本题.
【详解】
(1)由题可得
y=40x+106(500-x)=-66x+53000
(2)设总利润为w元
由题可得:500-x≤4x
∴x≥100.
∴w=(48-40)x+(128-106)(500-x)
=8x+22(500-x)
=-14x+11000
∵k=-14<0
∴w随x的增大而减小
∴x=100时,w最大=-14×100+11000=9600
此时500-x=400
答:购进甲种包装的苦荞茶100盒,购进乙种包装的苦荞茶400盒时,所获利润最大,最大利润为9600元.
考查一次函数的应用,一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.
17、(1)C ;(2) a+2|a-3|. 2025
【解析】
(1)先运用完全平方公式将被开方数写成(1-a) ,再利用二次根式的性质 =|a|化简即可.
(2)先利用完全平方公式进行化简,再把a的值代入
【详解】
解:(1)
故选C
(2)原式=2a+2=2a+2|a-3|.
因为a=-2019,所以a-3=-2022<0.
所以原式=2a-2(a-3)=1.
当a=-2019时,原式=1.
此题考查二次根式的化简求值,解题关键在于掌握运算法则
18、 (1)5立方米;(2)y=4x+3;(3)1,11.
【解析】
【分析】(1)用体积变化量除以时间变化量即可求出注入速度;
(2)根据题目数据利用待定系数法求解;
(3)由(2)比例系数k=4即为两个口同时打开时水泥储存罐容量的增加速度,则输出速度为5﹣4=1,再根据总输出量为8求解即可.
【详解】(1)每分钟向储存罐内注入的水泥量为15÷3=5立方米;
(2)设y=kx+b(k≠0),把(3,15)(5.5,25)代入,则有
,解得:,
∴当3≤x≤5.5时,y与x之间的函数关系式为y=4x+3;
(3)由(2)可知,输入输出同时打开时,水泥储存罐的水泥增加速度为4立方米/分,则每分钟输出量为5﹣4=1立方米;
只打开输出口前,水泥输出量为5.5﹣3=2.5立方米,之后达到总量8立方米需输出8﹣2.5=5.5立方米,用时5.5分钟
∴从打开输入口到关闭输出口共用的时间为:5.5+5.5=11分钟,
故答案为1,11.
【点睛】本题考查了一次函数的应用,解题的关键是读懂图象、弄清题意、熟练应用一次函数的图象和性质以及在实际问题中比例系数k代表的意义.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、84°.
【解析】
根据线段垂直平分线的性质得到DA=DB,根据等腰三角形的性质得到∠DAB=∠B=32°,根据角平分线的定义、三角形内角和定理计算即可.
【详解】
解:∵DE垂直平分AB,
∴DA=DB,
∴∠DAB=∠B=32°,
∵AD是∠BAC的平分线,
∴∠CAD=∠DAB=32°,
∴∠C=180°−32°×3=84°,
故答案为84°.
本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.
20、x<4
【解析】
观察图象,函数y=kx-3的图象位于函数y=2x+b图象的上方时对应x的取值即为不等式kx-3>2x+b的解集.
【详解】
由图象可得,当函数y=kx-3的图象位于函数y=2x+b图象的上方时对应x的取值为x<4,
∴不等式kx-3>2x+b的解集是x<4.
故答案为:x<4.
本题主要考查一次函数和一元一次不等式,解题的关键是利用数形结合思想.
21、
【解析】
根据相似三角形的性质,先求出正△A2B2C2,正△A3B3C3的面积,依此类推△AnBnCn的面积是.
【详解】
正△A1B1C1的面积是×22==,
∵△A2B2C2与△A1B1C1相似,并且相似比是1:2,
∴面积的比是1:4,
则正△A2B2C2的面积是× ==;
∵正△A3B3C3与正△A2B2C2的面积的比也是1:4,
∴面积是×==;
依此类推△AnBnCn与△An﹣1Bn﹣1Cn﹣1的面积的比是1:4,
第n个三角形的面积是.
故答案是: , .
考查了相似三角形的判定与性质,以及等边三角形的性质,找出题中的规律是解题的关键.
22、5x2(x-2)
【解析】
5x3-10x2=2x2(x-2)
23、1
【解析】
根据平行四边形的性质,两组对边分别平行且相等,对角线相互平分,OE⊥AC可说明EO是线段AC的中垂线,中垂线上任意一点到线段两端点的距离相等,则AE=CE,再利用平行四边形ABCD的周长为20可得AD+CD=1,进而可得△DCE的周长.
【详解】
解:∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,点O平分BD、AC,即OA=OC,
又∵OE⊥AC,
∴OE是线段AC的中垂线,
∴AE=CE,
∴AD=AE+ED=CE+ED,
∵▱ABCD的周长为20cm,
∴CD+AD=1cm,
∴的周长= CE+ED +CD=AD+CD=1cm,
故答案为:1.
本题考查平行四边形的性质,中垂线的判定及性质,关键是掌握平行四边形平行四边形的对边相等.平行四边形的对角线互相平分.
二、解答题(本大题共3个小题,共30分)
24、详见解析
【解析】
根据全等三角形的判定和性质以及矩形的判定解答即可;
【详解】
证明:(证法不唯一)∵于点B,于点E,
∴.
在与中,
∵
∴.
∴,
∴.
又∵,,
∴.
∴四边形ABCD是平行四边形.
∵,
∴四边形ABCD是矩形.
此题考查了矩形的判定与性质以及勾股定理.
25、(1)见解析;(2)AC=BD.
【解析】
探究:连结AC,由四个中点可得EF∥AC且EF=AC、GH∥AC且GH=AC,据此可得EF∥GH,且EF=GH,从而得证;
应用:添加AC=BD,连接BD,由EF=AC、EH=BD,且AC=BD知EF=EH,根据四边形EFGH是平行四边形即可得证;
【详解】
探究:平行四边形,
证明:连结AC,
∵E、F分别是AB、BC的中点,
∴EF∥AC,且EF=AC.
∵G、H分别是CD、AD的中点,
∴GH∥AC,且GH=AC.
∴EF∥GH,且EF=GH.
∴四边形EFGH是平行四边形.
应用:
AC=BD;
连接BD,
∵EF=AC、EH=BD,且AC=BD,
∴EF=EH,
又∵四边形EFGH是平行四边形,
∴四边形EFGH是菱形.
故答案为:AC=BD.
本题主要考查四边形的综合问题,解题的关键是掌握中位线定理,平行四边形、菱形的判定方法.
26、(1)A(﹣4,0);(2),;(3),8
【解析】
(1)由三角形面积求出OA=4,即可求得A(-4,0).
(2)利用待定系数法即可求出一次函数的解析式,进而求得C点的坐标,把C点的坐标代入,求出m的值,得到反比例函数的解析式;
(3)先联立两函数解析式得出D点坐标,根据中心对称求得E点的坐标,然后根据三角形的面积公式计算△CED的面积即可.
【详解】
(1)如图1,
∵,
∴,
∴,
∵的面积为6,
∴,
∵,
∴OA=4,
∴A(﹣4,0);
(2)如图1,把代入得,
解得,
∴一次函数的解析式为,
把代入得,,
∴,
∵点C在反比例函数的图象上,
∴m=2×3=6,
∴反比例函数的解析式为;
(3)如图2,作轴于F,轴于H,
解,得,,
∴,
∴,
∴=
此题考查一次函数与反比例函数的交点问题,待定系数法求函数解析式,函数图象上点的坐标特征,三角形面积的计算,注意数形结合的思想运用.
题号
一
二
三
四
五
总分
得分
进价(元/盒)
售价(元/盒)
甲种
40
48
乙种
106
128
2025届海南省海口市丰南中学数学九年级第一学期开学达标检测模拟试题【含答案】: 这是一份2025届海南省海口市丰南中学数学九年级第一学期开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年云南省普洱市名校数学九年级第一学期开学经典模拟试题【含答案】: 这是一份2024年云南省普洱市名校数学九年级第一学期开学经典模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年云南省曲靖市名校九年级数学第一学期开学经典模拟试题【含答案】: 这是一份2024年云南省曲靖市名校九年级数学第一学期开学经典模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。